
Developer's Guide and Technical Reference
Version 11.0.2180.1635

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketTools™ and SocketWrench™ are trademarks of Catalyst Development Corporation.

 SocketWrench Licensing Information

The SocketWrench License Agreement provides you with a single developer license and the right to
redistribute the .NET assemblies, ActiveX components (OCXs) and libraries (DLLs) included with this product
without any additional royalties or runtime licensing fees.

Evaluation Licenses
When you install SocketWrench, you are given the option of entering a serial number or proceeding with
the installation without a serial number. If you install SocketWrench without a serial number, an evaluation
development license will be created which is valid for a period of thirty (30) days from the date of
installation. The product is fully functional during this evaluation period; however the SocketWrench
components may not be redistributed to third-parties. After the evaluation period has ended, you must
either purchase a development license or remove the product from your computer system.

Runtime Licensing
Many languages which use components automatically manage the licensing requirements for those
components, and it does not require any additional coding on the part of the developer. For example,
placing an ActiveX control on a form in Visual Basic will cause the control's license information to
automatically be embedded in the executable. However, in some cases it may be necessary for you to
explicitly initialize the control by calling its Initialize method and passing a runtime license key. For example,
if an instance of the control is created using the CreateObject function or through a reference, you will
need to explicitly initialize it.

When you install SocketWrench with a serial number, a runtime license key will be automatically generated
for you and stored in a file in the Include folder where you've installed the product. These files define the
SocketWrench runtime licensing key which must be passed to the Initialize method in the components that
you are using. If you are using a language that does not have a license key already defined for it, you can
create a text file that contains the license key using the License Manager utility. More information about
that utility is provided below.

The runtime license key is a null terminated string that is unique to your licensed copy of SocketWrench.
This key should only be embedded in your program and should not be redistributed with your application.
If you provide source code for your product, you cannot include the key with the source code.

If you install SocketWrench with an evaluation license, then the runtime license key will be defined as an
empty string. This will allow the controls to function on a system with a valid evaluation license, but they will
not function on any other system. You must purchase a license and generate a runtime license key before
redistributing an application which uses one or more of the SocketWrench controls.

License Manager
Included with your copy of SocketWrench is a License Manager utility. This program enables you to see
what components have been installed and registered on your system, as well as display information about
your SocketWrench license. If you need to create a new runtime license key, you can use this utility to do
so. Select License | Header File from the menu and choose the type of file that you wish to create. For
more information about how the License Manager can be used, please refer to the online help file that is
included with the utility.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench 11 Upgrade Information

This section will help you upgrade an application written using a previous version of SocketWrench. In most
cases, the modifications required will be minimal and may only require a few edits and recompiling the
program. However, it is recommended that you review this entire guide so that you understand what
changes were made and how those changes can be implemented in your software.

Supported Platforms
SocketWrench 11 is supported on Windows 7, Windows Server 2008 R2 and later versions. Earlier versions
of the operating system, including Windows XP and Windows Vista are no longer supported by Microsoft
and cannot be used with SocketWrench. We recommend using the lasted release of either Windows 10 or
Windows 11.

Developers who are redistributing applications which target Windows 11 or Windows Server 2022 should
upgrade to ensure compatibility with the platform and current development tools. Secure connections
require TLS 1.2 or later and most services will no longer accept connections from a client using SSL 3.0 or
TLS 1.0.

Development Tools
The SocketWrench ActiveX control may be used with any programming language that supports the
Component Object Model (COM) and ActiveX control interface. This includes languages such as Visual
Basic 6.0, Visual FoxPro and PowerBuilder.

The SocketWrench .NET components may be used with Visual Studio 2010 and later versions. If you are
developing using Visual Studio 2010, use the .NET 4.0 assemblies. For Visual Studio 2012 and later versions,
you can use the .NET 4.5 assemblies. If you are targeting a later version of the Framework, such as .NET
4.7.2 or .NET 4.8, you should reference the .NET 4.5 assemblies, which are compatible with those versions.

If you have updated your application to use .NET 6.0 with Visual Studio 2022, you should reference the
.NET 6.0 assemblies. SocketWrench 11 also includes assemblies for .NET 7.0, however this version has a
shorter release cycle and we recommend most projects use .NET 6.0 which is a Long Term Service release.
The .NET 8.0 Framework is currently under development and Microsoft is expected to release it in
November, 2023.

If you are developing on Windows 7 or Windows 8.1, it is required you use Visual Studio 2010 or a later
version. Attempting to use earlier versions of Visual Studio may require that you use those development
tools with elevated privileges and they are no longer supported. For Windows 10 and Windows 11, we
recommend using Visual Studio 2019 or a later version.

The SocketWrench DLL may be used with virtually any programming language that can call exported
functions in a dynamic link library, either by name or by ordinal. Import libraries are provided for Visual
C++ in both x86 and x64 COFF format, and for Borland's C++ compiler in OMF32 and ELF64 format. Other
languages should use the convention appropriate for calling an exported function, such as the Declare
statement in Visual Basic. Although the DLL may be used with .NET languages, it is recommended that you
use the SocketWrench .NET class if you are creating applications for the .NET Framework.

Microsoft Visual Studio
The ActiveX controls and dynamic link library may be used with languages such as Visual Basic .NET, Visual
C# and Delphi .NET. However, it is recommended that you use the SocketWrench .NET component if you
are creating applications that target the .NET Framework. This is particularly true in the case of the ActiveX
control which imposes a significant amount of overhead due to how COM interop is implemented. A
method call to the ActiveX control requires approximately five times the number of instructions than a
method call to the SocketWrench .NET managed class requires.

It is recommended that you use Visual Studio 2010 or later versions. Earlier versions of Visual Studio may
require that you use those development tools with elevated privileges. If you are developing on Windows
10 using the SocketWrench .NET component, it is recommended that you use Visual Studio 2019 or later
versions. SocketWrench 11 includes assemblies that can target the .NET 4.0 Framework and later versions,
including .NET 8.0.

Upgrading Projects
If you are upgrading from an earlier version of SocketWrench, you should find that most projects which
have used SocketWrench 8.0 or later will require minimal code changes. If you have used hard-coded
values instead of constant names for options, then you should review those values and update them
appropriately. Some option values will have changed over the versions as new features have been added. If
you are upgrading from a very early version of SocketWrench, you may find that there have been changes
to method names and parameters which will need to be updated.

The SocketWrench .NET assembly modules have retained the same name; however, the platform specific
32-bit and 64-bit interop libraries have changed to SocketTools11.Interop.dll. This allows applications
created using SocketWrench 11 to co-exist with applications created using earlier versions of SocketTools
and SocketWrench.

If you are upgrading from SocketTools 8.0 and earlier versions, the path to the common assembly folder
has changed. Earlier versions of SocketTools did not provide assemblies which target .NET 4.5 or later
versions of the .NET Framework. The SocketTools 11 assemblies are now installed in the folder
C:\Program Files (x86)\Common Files\SocketTools\11.0\Assemblies for each version of the .NET
Framework which is supported.

If you are using the SocketWrench ActiveX control, your application should not attempt to reference the
current version of the control and an earlier version within the same application. When upgrading to
version 11, first remove all references to the earlier version of the control, save the project and reload it.
Then add the reference to the version 11 control, ensuring that the same object name is used. If you are
creating an instance of the control dynamically by specifying its ProgID, such as using the CreateObject
function, then it is recommended that you specify the version number as part of the ID. For example, to
create an instance of the FTP control, use "SocketTools.FtpClient.11" and not simply "SocketTools.FtpClient".
If the major version number is omitted, the latest version of the control will always be loaded.

The runtime license key has changed for SocketWrench 11, which may require you to redefine the value in
your application when calling the control's Initialize method or function. As with previous versions of
SocketWrench, you can use the License Manager utility to generate a file which contains the runtime key
you should use. The version 10 and earlier runtime license keys are not valid for the version 11
components and an error will be returned if an invalid runtime key is specified.

With SocketWrench 11, secure connections will use TLS 1.2 or later by default. The components will not
support connections to servers which use older, less secure versions of TLS or any version of SSL. They will
also no longer use weaker cipher suites that incorporate insecure algorithms, such as RC4 or MD5. For
applications that require secure connections, it is recommended you use the current build of Windows 10
or Windows 11 with all security updates applied.

It is possible to force SocketWrench to use earlier versions of TLS for backwards compatibility with older
servers. With the ActiveX control and .NET class, this is done by explicitly setting the SecureProtocol
property to specify the protocol version required. With the SocketWrench API, you would set the
dwProtocol member of the SECURITYCREDENTIALS structure to specify the protocol version required.
However, this is not generally recommended because using an older version of TLS (or any version of SSL)
may cause servers to immediately reject the connection attempt.

Functions in earlier versions of SocketWrench that accepted an IPv4 address as a 32-bit integer value have
changed to use the new INTERNET_ADDRESS structure. If your application stores an IP address in a binary

format, you will need to update that code. It is generally recommended that you store IP addresses in their
string format, and you should allocate at least 40 characters for the string. That will be large enough to
handle both IPv4 and IPv6 addresses.

Most of the networking classes have an option to force the library to establish an IPv6 network connection.
By default, the classes will still give preference to using IPv4 for backwards compatibility. Note that using
options which only establish connections using IPv6 may prevent applications from working correctly on
older versions of Windows.

ActiveX File Names
The file names of the ActiveX controls and their IDs have changed with the new version. The following table
lists the new values which should be used in your application.

File Name ProgID Description

csrasx11.ocx SocketTools.Dialer.11 Remote Access Services Dialer Control

cswskx11.ocx SocketTools.SocketWrench.11 Windows Sockets (SocketWrench) Control

cswsvx11.ocx SocketTools.InternetServer.11 Internet Server Control

Library File Names
The file name for the SocketWrench library has changed with the new version. The following table lists the
new name and import library which should be used.

File Name Import Library Description

cswskv11.ocx cswskv11.lib Windows Sockets (SocketWrench) Library

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Product Evaluation

If you install SocketWrench without registering a serial number, the product will be installed with an
evaluation license that is valid for a period of thirty (30) days. During this trial period, the SocketWrench
components are fully functional and can be used on the development system where the product was
installed. If you need to extend the evaluation period, please contact the Catalyst Development sales office
by email at sales@sockettools.com or by telephone at 1-760-228-9653, Monday through Friday during
normal business hours.

Redistribution Restrictions
When using an evaluation copy of SocketWrench, you cannot redistribute the components to another
system. If you build an application using an evaluation license, it will function correctly on the development
system but will fail with an error on any system that does not have a license. Once you have purchased a
development license, you should recompile your application before redistributing it to an end-user. If you
need to test your application on another system during the evaluation period, you must install an
evaluation copy of SocketWrench on that system.

Runtime Licensing
When you purchase a development license, a runtime license key will be generated for you which will be
included in your applications. Normally this runtime key is managed automatically when the control is
placed on a form or referenced in a project. However, there are situations in which the key must be
explicitly passed to the control's Initialize method. In all cases, if the product is installed as an evaluation
copy, the runtime license key will be defined as an empty string. If you have previously installed an
evaluation copy of SocketWrench and then purchased a license, you can create the runtime license key
using the License Manager utility.

For more information, refer to the Licensing and Control Initialization sections.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Licensing and Redistribution

The SocketWrench license permits the use of the library and/or control to build application software and
redistribute that software to end-users. There are no restrictions on the number of products in which the
SocketWrench library or control may be used. However, if SocketWrench has been installed with an
evaluation license, any products built using it cannot be redistributed to another system until a licensed
copy of the toolkit has been purchased.

System Requirements
SocketWrench is supported on Windows 32-bit and 64-bit desktop and server platforms. The minimum
required desktop platform is Windows 7 with Service Pack 1 (SP1) installed. The minimum required server
platform is Windows Server 2008 R2 with Service Pack 1 (SP1) installed. It is recommended that the current
service pack be installed for the operating system, along with the latest Windows updates available from
Microsoft. Some features may require Windows 10 or later versions of the platform. When this is the case, it
will be noted in the documentation.

Windows XP and Windows Vista are no longer supported. SocketWrench is designed for Windows 7 as the
minimum operating system version and will not work correctly on earlier versions of Windows. Although
Windows 7 is no longer supported by Microsoft, and Windows 8 has limited support, SocketTools
components will continue to function on those platforms.

Version Information
The SocketWrench components and libraries have information embedded in them which provides version
information to an installation utility. This information called the version resource, specifies the library or
control's version number among other things. If you are using a third-party or in-house installation
program, it is extremely important that the program knows how to use this information.

For example, if you are deploying an application which uses the SocketWrench DLL, the setup program
must determine if that library has already been installed on the target system. If it has, it must compare the
version resource information in the two libraries. It should only overwrite the library if the version that you
have included with your application is later than the one installed on the system. An installation program
which overwrites the library without checking the version number may cause other programs to fail
unexpectedly on the end-user's system, which is obviously not desirable.

.NET Class Redistribution
For those applications created using SocketWrench .NET, the appropriate class libraries (assemblies) must
be distributed along with the application. The following component files should be included with your
application:

File Name Description

SocketTools.SocketWrench.dll The SocketWrench (Windows Sockets) component which
provides a general purpose networking interface, allowing
applications to connect to other systems and exchange data
using the TCP/IP protocol. This assembly is added as a
reference in the project.

SocketTools.InternetServer.dll The Internet Server component which provides the framework
for implementing an event-driven multithreaded server
application. This assembly is added as a reference in the project.

SocketTools.InternetDialer.dll The Remote Access Services component which enables an
application to establish a dial-up networking connection using
PPP or SLIP. This assembly is added as a reference in the
project.

SocketTools11.Interop.dll The SocketTools runtime library. This library is shared by all of
the SocketWrench and SocketTools class libraries. This library
should not be referenced directly in the project.

SocketTools11.TraceLog.dll The SocketTools debugging library used to generate trace log
files which record the low-level networking functions called and
the data exchanged. This library only needs to be distributed if
the debugging features of the class are used. This library should
not be referenced directly in the project.

.NET Installation Directory
It is recommended that you install the SocketWrench .NET assemblies in the same directory as the
application executable on the target system. It is not recommended that you install the assemblies in the
Global Assembly Cache (GAC) or in the Windows system folder. The assemblies are built to target both the
x86 and x64 platforms and can be used on either type of system. The SocketTools11.Interop.dll runtime
library is platform specific and it is recommended that you install it in the Windows system folder. This is a
shared library that is used by all of the SocketTools assemblies and should not be referenced directly in
your project.

If you are deploying your application to a system running the 32-bit version of Windows, you should install
the 32-bit version of the SocketTools11.Interop.dll library in the \Windows\System32 folder. If you are
deploying your application to a system running the 64-bit version of Windows, you should install the 32-bit
version of the runtime library in the \Windows\Syswow64 folder, and the 64-bit version of the library in the
\Windows\System32 folder. If you are using the Trace related properties in your application, you should
also include SocketTools11.TraceLog.dll library in your installation package and install it in the same folder
as the runtime library.

The installer should always perform version checking to ensure that it is not overwriting a newer version of
the runtime library with an older version. If your installer package creates a 32-bit executable and you're
deploying a 64-bit application, the installer must be capable of detecting that it is running on a 64-bit
system and can disable filesystem redirection to ensure that the 64-bit libraries are installed in the correct
location. Consult the documentation for your installer to determine if it is 64-bit compatible.

ActiveX Control Redistribution
For those applications created using the SocketWrench ActiveX control, the cswskx11.ocx file must be
distributed along with the application and the control must be registered by the installation program. The
process of registration means that specific entries must be created in the system registry which provides
information about the control such as the location of the OCX file. Fortunately, ActiveX controls are self-
registering which means that the control has the ability to create or update those registry entries itself.

To automatically register a control when your application is being installed, the installation program must
be capable of loading the control and calling specific functions which will update the registry. Most modern
installation tools are capable of registering ActiveX controls. For custom installation programs, refer to the
article Installing and Registering ActiveX Controls on the Microsoft Developers Network site.

http://msdn.microsoft.com/en-us/library/aa716326.aspx

It is possible to register ActiveX controls manually without the use of an installation program. This may be
desirable in those situations where an application is being deployed internally or the developer does not
want to create a setup program for a limited distribution. The tool used to manually register a control is
named RegSvr32.exe and can be obtained from a number of places including the Visual Basic or Visual
C++ CD-ROM. This utility accepts a command line argument which specifies the name of the control to
register. For example:

C:>regsvr32 c:\windows\system32\cswskx11.ocx

A message box would be displayed indicating that the control was registered successfully. To prevent the
message box from being displayed, use the /S option which tells the utility to function silently. If an error is
reported, typically the reason is that a required system DLL is missing or out of date.

COM registration requires account elevation under Windows Vista, Windows Server 2008 and later
versions because it modifies the system registry. To register controls from the command prompt,
you must run it with administrative privileges. From the Start menu, select All Programs >
Accessories and right-click on the Command Prompt item. Select "Run as Administrator" from the
context menu that is displayed.

If the ActiveX control is installed on a 64-bit version of Windows, the 32-bit control, which is used with
Visual Basic 6.0 and other 32-bit development tools, is installed in the C:\Windows\Syswow64 folder and
the 64-bit control is installed in the C:\Windows\System32 folder. When redistributing the ActiveX control, it
is important to make sure that you are selecting the correct version, which is determined by the
development tool used and the target platform. For example, if you are using Visual Basic 6.0, then you
should only redistribute the 32-bit ActiveX control, regardless if the target system is the 32-bit or 64-bit
version of Windows. This is because Visual Basic 6.0 can only create 32-bit programs and therefore can
only reference 32-bit controls and libraries. When the application is installed on 64-bit Windows, it will be
executed by the WoW64 subsystem which provides a 32-bit environment for the application.

ActiveX Installation Directory
The SocketWrench ActiveX control should typically be installed in the \Windows\System32 directory on the
local machine. Some developers may prefer to install the control along with their application in a private
directory. It is not recommended that developers take this approach unless COM redirection or
registration-free activation is used because the full pathname of the control file is stored in the system
registry when it's registered. If multiple applications install the same control in different directories, the
actual control that will be used is the one that was last registered. This means that it is possible that an
application will load an earlier version of the control than it was built with, which may result in unexpected
or fatal errors.

COM redirection enables an application to isolate the controls that it uses, ensuring that the same version
of the control which was used to build the application is loaded when the program is executed. To activate
COM redirection, create an empty file named after the executable with a .local extension. For example, if
the program is named MyProgram.exe then an empty file named MyProgram.exe.local should be created
in the same directory as MyApp.exe. This binds the application to the local version of any controls which
are installed in the same directory as the application. When an instance of the control is created, Windows
will first search the application's directory, and then uses the standard search rules for locating the file. Note
that COM redirection is not supported on Windows 95 or Windows 98.

If your installer package creates a 32-bit executable and you're deploying a 64-bit application, the installer
must be capable of detecting that it is running on a 64-bit system and can disable filesystem redirection to
ensure that the 64-bit libraries are installed in the correct location. Consult the documentation for your
installer to determine if it is 64-bit compatible.

Library Redistribution

For those applications created using the SocketWrench API, the cswskv11.dll file must be distributed along
with the application. The library has no external dependencies, other than standard Windows libraries that
are part of the base operating system. In particular, the SocketWrench library does not use the Microsoft
Foundation Classes, nor does it require the Visual C++ Runtime library. The library is a standard Windows
DLL and does not require COM registration.

If SocketWrench is installed on a 64-bit version of Windows, the 32-bit DLLs are installed in the
C:\Windows\Syswow64 folder and the 64-bit DLLs are installed in the C:\Windows\System32 folder. It is
important to make sure that you are selecting the correct version, which is determined by the development
tool used and the target platform. For example, if you are using Visual Studio 2010 and target the Win32
platform, then you should only redistribute the 32-bit DLL, regardless if the target system is the 32-bit or
64-bit version of Windows. This is because 32-bit programs can only reference 32-bit libraries. When the
application is installed on 64-bit Windows, it will be executed by the WoW64 subsystem which provides a
32-bit environment for the application.

Library Installation Directory
It is recommended that you install the SocketTools libraries in the same folder with the application that uses
them. It is not recommended that you install the libraries under the Windows system folder on an end-user
system. If you choose to install the libraries in the Windows system folder, you must ensure that the installer
makes the appropriate registry entries to indicate that they are shared files. Failure to do so can result in
the libraries being removed if the user uninstalls your application, which may cause other applications to
fail.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 About SocketTools 11

SocketWrench is just one of the components in SocketTools. In addition to the lower-level access that
SocketWrench provides, SocketTools includes .NET assemblies, ActiveX controls and native Windows
libraries for many of the popular Internet application protocols. There are several different editions of
SocketTools available, and all editions provide royalty-free redistribution licensing and a thirty day money-
back guarantee. Free evaluation copies can be downloaded from the Catalyst Development website at
sockettools.com.

SocketTools .NET Edition
The SocketTools .NET Edition consists of managed code assemblies for use with .NET programming
languages such as Visual Basic .NET, Visual C# and Delphi Prism. The product includes over twenty
different classes which provide interfaces for various Internet protocols such as the File Transfer Protocol,
Hypertext Transfer Protocol, Internet Message Access Protocol and Simple Mail Transfer Protocol. Using the
.NET Edition you can easily transfer files, send and retrieve email messages, execute commands on servers
and perform many other common tasks over the Internet. The SocketTools .NET classes are designed to be
extremely simple to use without compromising performance, and are flexible enough to perform very
complex tasks.

SocketTools ActiveX Edition
The SocketTools ActiveX Edition consists of ActiveX controls for use with visual development languages
such as Visual Basic, Visual C++ and Delphi. It includes more than twenty controls that provide client
interfaces for the major application protocols such as the File Transfer Protocol, Simple Mail Transfer
Protocol, Domain Name Service and Telnet. Visual Basic 6.0 is fully supported and the components can be
used with any development tool that supports COM and the ActiveX control specification. The network
controls support both synchronous (blocking) and asynchronous modes of operation, as well as advanced
trace debugging facilities. All of the controls can be used in multithreaded containers.

SocketTools Library Edition
The SocketTools Library Edition consists of standard dynamic link libraries, and can be used by virtually any
Windows programming language that can call functions exported from a Windows DLL. It includes more
than twenty libraries that provide client interfaces for application protocols such as the File Transfer
Protocol, Simple Mail Transfer Protocol and Telnet protocol. The API for the Library Edition is implemented
with a simple elegance that makes it easy to use with any language, and is not just for C++ programmers.
All of the libraries are thread-safe and can be used in multithreaded applications.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

http://sockettools.com/

 Technical Support

Catalyst is committed to providing quality technical support for our products and we offer several different
support options designed to meet the needs of our customers. Technical support by email is available for
installation, development and redistribution issues related to the purchased product. There are also paid
support options available for customers who require additional assistance.

Standard Support
Registered developers have access to a variety of free technical support resources and we always
encourage developers to review our online documentation and knowledge base to determine if the
question has already been answered.

Frequently Asked Questions
A collection of answers to the most frequently asked questions about a product. General questions
about features, functionality and platform compatibility are answered here. The product FAQ is
also recommended reading for any developer who is evaluating our software.

Knowledge Base
A searchable online database of solutions to hundreds of common technical questions and
problems. The articles provide detailed information, including background information,
workarounds and the availability of updates to resolve the problem. This is the first place that most
developers should check to determine if the question or problem that they're having has already
been addressed.

Online Help
A comprehensive collection of online help, tutorials and whitepapers for our products. Our online
help is useful to evaluators who are interested in learning about how our components work and
for developers who would like access to the most current reference material.

Priority Support
For developers who require additional support, Priority Support offers a guaranteed, priority response to
technical support issues on the same business day. Corrections which require a source code change and/or
documentation change to resolve a problem will be made available as a hotfix at no additional charge, and
whenever there is a new product update or hotfix, you will be automatically notified by email.

Premium Support
For developers who have critical support needs, an annual Premium Support agreement offers both
telephone and email support, and a guaranteed four hour response time during business hours. This
support option also includes all of the benefits of priority support, including hotfixes, source code analysis
and assistance with example code. In addition, Premium Support also includes free upgrades if a new
version of the product is released while your support agreement is active, ensuring that you're always
working with the latest version.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

http://sockettools.com/faq/
http://sockettools.com/knowledgebase/
http://sockettools.com/help/

 License Agreement

This License Agreement is a legal agreement between you, either as an individual or a single entity
("Developer"), and Catalyst Development Corporation ("Catalyst") for the software product identified as
"SocketWrench" ("Software" or "Software Product"). The Software Product includes executable programs,
redistributable modules, controls, and dynamic link libraries ("Components" or "Software Components"),
electronic documentation, and may include associated media and printed materials.

Installing this Software Product on to a hard disk or any other storage device of a computer, or loading any
of the Components into the memory of any computer, constitutes use of the Software and shall
acknowledge your acceptance of the terms and conditions of this License Agreement and your agreement
to bound thereby.

1. GRANT OF LICENSE
Catalyst Development grants you as an individual, a personal, non-exclusive, non-transferable license to
install the Software Product using an authorized serial number. If you are an entity, Catalyst grants you the
right to appoint an individual within your organization to use and administer the Software Product subject
to the same restrictions enforced on individual users. You may not network the Software or otherwise use it
on more than one workstation or computer at the same time. Contact Catalyst for more information
regarding multi-developer site licensing.

You may install the Software Product on one or more workstations or computers expressly for the purposes
of evaluating the performance of the Software for a period of no more than thirty (30) days. If continued
use of the Software is desired after the evaluation period has expired, then the Software Product must be
purchased and/or registered with Catalyst Development for each computer or workstation. The Software
Product must be removed from all unregistered workstations or computers after the evaluation period has
expired.

2. COPYRIGHT
Except for the licenses granted by this agreement, all right, title, and interest in and to the Software Product
(including, but not limited to, all copyrights in any executable programs, modules, controls, libraries,
electronic documentation, text and example programs), any printed materials and copies of the Software
Product are owned by Catalyst Development. The Software Product is protected by copyright laws and
international treaty provisions. Therefore you must treat the Software Product like any other copyrighted
material except that you may (i) make one copy of the Software solely for backup or archival purposes, or
(ii) transfer the Software to a single hard disk, provided you keep the original solely for backup or archival
purposes. You may not copy any printed materials that may accompany the Software Product. All rights
not specifically granted in this Agreement, including Federal and International Copyrights, are reserved by
Catalyst Development.

3. REDISTRIBUTION
(a) In addition to the rights granted in section 1, you are granted the right to use and modify those
portions of the Software designated as "example code" for the sole purposes of designing, developing, and
testing your software product, and to reproduce and distribute the example code, along with any
modifications thereof, only in object code form, provided that you comply with section 3(c).

(b) In addition to the rights granted in section 1, you are granted a non-exclusive, royalty-free right to
reproduce and distribute the object code version of any portion of the Software Product, along with any
modifications thereof, in accordance with the above stated conditions.

(c) If you redistribute the sample code or redistributable components, you agree to: (i) distribute the
redistributables in object code only, in conjunction with and as a part of a software application product
developed by you which adds significant and primary functionality to the Software; (ii) not use Catalyst
Development's name, logo, or trademarks to market your software application product; (iii) include a valid

copyright notice on your software product ; (iv) indemnify, hold harmless, and defend Catalyst
Development from and against any claims or lawsuits, including attorney's fees, that arise or result from the
use or distribution of your software application product; (v) not permit further distribution of the
redistributables by your end user.

4. UPGRADES
If this copy of the Software is an upgrade from an earlier version of the Software, you must possess a valid
full license to a copy of an earlier version of the Software to install and/or use this upgrade copy. You may
continue to use each earlier version copy of the Software to which this upgrade copy relates on your
computer after you receive this upgrade copy, provided that, (i) the upgrade copy and the earlier version
copy are installed and/or used on the same computer only and the earlier version copy is not installed
and/or used on any other computer; (ii) you comply with the terms and conditions of the earlier version's
end user license agreement with respect to the installation and/or use of such earlier version copy; (iii) the
earlier version copy or any copies thereof on any computer are not transferred to another computer unless
all copies of this upgrade copy on such computer are also transferred to such other computer; and (iv) you
acknowledge and agree that any obligation Catalyst may have to support and/or offer support for the
earlier version of the Software may be ended upon availability of the upgrade.

5. LICENSE RESTRICTIONS
You may not rent, lease or transfer the Software. You may not reverse engineer, decompile or disassemble
the Software, except to the extent applicable law expressly prohibits the foregoing restriction. You may not
alter the contents of a hard drive or computer system to enable the use of the evaluation version of the
Software for an aggregate period in excess of the evaluation period for one license. Without prejudice to
any other rights, Catalyst Development may terminate this License Agreement if you fail to comply with the
terms and conditions of the agreement. In such event, you must destroy all copies of the Software Product.

6. CONFIDENTIALITY
(a) The Software contains information or material which is proprietary to Catalyst Development
("Confidential Information"), which is not generally known other than by Catalyst, and which you may
obtain knowledge of through, or as a result of the relationship established hereunder with Catalyst. Without
limiting the generality of the foregoing, Confidential Information includes, but is not limited to, the
following types of information, and other information of a similar nature (whether or not reduced to writing
or still in development): designs, concepts, ideas, inventions, specifications, techniques, discoveries, models,
data, object code, documentation, diagrams, flow charts, research, development, methodology, processes,
procedures, know-how, new product or new technology information, strategies and development plans
(including prospective trade names or trademarks).

(b) Such Confidential Information has been developed and obtained by Catalyst by the investment of
significant time, effort and expense, and provides Catalyst with a significant competitive advantage in its
business.

(c) You agree that you shall not make use of the Confidential Information for your own benefit or for the
benefit of any person or entity other than Catalyst, except for the expressed purposes described in this
section, in accordance with the provisions of this Agreement, and not for any other purpose.

(d) You agree to hold in confidence, and not to disclose or reveal to any person or entity, the Software,
other related documentation, your product Serial Number or any other Confidential Information
concerning the Software other than to such persons as Catalyst shall have specifically agreed in writing to
utilize the Software for the furtherance of the expressed purposes described in this section, in accordance
with the provisions of this Agreement, and not for any other purpose.

(e) You acknowledge the purpose of this section is to protect Catalyst Development's ability to limit the use
of the data and the Software generally to licensees, and to prevent use of Confidential Information
concerning the Software by other developers or vendors of software.

7. CONTINUATION OF SERVICE
Some features of the Software may require the use of remote servers under the control of Catalyst
Development to provide specific services. Catalyst makes no warranty as to the availability of these services
and reserves the right to discontinue these services at any time and without warning. These services may
only be accessed using the Application Programming Interfaces (API) provided by the Software Product
and access is limited to licensees and evaluation users of the Software.

We may suspend or terminate your access to these services without liability if (i) we reasonably believe that
the services are being used (or have been or will be used) in violation of the Agreement, (ii) we reasonably
believe that suspending or terminating your access is necessary to protect our network or our other
customers, or (iii) the suspension or termination is required by law. We will give you reasonable advance
notice of suspension or termination under this section and a chance to cure the grounds on which the
suspension or termination is based, unless we determine, in our reasonable commercial judgment, that an
immediate suspension or termination is necessary to protect Catalyst or its other customers from imminent
and significant operational or security risk.

8. LIMITED WARRANTY
If within thirty days of your purchase of this software product, you become dissatisfied with the Software for
any reason, you may return the software to Catalyst Development (or your dealer, if you did not purchase
it directly from Catalyst) for a refund of your purchase price. To return the Software, you must contact
Catalyst Development and obtain a Return Material Authorization (RMA) number. Catalyst will not accept
returns of opened or installed software without an RMA number. Returns may be subject to the deduction
from your purchase price of a restocking fee and all shipping costs.

CATALYST PROVIDES NO REMEDIES OR WARRANTIES, WHETHER EXPRESS OR IMPLIED, FOR ANY
SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE SOFTWARE.
ANY SAMPLE APPLICATION CODE, TRIAL VERSION AND THE NOT FOR RESALE VERSION OF THE
SOFTWARE ARE PROVIDED "AS IS".

CATALYST DISCLAIMS ALL OTHER WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
WITH RESPECT TO THE SOFTWARE, THE ACCOMPANYING WRITTEN MATERIALS, AND ANY
ACCOMPANYING HARDWARE.

9. LIMITATION OF LIABILITY
IN NO EVENT SHALL CATALYST OR ITS SUPPLIERS BE LIABLE FOR ANY DAMAGES WHATSOEVER
(INCLUDING, WITH LIMITATION, INCIDENTAL, CONSEQUENTIAL, SPECIAL, OR EXEMPLARY DAMAGES OR
LOST PROFITS, BUSINESS INTERRUPTION, OR OTHER PECUNIARY LOSS) ARISING OUT OF THE USE OR
INABILITY OF THIS CATALYST PRODUCT, EVEN IF CATALYST HAS BEEN ADVISED OF SUCH DAMAGES.

APART FROM THE FOREGOING LIMITED WARRANTY, THE SOFTWARE PROGRAMS ARE PROVIDED "AS-
IS", WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. THE ENTIRE RISK AS TO THE
PERFORMANCE OF THE PROGRAMS IS WITH THE PURCHASER. CATALYST DOES NOT WARRANT THAT
THE OPERATION OF THE PROGRAMS WILL BE UNINTERRUPTED OR ERROR-FREE. CATALYST ASSUMES
NO RESPONSIBILITY OR LIABILITY OF ANY KIND FOR ERRORS IN THE PROGRAMS OR DOCUMENTATION,
OF/FOR THE CONSEQUENCES OF ANY SUCH ERRORS. THE LAWS OF THE STATE OF CALIFORNIA
GOVERN THIS AGREEMENT.

10. GOVERNMENT-RESTRICTED RIGHTS
United States Government Restricted Rights. The Software and related documentation are provided with
RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is subject to the restrictions set
forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013 or subparagraphs (c)(1) and (2) of the Commercial Computer Software - Restricted Rights at
48 CFR 52.227-19, as applicable. Manufacturer for such purposes is Catalyst Development Corporation,

56925 Yucca Trail #254, Yucca Valley, CA 92284

11. EXPORT CONTROLS
You agree to comply with all relevant regulations, including but not limited to those, of the United States
Department of Commerce and with the United States Export Administration Act to insure that the Software
is not exported in violation of United States law. You acknowledge that the Software is subject to export
regulations and agree that you will not export, re-export, import or transfer the software in violation of any
United States or other applicable laws, whether directly or indirectly, and you will not assist or facilitate
others in doing so. You acknowledge that you have the responsibility to obtain any export classifications
and licenses as may be required to comply with such laws.

12. PROHIBITED DESTINATIONS
The exportation, re-exportation, sale or supply of Catalyst products, software components or
documentation, directly or indirectly, from the United States or by a United States citizen wherever located,
to Cuba, Iran, North Korea, Sudan, Syria, or any other country to which the United States has embargoed
goods, is strictly prohibited without prior authorization by the United States Government. You represent
and warrant that neither the United States Bureau of Export Administration nor any other federal agency
has suspended, revoked or denied your export privileges. Catalyst products, software components or
documentation may not be exported or re-exported to anyone on the United States Treasury Department's
list of Specially Designated Nationals or the United States Department of Commerce Denied Person's List
or Entity List.

13. GOVERNING LAW
This License is governed by the laws of the State of California, without reference to conflict of laws
principles. Any controversy or claim arising out of or relating to this contract, or the breach thereof, shall be
settled by arbitration administered by the American Arbitration Association (“AAA”) under its Commercial
Arbitration Rules, and judgment on the award rendered by the arbitrator(s) may be entered in any court
having jurisdiction thereof. The arbitrator shall be a retired judge or attorney with at least 15 years
commercial law experience and shall be selected either by mutual agreement of the parties or by AAA’s
selection process. The parties shall be entitled to take discovery in accordance with the provisions of the
California Code of Civil Procedure, including but not limited to CCP §1283.05. The arbitration shall be held
in San Bernardino, California and in rendering the award the arbitrator must apply the substantive law of
the State of California.

14. GENERAL PROVISIONS
This License Agreement contains the complete agreement between the parties with respect to the subject
matter hereof, and supersedes all prior or contemporaneous agreements or understandings, whether oral
or written. You agree that any varying or additional terms contained in any purchase order or other written
notification or document issued by you in relation to the Software licensed hereunder shall be of no effect.
The failure or delay of Catalyst to exercise any of its rights under this Agreement or upon any breach of this
Agreement shall not be deemed a waiver of those rights or of the breach.

If any provision of this agreement shall be held by a court of competent jurisdiction to be contrary to law,
that provision will be enforced to the maximum extent permissible, and the remaining provisions of this
agreement will remain in full force and effect.

SocketWrench and other trademarks contained in the Software are trademarks or registered trademarks of
Catalyst Development Corporation in the United States and/or other countries. Third party trademarks,
trade names, product names and logos may be the trademarks or registered trademarks of their respective
owners. You may not remove or alter any trademark, trade names, product names, logo, copyright or
other proprietary notices, legends, symbols or labels in the Software.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench 11

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Catalyst Development Corporation™, SocketTools™ and SocketWrench™ are trademarks of Catalyst
Development Corporation. Microsoft™, Windows™, Visual Basic™ and Visual Studio™ are trademarks or
registered trademarks of Microsoft Corporation.

Information in this document is subject to change without notice. No part of this document may be
reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without
the express written permission of Catalyst Development Corporation.

The software described in this document is furnished under a license agreement. The software may be
used only in accordance with the terms of the agreement. It is against the law to copy the software except
as specifically allowed in the license agreement. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or
information storage and retrieval systems, for any purpose other than the purchaser's personal use, without
the express written permission of Catalyst Development Corporation.

 SocketWrench Developer's Guide

With the acceptance of TCP/IP as a standard platform-independent network protocol, and the explosive
growth of the Internet, the Windows Sockets API (application program interface) has emerged as the
standard for network programming in the Windows environment. This guide will introduce the basic
concepts behind Windows Sockets programming and get you started with your first application created
with SocketWrench. It is assumed that the reader is familiar with Visual Basic and has installed the
SocketWrench control.

Designed for the professional software developer, SocketWrench is optimized for the Windows platform
and implements secure protocols with support for up to 256-bit encryption. This new release includes both
ActiveX controls, standard dynamic link libraries (DLLs) and C++ classes in the same package, along with
new samples and over 400 pages of documentation. SocketWrench provides all of the features,
documentation and technical support needed to develop complete Internet applications, without the
complexities of learning the Windows Sockets API or working around the limitations of other Internet
components.

SocketWrench is part of a larger product called SocketTools which includes a complete collection of
controls and libraries for many of the popular Internet application protocols such as FTP, HTTP, POP3,
IMAP4, SMTP and TELNET. Secure versions of these components are also available that support both
standard and secure network connections using the standard SSL/TLS protocols. You'll find the same
features, functionality and stability in the SocketTools package without having to learn how to implement
complex application protocols or decipher cryptic standards documents. With SocketTools, adding features
to transfer files, send or retrieve emails and access web pages can be done in just a few minutes. Instead of
reinventing the wheel, you can spend your time working on your core application and increasing your
productivity without sacrificing the features that your users expect.

To learn more about SocketTools family of products, please visit the Catalyst Development website at
sockettools.com

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

http://sockettools.com/

 Windows Sockets API

The Windows Sockets specification was created by a group of companies, including Microsoft, in an effort
to standardize the TCP/IP suite of protocols under Windows. Prior to Windows Sockets, each vendor
developed their own proprietary libraries, and although they all had similar functionality, the differences
were significant enough to cause problems for the software developers that used them. The biggest
limitation was that, upon choosing to develop against a specific vendor's library, the developer was
"locked" into that particular implementation. A program written against one vendor's product would not
work with another's. Windows Sockets was offered as a solution, leaving developers and their end-users
free to choose any vendor's implementation with the assurance that the product will continue to work.

There are two general approaches that you can take when creating a program that uses Windows Sockets.
One is to code directly against the API. The other is to use a component which provides a higher-level
interface to the library by setting properties and responding to events. This can provide a more "natural"
programming interface, and it allows you to avoid much of the error-prone drudgery commonly associated
with sockets programming. By including the control in a project, setting some properties and responding to
events, you can quickly and easily write an Internet-enabled application. And because of the nature of
custom controls in general, the learning curve is low and experimentation is easy. SocketWrench provides a
comprehensive interface to the Windows Sockets library and will be used to build a simple client-server
application in the next section of this document. Before we get started with the control, however, we'll
cover the basic terminology and concepts behind sockets programming in general.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Transmission Control Protocol

When two computers wish to exchange information over a network, there are several components that
must be in place before the data can actually be sent and received. Of course, the physical hardware must
exist, which is typically either a network interface card (NIC) or a serial communications port for dial-up
networking connections. Beyond this physical connection, however, computers also need to use a protocol
which defines the parameters of the communication between them. In short, a protocol defines the "rules
of the road" that each computer must follow so that all of the systems in the network can exchange data.
One of the most popular protocols in use today is TCP/IP, which stands for Transmission Control
Protocol/Internet Protocol.

By convention, TCP/IP is used to refer to a suite of protocols, all based on the Internet Protocol (IP). Unlike
a single local network, where every system is directly connected to each other, an internet is a collection of
networks, combined into a single, virtual network. The Internet Protocol provides the means by which any
system on any network can communicate with another as easily as if they were on the same physical
network. Each system, commonly referred to as a host, is assigned a numeric value which can be used to
identify it over the network. These numeric values are known as IP addresses, and are usually represented
as a string value that contains a series of numbers.

There are two versions of TCP/IP and two different IP address formats based on which version of the
protocol is being used. For Internet Protocol v4 (IPv4), addresses are 32 bits wide and are represented by a
sequence of four 8-bit numbers separated by periods. This is called dot-notation and looks something like
192.168.19.64. This is the address format that many developers are familiar with because IPv4 continues to
be the most commonly used version of the protocol. Internet Protocol v6 (IPv6) is the next generation of IP
and it supports a much larger address space as well as a number of other features. IPv6 addresses are 128
bits wide and represented by a sequence of hexadecimal values separated by colons. As expected, this
format is much longer than the simple dot-notation used by IPv4 address. A typical IPv6 address will look
something like fd7c:2f6a:4f4f:ba34::a32, although there are certain shorthand notations that can be used.
SocketTools supports both IPv4 and IPv6, and can automatically determine which version of the protocol
should be used based on the address. Because IPv4 is still widely used, if given a choice between using IPv4
or IPv6, the SocketTools components will choose IPv4 for backwards compatibility whenever possible.
However, an application can choose to exclusively use IPv6 if required.

When a system sends data over the network using the Internet Protocol, it is sent in discrete units called
datagrams, also commonly referred to as packets. A datagram consists of a header followed by
application-defined data. The header contains the addressing information which is used to deliver the
datagram to its destination, much like an envelope is used to address and contain postal mail. And like
postal mail, there is no guarantee that a datagram will actually arrive at its destination. In fact, datagrams
may be lost, duplicated or delivered out of order during their travels over the network. Needless to say, this
kind of unreliability can cause a lot of problems for software developers. What's really needed is a reliable,
straightforward way to exchange data without having to worry about lost packets or jumbled data.

To fill this need, the Transmission Control Protocol (TCP) was developed. Built on top of IP, TCP offers a
reliable, full-duplex byte stream which may be read and written to in a fashion similar to reading and
writing a file. The advantages to this are obvious: the application programmer doesn't need to write code
to handle dropped or out-of-order datagrams, and instead can focus on the application itself. And
because the data is presented as a stream of bytes, existing code can be easily adopted and modified to
use TCP.

TCP is known as a connection-oriented protocol. In other words, before two programs can begin to
exchange data they must establish a "connection" with each other. This is done with a three-way
handshake in which both sides exchange packets and establish the initial packet sequence numbers (the
sequence number is important because, as mentioned above, datagrams can arrive out of order; this

number is used to ensure that data is received in the order that it was sent). When establishing a
connection, one program must assume the role of the client, and the other the server. The client is
responsible for initiating the connection, while the server's responsibility is to wait, listen and respond to
incoming connections. Once the connection has been established, both sides may send and receive data
until the connection is closed.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 User Datagram Protocol

Unlike TCP, the User Datagram Protocol (UDP) does not present data as a stream of bytes, nor does it
require that you establish a connection with another program in order to exchange information. Data is
exchanged in discrete units called datagrams, which are similar to IP datagrams. In fact, the only features
that UDP offers over raw IP datagrams are port numbers and an optional checksum.

UDP is sometimes referred to as an unreliable protocol because when a program sends a UDP datagram
over the network, there is no way for it to know that it actually arrived at its destination. This means that the
sender and receiver must typically implement their own application protocol on top of UDP. Much of the
work that TCP does transparently (such as generating checksums, acknowledging the receipt of packets,
retransmitting lost packets and so on) must be performed by the application itself.

With the limitations of UDP, you might wonder why it's used at all. UDP has the advantage over TCP in two
critical areas: speed and packet overhead. Because TCP is a reliable protocol, it goes through great lengths
to insure that data arrives at its destination intact, and as a result it exchanges a fairly high number of
packets over the network. UDP doesn't have this overhead, and is considerably faster than TCP. In those
situations where speed is paramount, or the number of packets sent over the network must be kept to a
minimum, UDP is the solution.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Hostnames

An application must have several pieces of information to exchange data with a program running on
another system. The first is the Internet Protocol (IP) address of the computer system on which the other
program is running. Although this address is internally represented by a numeric value (either 32 or 127
bits wide), it is typically identified by a logical name called a host name or fully qualified domain name. Host
names are divided into several parts separated by periods, called domains. The structure is hierarchical,
with the top-level domains defining the type of organization that network belongs to, and sub-domains
further identifying the specific network. Everyone who has used a web browser is familiar with host names
such as www.microsoft.com.

In this figure, the top-level domains are "gov" (government agencies), "com" (commercial organizations),
"edu" (educational institutions) and "net" (Internet service providers). The fully qualified domain name is
specified by naming the host and each parent sub-domain above it, separating them with periods. For
example, the fully qualified domain name for the "jupiter" host would be "jupiter.sockettools.com". In other
words, the system "jupiter" is part of the "catalyst" domain (a company's local network) which in turn is part
of the "com" domain (a domain used by all commercial enterprises).

To use a host name instead of an IP address to identify a specific system or network, there must be some
correlation between the two. This is accomplished by one of two means: a local host table or a name
server. A host table is a text file that lists the IP address of a host, followed by the names by which it is
known. A name server is a system which can be presented with a host name and will return that host's IP
address. This approach is advantageous because the host information for the entire network is maintained
in one centralized location, rather than being scattered over every system on the network.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Service Ports

In addition to the IP address of the remote system, an application also needs to know how to address the
specific program that it wishes to communicate with. This is accomplished by specifying a service port, a
16-bit number that uniquely identifies an application running on the system. Instead of numbers, however,
service names are usually used instead. Like hostnames, service names are usually matched to port
numbers through a local file, commonly called services. This file lists the logical service name, followed by
the port number and protocol used by the server.

A number of standard service names are used by Internet-based applications and these are referred to as
well-known services. These services are defined by a standards document and include common application
protocols such as FTP, POP3, SMTP and HTTP.

Remember that a service name or port number is a way to address an application running on a remote
host. Because a particular service name is used, it doesn't guarantee that the service is available, just as
dialing a telephone number doesn't guarantee that there is someone at home to answer the call.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Sockets

The previous sections described what information a program needs to communicate over a TCP/IP
network. The next step is for the program to create what is called a socket, a communications end-point
that can be likened to a telephone. However, creating a socket by itself doesn't let you exchange
information, just like having a telephone in your house doesn't mean that you can talk to someone by
simply taking it off the hook. You need to establish a connection with the other program, just as you need
to dial a telephone number, and to do this you need the socket address of the application that you want to
connect to. This address consists of three key parts: the protocol family, Internet Protocol (IP) address and
the service port number.

We've already talked about the IP address and service port, but what's the protocol family? It's a number
which is used to logically designate the group that a given protocol belongs to. Since the socket interface is
general enough to be used with several different protocols, the protocol family tells the underlying network
software which protocol is being used by the socket. In our case, the Internet Protocol family will always be
used when creating sockets. With the protocol family, IP address of the system and the service port number
for the program that you want to exchange data with, you're ready to establish a connection.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Synchronous and Asynchronous Sockets

One of the first issues that you'll encounter when developing your application is the difference between
synchronous (blocking) and asynchronous (non-blocking) connections. Whenever you perform some
operation on a socket, it may not be able to complete immediately and return control back to your
program. For example, a read on a socket cannot complete until some data has been sent by the remote
host. If there is no data waiting to be read, one of two things can happen: the function can wait until some
data has been written on the socket, or it can return immediately with an error that indicates that there is
no data to be read.

The first case is called a synchronous or blocking socket. In other words, the program is "blocked" until the
request for data has been satisfied. When the remote system does write some data on the socket, the read
operation will complete and execution of the program will resume. The second case is called an
asynchronous or non-blocking socket, and requires that the application recognize the error condition and
handle the situation appropriately.

Programs that use asynchronous sockets typically use one of two methods when sending and receiving
data. The first method is called polling and the program periodically attempts to read or write data from
the socket, typically using a timer. The second method is to use what is called asynchronous event
notification. This means that the program is notified whenever a socket event takes place, and in turn can
respond to that event. For example, if the remote program writes some data to the socket, an event is
generated so that program knows it can read the data from the socket at that point. Events can be in the
form of Windows messages posted to the application's message queue, or as callback functions. With the
ActiveX control, standard COM events call any event handlers that have been written.

Synchronous Sockets
For historical reasons, the default behavior is for sockets to function synchronously and not return until the
operation has completed. However, blocking sockets in Windows can introduce some special problems in
single-threaded applications. To prevent the program from becoming non-responsive, the blocking
function will enter what is called a "message loop" where it continues to process messages sent to it by
Windows and other applications. Because messages are being processed, this means that the program can
be re-entered at a different point with the blocked operation parked on the program's stack. For example,
consider a program that attempts to read some data from the socket when a button is pressed. Because
no data has been written yet, it blocks and the program goes into a message loop. The user then presses a
different button, which causes code to be executed, which in turn attempts to read data from the socket,
and so on.

To resolve the general problems with blocking sockets, the Windows Sockets standard states that there
may only be one outstanding blocked call per thread of execution. This means that applications that are re-
entered (as in the example above) will encounter errors whenever they try to take some action while a
blocking function is already in progress. If the language supports the creation of threads, it is strongly
recommended that the program create worker threads to perform any socket I/O.

There are significant advantages to using blocking sockets. In most cases, the application design and
implementation is simpler, and raw throughput (the rate at which data is sent and received) is generally
higher with blocking sockets because it does not have to go through an event mechanism to notify the
application of a change in status. If you are using a programming language that supports multithreading,
then the use of synchronous sockets is typically the best choice. However, if your are using an older
language that does not provide support for multithreading, such as Visual Basic 6.0, and your program
needs to establish multiple simultaneous connections, then an asynchronous, event-driven design is more
appropriate.

Asynchronous Sockets

SocketWrench facilitates the use of asynchronous sockets by generating events when appropriate. For
example, an OnRead event occurs whenever the remote host writes on the socket, which tells your
application that there is data waiting to be read. The use of non-blocking sockets will be demonstrated in
the next section, and is one of the key areas in which an ActiveX control has a distinct advantage over
coding directly against the Windows Sockets API.

In general, the use asynchronous sockets is preferred when you have a single-threaded application that
must establish multiple, simultaneous connections with a remote host. In that situation, the use of non-
blocking sockets avoids the restriction that prevents more than one outstanding socket operation in the
thread and can enable the program to remain more responsive to the user. Practically speaking, there are
few languages today that do not support multithreading, so this limitation tends to apply more to the
legacy languages such as Visual Basic 6.0.

Best Practices
If your programming language of choice does support multithreading, it is recommended that you create
worker threads to manage the sockets in your program. This leaves the main thread responsible for
handling the user interface, and the worker threads can handle the network communications. There are
some significant advantages to this approach:

The networking code is generally isolated from the user interface, only requiring that the main UI
thread be notified of the progress of the operation. For example, updating a progress bar control as
the contents of a file is being downloaded. This tends to minimize any clutter in the UI code and
creates a clear separation of functionality that will make the program easier to modify and maintain.
Isolating the networking code in a worker thread ensures that there are no conflicts between other
threads, including the main UI thread. Each thread effectively owns the sockets that it creates, and
those sockets can be used independently of one another without concern about potential conflicts.
Code written using synchronous sockets is typically easier to update, maintain and debug. The
coding style lends itself to a more straight forward, top-down structure and logical errors are usually
easier to find than with code written using asynchronous sockets.
There is less overhead associated with synchronous sockets because no event mechanism is used,
and handlers don't have to be implemented in callback functions. Event notifications that post
messages to hidden window, as is the case with the ActiveX control, have to be processed through
the message queue which is typically shared by the UI thread.
Polling an asynchronous socket can cause spikes in CPU utilization and is generally not
recommended. Applications which attempt to simulate blocking sockets by creating an
asynchronous socket and then polling it can negatively impact the performance of the application,
and in some cases the overall system.

In summary, there are three general approaches that can be taken when building an application with
regard to blocking or non-blocking sockets:

Use a synchronous (blocking) socket. In this mode, the program will not resume execution until the
socket operation has completed. In a single-threaded application, blocking socket operations can
cause code to be re-entered at a different point, leading to complex interactions (and difficult
debugging) if there are multiple active connections in use by the application. If the programming
language supports multithreading, it is recommended that each connection be isolated within its
own worker thread.
Use an asynchronous (non-blocking) socket, which allows your application to respond to events. For
example, when the remote system writes data to the socket, an OnRead event is generated for the
ActiveX control. Your application can respond by reading the data from the socket, and perhaps
send some data back, depending on the context of the data received. The code required for

managing asynchronous sockets can be more complex, however it is the best solution for single-
threaded applications that must establish simultaneous connections.
Use a combination of synchronous and asynchronous socket operations. The ability to switch
between blocking and non-blocking modes "on the fly" provides a powerful and convenient way to
perform socket operations under some circumstances. However, switching between blocking and
non-blocking mode can make the application more complex and difficult to debug. It is important to
note that the warning regarding blocking sockets also applies here.

If you decide to use asynchronous sockets in your application, it's important to keep in mind that you must
check the return value from every read and write operation. It is possible that your may not be able to send
or receive all of the data specified at that time. Frequently, developers encounter problems when they write
a program that assumes a given number of bytes can always be written to or read from the socket. In
many cases, the program works as expected when developed and tested on a local area network, but fails
unpredictably when the program is released to a user that has a slower network connection (such as a
serial dial-up connection to the Internet). By always checking the return values of these operations, you
insure that your program will work correctly, regardless of the speed or configuration of the network.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Client-Server Application Model

Programs written to use TCP are developed using the client-server model. As mentioned previously, when
two programs wish to use TCP to exchange data, one of the programs must assume the role of the client,
while the other must assume the role of the server. The client application initiates what is called an active
open. It creates a socket and actively attempts to connect to a server program. On the other hand, the
server application creates a socket and passively listens for incoming connections from clients, performing
what is called a passive open. When the client initiates a connection, the server is notified that some
process is attempting to connect with it. By accepting the connection, the server completes what is called a
virtual circuit, a logical communications pathway between the two programs. It's important to note that the
act of accepting a connection creates a new socket; the original socket remains unchanged so that it can
continue to be used to listen for additional connections. When the server no longer wishes to listen for
connections, it closes the original passive socket.

To review, there are five significant steps that a program which uses TCP must take to establish and
complete a connection. The server side would follow these steps:

1. Create a socket.

2. Listen for incoming connections from clients.

3. Accept the client connection.

4. Send and receive information.

5. Close the socket when finished, terminating the conversation.

In the case of the client, these steps are followed:

1. Create a socket.

2. Specify the address and service port of the server program.

3. Establish the connection with the server.

4. Send and receive information.

5. Close the socket when finished, terminating the conversation.

Only steps two and three are different, depending on if it's a client or server application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Secure Network Communication

Security and privacy is a concern for everyone who uses the Internet, and the ability to provide secure
transactions over the Internet has become one of the key requirements for many business applications.
SocketWrench has the ability to establish secure connections with servers, as well as function as a secure
server itself. Although most of the technical issues such as data encryption are handled internally by the
control and library, a general understanding of the standard security protocols is useful when designing
your own applications.

When you establish a connection to a server over the Internet (for example, a web server), the data that
you exchange is typically routed over dozens of computer systems until it reaches its destination. Any one
of these systems may monitor and log the data that it forwards, and there is no way for either the sender
or receiver of that data to know if this has been done. Exchanging information over the Internet could be
likened to talking with someone in a public restaurant. Anyone can choose to listen to what you're saying,
and unless they introduce themselves, you have no idea who they are or if they've even heard what you
said.

To ensure that private information can be securely exchanged over the Internet, two basic requirements
must be met: there must be a way to send that information so that only the sender and the receiver can
understand what is being exchanged, and there must be a way for them to determine that they each are in
fact who they claim to be. The solution to the first problem is to use encryption, where a key is used to
encrypt and decrypt the data using a mathematical formula. The second problem is addressed by using
digital certificates. These certificates are issued by a certificate authority (CA), which is a trusted third-party
organization who verifies that the individual or company which is issued a certificate is who they claim to
be. These two concepts, encryption and digital certificates, are combined to provide the means to send
and receive secure information over the Internet.

The Secure Sockets Layer (SSL) protocol was originally developed by Netscape as a way to exchange
information securely over the Internet, and is no longer widely used. Improvements to SSL resulted in the
Transport Layer Security (TLS) protocol, and it has become the the standard for secure communications
over the Internet. Both of these protocols are designed to allow a private exchange of encrypted data
between the sender and receiver, making it unreadable by an intermediate system. Using the restaurant
analogy, it would be as if two people were speaking in a language that only they could understand.
Although someone sitting at the next table could listen in on the conversation, they wouldn't have any idea
what was actually being said.

A secure connection, for example between a web browser and a server, begins with what is called the
handshake phase where the client and server identify themselves. When the client first connects with the
server it sends a block of data to the server and the server responds with its digital certificate, along with its
public key and information about what type of encryption it would like to use. Next, the client generates a
master key and sends this key to the server, which authenticates it. Once the client and server have
completed this exchange, keys are generated which are used to encrypt and decrypt the data that is
exchanged. With the handshake completed, a secure connection between the client and server is
established. SocketWrench handles the handshake phase of the secure connection automatically and does
not require any additional programming. If a secure connection cannot be established, an error is returned
and the network connection is closed.

After the handshake phase has completed, the client may choose to examine the digital certificate that has
been returned by the server. The information contained in the certificate includes the date that it was
issued, the date that it expires, information about the organization who issued the certificate (called the
issuer) and who the certificate was issued to (called the subject of the certificate). The client may also
validate the status of the certificate, determining if it was issued by a trusted certificate authority and was
returned by the same company or individual it was issued to. There may be certain cases where the client

determines that there's a problem with the certificate (for example, if the certificate's common name does
not match the domain name of the server), but chooses to continue communicating with the server. Note
that the connection with the server will still be secure in this case. In other cases, for example if the
certificate has expired, the client may choose to terminate the connection and warn the user.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Digital Certificates

With secure connections, digital certificates are used to exchange public keys for data encryption and to
provide identification information. This information typically includes the organization that was issued the
certificate, its physical location and so on. The certificate itself is used to validate that the public key actually
belongs to the entity that it was issued to. The certificate also includes information about the Certification
Authority (CA) who issued the certificate. The CA is responsible for validating the information provided by
that organization, and then digitally signing the certificate. This establishes a relationship between the two
so that when others validate the certificate, they know that it has been issued by a trusted third-party. For
example, let's say that a company wants to implement a secure site so that people can order products
online. They would provide information about their company (organizational contacts, financial information
and so on) to a trusted third party organization such as Verisign. Verisign would then verify that the
information they provided was complete and correct, and then would issue a signed certificate to them,
which they install on their server. When a user (client system) connects to their server and checks the
certificate, they see that it was issued by Verisign, a trusted Certification Authority. In essence, the user is
saying that because they trust Verisign, and Verisign trusts the company the certificate was issued to, they
will trust the company as well.

To establish this relationship between the Certification Authority and the organization a certificate is issued
to, there needs to be a root certificate which has been signed by the same trusted organization. This serves
as the beginning of the certification path that is used to validate signed certificates. Using the above
example, on the user's system there is a root certificate for Verisign, signed by Verisign. Root certificates are
maintained in the local system's certificate store which is essentially a database of digital certificates. This
database is structured so that different types of certificates can be organized in one central location on the
system, and a standard interface is provided to enumerate and validate these certificates. Certificates are
associated with a store name, allowing them to be easily categorized. For example, root certificates are
stored under the name "root", while a user's personal certificates (along with their private keys) are stored
under the name "my".

When the Windows operating system is installed, there is a certificate store that contains the root
certificates for the major Certification Authorities. However, there are situations where additional certificates
may need to be added to the system. To facilitate this, there is a tool called CertMgr which allows a user to
install certificates, as well as export or remove certificates from the certificate store. When managing your
system's certificate store, you should take the same care that you do when making changes to the system

registry. Inadvertently removing a certificate could result in errors when attempting to access secure
systems.

In general, the one situation where certificate management becomes important is when you want to
develop your own secure server. This is because your server needs to have a signed certificate to send to
the client in order to establish the secure connection. For general-purpose commercial applications, this
generally means you would need to obtain a certificate that has been signed by a Certification Authority
such as Verisign. This certificate would then be installed in the certificate store on the server. However, for
development purposes it may be inconvenient to purchase a certificate. There also may be situations in
which an organization wishes to function as its own Certification Authority and issue certificates themselves.
This allows the organization to control how certificates are managed and can be ideal for secure
applications that are designed for the corporate intranet. A utility for creating self-signed root certificates
and server certificates is included with SocketWrench.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Debugging Applications

One of the issues that every developer has to contend with are problems that arise in an application after
it's been distributed to end-users. And errors related to Windows Sockets programming can be even more
difficult to track down because there are so many variables involved (such as the platform, operating
system version, system configuration, and so on). To address these difficult problems, the SocketWrench
control has the built-in ability to log the Windows Sockets API function calls that are made. There are three
properties related to function tracing: Trace, TraceFile and TraceFlags. Setting these properties allows
your application to dynamically manage function tracing features available to the control. The Trace
property is a boolean flag which simply enables or disables the function tracing feature. The TraceFile
property specifies the name of a trace log file in which each function and its parameters will be written. If
this property is not explicitly set, then a file named CSTRACE.LOG will be created in the system's temporary
directory (the directory specified by the TEMP environment variable). The TraceFlags property specifies
what type of logging will be performed by the control, and may be set to one of four values: 0
(TRACE_INFO) in which all functions will be logged, 1 (TRACE_ERROR) in which only errors will be logged, 2
(TRACE_WARNING) in which case both warnings and errors will be written to the log file, and 4
(TRACE_HEXDUMP in which all functions will be logged, together with ASCII and hexadecimal displays of all
data that is sent or received on sockets. By default, all functions calls are logged by the control
(TRACE_INFO).

For the SocketWrench library there are two functions related to function tracing: InetEnableTrace and
InetDisableTrace. The arguments to InetEnableTrace are equivalent to the TraceFile and TraceFlags
properties of the controls, as described above. Calling InetEnableTrace is equivalent to setting Trace =
True, and calling InetDisableTrace is equivalent to setting Trace = False.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035]
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]
The first column contains the name of the process that is being traced (in this case, it is Visual Basic 6.0).
The second column identifies if the trace record is reporting information, a warning, or an error. What
follows is the name of the function being called, the arguments passed to the function and the function's
return value. If a warning or error is reported, the error code is appended to the record (the value is placed
inside brackets).

When reading a trace log, there are two common things that you will see:

1. The error code 10035, which corresponds to the Winsock error WSAEWOULDBLOCK is a normal
occurrence on connect calls, and should not be taken as a cause for concern by itself.

2. The normal return value for a select call is greater than zero, typically a value of one. A select call
that returns zero usually indicates a timeout.

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value is
a memory address) it is recorded as a hexadecimal value preceded with "0x". A special type of pointer,
called a null pointer, is recorded as NULL. Those functions which expect socket addresses are displayed in
the following format: aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

To enable tracing in your application, you also need to redistribute an extra file called cstrcv11.dll. This
library contains the actual function tracing code and a log file will not be created if it cannot be loaded. If

you are using the SocketWrench control, it will reset the Trace property to False if the tracing library cannot
be loaded. If you are using the library, the function InetEnableTrace will return FALSE if the tracing library
cannot be loaded. Note that this DLL will only provide function tracing capability to the SocketWrench
control and library; it is not a general purpose DLL for tracing Windows Sockets functions and will not log
the functions made by another application or component.

There are several ways that you could incorporate function tracing in your software. The simplest would be
a menu item or a command line switch (like /DEBUG) in which the Trace property would be set to True. A
more complex approach would be to include a dialog or property sheet which allows the user to specify
the log file name and tracing options. When an end-user calls for technical support and is encountering a
problem that you think may be network related, you can instruct them to enable the tracing feature and
then email or fax you a copy of the log file. In turn, if it is a problem that you don't understand, you can
send the log file to a support technician who can analyze the log and provide you with additional
information about what may be going on inside your application.

Remember that if you do not use the tracing features at any time during the execution of your program,
there is no additional performance penalty. If you do enable tracing at some point, the tracing library will
be loaded and memory will be allocated by the logging functions. These functions open, append to the
trace log, flush and then close the log file for each Windows Sockets function call that is made. This insures
that the last function called is logged in case of a general protection fault or other abnormal termination of
the program. However, because of the file I/O overhead, it's recommended that your program rename or
remove the log file before beginning a new trace.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Classes

Class Description

InternetDialer The InternetDialer class provides a way for client applications to connect
to the Internet using Microsoft Windows Remote Access Services (RAS).
To use this class, the dial-up networking software must be installed on the
local system. For access to the Internet, the TCP/IP protocol must be
installed and configured. The class may configured to use either the SLIP
or PPP protocols, depending on the requirements of the service provider.
Refer to your system documentation for information about installing and
configuring dial-up networking on your system.

InternetServer The InternetServer class provides a simplified interface for creating event-
driven, multithreaded server applications using the TCP/IP protocol. The
interface is similar to the SocketTools.SocketWrench class, however it is
designed specifically to make it easier to implement a server application
without requiring the need to manage multiple socket classes. In addition,
the class supports secure connections using TLS 1.2.

SocketWrench The SocketWrench class is a general purpose networking class used to
develop Internet and intranet applications using the TCP/IP protocol.
With SocketWrench, you can create both client and server applications, as
well as send and receive UDP datagrams. SocketWrench also supports
secure connections using the Transport Layer Security (TLS) protocols.
Enabling the security features of the class is done by setting a single
property and does not require another .NET class to implement the
encryption.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketTools Namespace

file:///C|/Projects/cstools11/pdf/dotnet/htmlhelp/SocketTools.SocketWrench.html

Before getting started with using SocketWrench, there are some general concepts used throughout the
documentation which are helpful to understand. If you are new to network programming, you are also
encouraged to review the general concepts in the Developer's Guide which covers these topics in more
detail.

Connections and Sessions
One of the first general concepts that you'll encounter when developing Internet applications is that most
programs act as either a client or a server. In simplest terms, a server is a program which is designed to
perform specific functions on behalf of another program. A client is a program which is designed to
request information from a server and then present that information to a user. It is common for one server
to be able to interact with many clients, with each client functioning independently of one another. The
interaction between a client and server can be broken down into several discrete steps:

The client program attempts to connect to the server

The server program accepts the connection

The client sends a request to the server to perform some function

The server processes the request, returning information to the client

The client receives the information from the server and processes it

The client disconnects from the server

When a client wants to request information from a server, the first step that it needs to take is to establish
a connection. This is someone analogous to calling someone up on the telephone. You pick up the
telephone, dial a number and wait for the other person to answer the phone and begin the conversation.
With SocketWrench, the Connect method is what is used to begin the process of establishing the
connection with the server. The host name or address tells the control what server it should be connecting
to, just as the telephone number is used to specify who you want to talk to. The Disconnect method
disconnects the program from the server, and is similar to saying goodbye and hanging up the telephone.

This complete process, from establishing the connection to disconnecting from the server, is typically
referred to as a session. During a single session, the client may send one request, or it may choose to
send several requests before terminating the connection.

Consider a web server such as the one that hosts the SocketTools website. That server is responsible for
providing clients with the web pages and other content that they request. The client could be any
browser, such as Microsoft Edge or Google Chrome. When you enter an address, such as
http://sockettools.com, it instructs the browser to request the index page for the website from the server.
The server retrieves the contents of that page and sends it back to the client as data. The client receives
that data and displays it to the user. This is an example of a client/server session.

Host Names and Ports
Part of establishing a connection with a server is knowing the name of the server to connect to, and the
port number for the service it is providing. Host names are strings which can be used to identify a server,
similar to how a telephone number is used to specify who it is that you want to call. Everyone who has
used a web browser is familiar with host names, such as sockettools.com or microsoft.com. In addition to
host names, you can also use Internet addresses which are a series of four numbers separated by periods.
For example, 192.168.0.10 would be an Internet address, also referred to as an IP address. The
SocketWrench class has two properties, HostName and HostAddress, which can be used to specify the
name or address of a server. You can also specify the host name or address as an optional argument to
the Connect method, if you prefer.

SocketWrench Class Overview

In addition to a host name or address, a client program also needs to know what port number it should
use to establish the connection. You can think of port numbers like the extension for a telephone number.
Just as an extension may be used to contact different employees using the same telephone number for a
company, the port number may be used to connect to different services available on the same server.
Port numbers are a way to distinguish between the different services available, and each protocol has a
unique port number assigned to it. For example, a webserver uses port 80 to accept connections, while an
FTP server uses port 21. The RemotePort property can be used to specify a port number, or the port
number can be passed as an optional argument to the Connect method.

One important thing to keep in mind is that host names and URLs (Uniform Resource Locators) are not
the same thing. For example, http://sockettools.com is not a valid host name. URLs include information
about the protocol, the host name or address, the port number and the resource to access. When using
the Connect method or setting the HostName property, make sure that you specify only the host name
portion of the URL, such as sockettools.com.

Asynchronous Sessions
The SocketWrench .NET class has been designed to work in one of two basic modes of operation,
establishing either a synchronous or asynchronous connection. The default mode of operation is
synchronous, which is also referred to as a "blocking" connection. In this mode, it will wait for the
requested operation to complete on the server or until the timeout period expires. For example, when the
Connect method is called, SocketWrench will wait until the connection has completed before returning
control to your program and the next statement is executed. The second mode, which is asynchronous or
"non-blocking", causes the class to resume execution of your program immediately without waiting for the
operation to complete. In that case, your program is notified through events that a particular operation
has completed. For example, when the Connect method is called, it will immediately return and when the
connection has completed, the OnConnect event will fire.

The class uses the Blocking property to determine if it should operate synchronously or asynchronously.
In most cases, it is preferable to use the default mode, which is to establish a synchronous connection.
Unless your application is written to specifically handle the various asynchronous network events, there
can be unexpected results. For example, consider the following code:

Dim Socket As New SocketTools.SocketWrench
Dim strBuffer As String

If Socket.Connect("api.sockettools.com", 80) Then
 ' Send the GET command to the web server
 Socket.WriteLine("GET /test")

 ' Read the response from the server and store it in a
 ' a string buffer
 If Socket.ReadStream(strBuffer, True) Then
 TextBox1.Text = strBuffer
 End If

 ' Disconnect from the server
 Socket.Disconnect()
Else
 ' The connection attempt has failed, display an error
 MsgBox(Socket.LastErrorString, MsgBoxStyle.Exclamation)
 Exit Sub
End If

In this example, SocketWrench being used to establish a connection to the sockettools.com webserver. If
the connection is successful, then the program sends a command to the server requesting a resource
using the GET command and then reads the data returned by the server, displaying it in a TextBox control.

If the connection attempt fails, a message box is displayed and the subroutine is exited. This code is fairly
straight-forward and would work as expected with a synchronous connection where the Blocking
property is set to true. However, if an asynchronous connection was used then it is very likely this code
would fail unexpectedly. Why? Because the Connect method returns immediately in asynchronous mode,
without waiting for the connection to actually complete. In this case, the code following the Connect
method would need to be changed and moved out of that code block and into the various event handlers
such as OnConnect and OnRead.

When SocketWrench is in blocking mode, the Timeout property is used to determine the amount of time
that the control should wait for the operation to complete. The default timeout period is 20 seconds,
however this can be set lower or higher as needed. To cancel a blocking operation and resume execution
of the program, use the Cancel method.

In general, unless you have a specific need to use SocketWrench in asynchronous mode, we recommend
that you use blocking connections. Asynchronous sessions are more complex to code for, have a greater
tendency to introduce errors into the logical flow of a program and can be more difficult to debug. If you
wish to perform multiple network operations at the same time, it is preferable to create multiple threads
rather than attempt to manage multiple asynchronous sessions in a single thread. In addition, there is
additional overhead imposed when using asynchronous sessions due to the event handling mechanism.

It should also be noted that certain high-level methods will always cause the class to block during
execution, regardless of what mode it is in. An example of this is the ReadStream method, which reads an
arbitrarily large stream of bytes from the remote host and stores it in a string or byte array buffer. When
using SocketWrench in asynchronous mode, you need to make sure that you only use the lower-level
methods such as Read and Write, and do not attempt to perform a blocking socket operation inside an
asynchronous event handler.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Property Name Description

AutoResolve Determines if host names and IP addresses are automatically resolved.

Blocking Gets and sets the blocking state of the class instance.

HostAddress Gets and sets the IP address of the remote host.

HostName Gets and sets the name of the remote host.

IsBlocked Determine if the class instance is blocked performing an operation.

IsConnected Determine if the class instance is connected to a remote host.

IsReadable Determine if data can be read from the remote host without blocking.

IsWritable Determine if data can be sent to the remote host without blocking.

LastError Gets and sets the last error that occurred on the class instance.

LastErrorString Return a description of the last error to occur.

LocalAddress Return the IP address of the local host.

LocalName Return the name of the local host.

RemotePort Gets and sets the port number for a remote connection.

Secure Set or return if a connection to the server is secure.

Status Return the current status of the session.

ThrowError Enable or disable error exceptions being generated by class methods.

Timeout Gets and sets the amount of time until a blocking operation fails.

Trace Enable or disable socket function level tracing.

TraceFile Specify the socket function trace output file.

TraceFlags Gets and sets the socket function tracing flags.

Version Return the current version of the class library.

Many of the SocketWrench .NET class properties are similar to those used by the ActiveX control.
Developers are familiar with previous versions of SocketWrench should find that this significantly reduces
the amount of time required to port an existing application to the .NET framework. It is recommended
that you also review the Technical Reference material for specific information about a particular property.

AutoResolve
The AutoResolve property controls how host names are resolved by the class whenever the HostName
or HostAddress properties are set. By default, the property is set to false, which means that the class
instance does not attempt to resolve the host name until a connection attempt is made. If the property is
set to true, then the class will immediately attempt to resolve the host name into an IP address. Note that
this can cause the class to block for several seconds and negatively affect the performance of your
program. In most cases, this property should be set to false.

Blocking
The Blocking property determines whether or not the class operates in blocking (synchronous) mode or
non-blocking (asynchronous) mode. In blocking mode, the class waits for a given operation to complete
before returning control to your application and executing the next statement. In non-blocking mode,
control is immediately returned to the program without waiting for the operation to complete. In this case,

Common Properties

events are used to notify the application that a specific operation has completed.

In general, using the class in blocking mode means that your code is going to be structured in a top-down
fashion. For example, when establishing a connection with a remote system, your program will block until
the connection has completed or has timed out. In non-blocking mode, your code is event driven and
must implement event handlers to process those event notifications.

It is recommended that you only establish a non-blocking connection when you understand the
implications of doing so and it is required by your application. If you require multiple instances of the class
to establish connections to different servers, it is preferable to create a multithreaded application rather
than attempt to use multiple instances of the class in a single thread.

HostAddress
The HostAddress property is used to specify the IP address of a remote host to connect to. The address
should be given in dot notation, which is four numbers separated by periods (e.g.: 192.168.0.10). If the
AutoResolve property is set to true, setting this property will force the class to immediately resolve the
address into a host name. Note that if you attempt to set this property to the value of a host name, an
exception will be thrown indicating that the property value is invalid.

HostName
The HostName property is used to specify the name of a remote host to connect to. This property will
accept either host names or IP addresses. If an IP address is specified, then setting this property is similar
to setting the HostAddress property. If the AutoResolve property is set to true, setting this property will
force the class to immediately resolve the host name into an IP address. The value of this property is used
as the default host name when the Connect method is called.

IsBlocked
The IsBlocked property returns true if the class instance is currently performing a blocking operation. This
can be used in conjunction with the Status property to determine if the class can be used to issue a
command to the server or perform some other operation. When the IsBlocked property returns false
and the Status property returns a value of zero or one, the class instance is in either an inactive or idle
state. If the program attempts to perform another operation while a blocking operation is in progress, the
error errorOperationInProgress is returned.

IsConnected
The IsConnected property returns true if a connection has been made with a server, otherwise it will
return false. The property is read-only, and any attempt to set it to a value will result in an error. To
establish a connection, refer to the Connect method.

IsReadable
The IsReadable property returns true if there is data available to read using the Read method. If the
property returns false, then there is no data available to be read. In this case, if the Blocking property is
set to true, calling the Read method will cause the class to block until data arrives or the timeout period is
exceeded; otherwise, it will fail and return the error stErrorOperationWouldBlock. Note that this property
can only be used to determine if there is data available to be read, not the amount of data.

IsWritable
The IsWritable property returns true if the class can successfully write data using the Write method. If the
property returns false, then the socket's internal buffers are full and cannot accept any more data until the
remote host reads some of the data that has already been written. In this case, if the Blocking property is
set to true, the Write method will cause the class to block until the data can be written or the timeout
period is exceeded; otherwise, it will fail and return the error stErrorOperationWouldBlock. Note that this

property can only be used to determine if some data can be written, not the amount of data.

LastError
The LastError property returns a numeric value which identifies the last error that occurred. This property
may be set to zero, which will clear the last error code. Note that setting this property to a non-zero value
will have the effect of raising that error, which must be handled by the application. Refer to the Technical
Reference for a complete list of error codes and their description.

LastErrorString
The LastErrorString property returns a description of the last error that occurred, and corresponds to the
value of the LastError property. This property is typically used by an application to display a message box
to the user or include information about the error in a log file. Note that the error description will be in
English, regardless of the current locale settings.

LocalAddress
The LocalAddress property returns the IP address of the local host. Note that if the system is behind a
router which uses Network Address Translation (NAT) then the IP address returned will be the address of
the system on the local network, not the external WAN address assigned to the router.

LocalName
The LocalName property returns the fully qualified domain name of the local host, if that information is
available. If the class is unable to determine the domain name for the local system, then it will return the
machine name as it was configured in the Windows operating system.

RemotePort
The RemotePort property is used to specify the port number used to establish a connection with the
remote host. Valid port numbers are in the range of 1 through 65535, and assigning the property a value
greater than this will result in an error. This property value is used as the default port number when the
Connect method is called.

Secure
The Secure property determines if the class should establish a secure connection to the server. The
default value for this property is false, which specifies that a standard connection should be established. If
this property is set to true, then the class will attempt to establish a secure connection using the Secure
Sockets Layer (SSL) or Transport Layer Security (TLS) protocols. Attempting to set this property to true will
cause the class to throw an exception if SocketWrench cannot establish a secure session.

Status
The Status property returns a numeric value which identifies the current state of the class instance. A
value of zero indicates that no connection has been established with the class. A value of one indicates
that the class is in an "idle" state, waiting to process the next request or send a command to the server.
Values greater than one indicates that instance of the class is actively performing some operation. Refer to
the Technical Reference documentation to determine what each state value means.

ThrowError
The ThrowError property is used to determine how errors are reported by the class when calling a
method. The default value is false, which specifies that errors should be returned as values from the
method call and the class instance should not throw an exception. If this property is set to true, then
methods will throw an exception whenever an error is encountered. This can be useful if you want to
implement an exception handler for any error conditions rather than checking the return value from each
method call.

Timeout
The Timeout property used to determine how long the class instance will wait for a blocking operation to
complete before returning control to the application. The default value for the property in most cases is
20 seconds. The Timeout property is only used when the Blocking property is set to true.

Trace
The Trace property is used to enable or disable the trace logging features of the class. When the property
is set to true, that instance of the class will record all of the networking function calls that it makes, and
depending on the trace level, the data exchanged between the client and server. To enable trace logging,
you must include the trace library SocketTools11.TraceLog.dll with your application. If this library cannot
be loaded, the value of the Trace property value will be ignored.

TraceFile
The TraceFile property is used to specify the name of a file that will contain the trace logging data
generated when the Trace property is set to true. This property should be set prior to setting the Trace
property.

TraceFlags
The TraceFlags property is used to specify the amount of information that is recorded by the trace
logging facility. The default value traceDefault specifies that all of the networking function calls should be
logged, along with their arguments and return values (this is the same as specifying the traceInfo option).
The following values are used:

Trace Option Description

traceInfo All function calls are written to the trace file, including information about successful
calls made to the networking library. This is the default value.

traceError Only those function calls which fail are recorded in the trace file. Functions which are
successful or only return values which indicate a warning are not logged.

traceWarning Only those function calls which fail, or return values which indicate a warning, are
recorded in the trace file. Successful function calls are not logged.

traceHexDump All functions calls are written to the trace file, plus all the data that is sent or received is
displayed in both ASCII and hexadecimal format. This is useful for examining the actual
byte stream that is exchanged between the application and the remote host.

Version
The Version property returns the current version of the class instance as a string. This can be used by the
application to check that the correct version of the class has been installed on the local system.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Method Name Description

Accept Accept a client connection. This is used by server applications.

Cancel Cancels the current blocking socket operation.

Connect Establish a connection with a remote host This is used by client applications.

Disconnect Terminate the connection with the remote host.

Initialize Initialize the class and load the networking interface.

Listen Listen for client connections. This is used by server applications.

Read Read a block of data from the remote host and return it in a string or byte array.

ReadLine Read a line of text from the remote host and return it in a string.

Reset Reset the internal state of the class and terminate any active connections.

Uninitialize Uninitialize the class and release resources allocated for the class instance.

Write Send a block of data to the remote host.

WriteLine Send a line of text to the remote host, terminated with a newline.

Most methods will return a value of true if they are successful, or a value of false if the method fails for
some reason. The error code which specifies the cause of the failure is returned by the LastError property.
A human readable description of the error can be obtained by getting the value of the LastErrorString
property. There are some exceptions to this rule, such as the Read and Write methods which return the
number of bytes read or written, and a value of -1 if there was an error. These exceptions are noted in the
Technical Reference section.

Many of the SocketWrench .NET class methods are similar to those used by the ActiveX control, however
the return values have changed in some cases. It is recommended that you review the Technical Reference
material for specific information about a particular method.

Note that the way that a method indicates an error condition is affected by the ThrowError property. This
allows errors to be handled in one of two ways, depending on the personal preferences of the developer
and requirements of the application. If the property is set to true, then methods will throw an exception
when an error occurs and it is the responsibility of the application to implement an exception handler. If
the property is set to false, then the method will not throw an exception and will simply return a value
indicating success or failure. The default value for the property is false.

Accept
The Accept method is used by server applications to accept an incoming client connection. After the
connection has been accepted, the server may begin to send and receive data on the socket. Typically a
new instance of the SocketWrench class is created for each client connection and the handle of the
listening server socket is passed as an argument to the Accept method. This allows the server to continue
to listen for new connection requests, and the new instance of the class becomes responsible for
exchanging data with the client.

Cancel
The Cancel method cancels the current blocking operation being performed by the class. For example, if
the Connect method has been called, the Cancel method will cancel the connection attempt. When this
happens, the OnCancel event will fire and the blocking method will return with the error
errorOperationCanceled. Once an operation has been canceled, it is important to allow the application

Common Methods

to unwind the stack and resume execution at the point where the blocking method returns. For example,
you should not call the Cancel method and then perform another blocking operation in any event
handler until after the blocking method returns.

Connect
The Connect method is used to establish a connection with a remote host, and is typically one of the first
methods called by the program. There are several overloaded implementations of this method. If no
arguments are specified, then the method will use the values of the HostName or HostAddress and
RemotePort properties as the default. If the Blocking property is set to true, then the method will return
after the connection has been established, or after the timeout period has been exceeded. If the Blocking
property is set to false, the method will return immediately and the application must wait for either the
OnConnect or OnError event to fire before performing any other operation on the socket.

Disconnect
The Disconnect method terminates the current connection and releases some of the resources allocated
by the class for the network connection. For every call to the Connect method, there should be a
matching call made to the Disconnect method when the connection is no longer needed.

Initialize
The Initialize method explicitly initializes the class, loading the appropriate networking interface,
validating the runtime license key and performing other internal initialization functions. Your program
must call the Initialize method before setting any properties or calling any other method. For each call to
the Initialize method, there should be a matching call made to the Uninitialize method when that
instance of the class is no longer being used. If the Initialize method is called without specifying a valid
runtime key, then the program will only execute on a system that has a valid development license. To
redistribute your application, you must purchase a license and provide a valid runtime key. For more
information, refer to the Class Initialization section of the Developer's Guide.

Listen
The Listen method is used by server applications to create a socket that will "listen" for incoming client
connections. The server would then call the Accept method to accept the connection and begin
communicating with the client. If the Blocking property is set to false, the OnAccept event will occur
whenever a client attempts to connect with the server.

Read
The Read method is used to read data returned by the server in response to a command sent by the
client. The type of data returned depends on the protocol being used. The first argument passed to the
method should be a string or byte array which will contain the data that has been read when the method
returns. The second argument should be an integer which specifies the amount of data to read, in bytes.

The Read method is different from most other methods in two important ways. Instead of returning true
or false, the method returns the number of bytes read. If an error occurs, then the method will return -1.
To determine the cause of the error, check the value of the LastError property. If there is no more data to
be read and the server has closed its connection to your program, then the method will return 0.

In addition, the variable which will contain the data must be passed by reference to the method. In
languages like Visual Basic.NET, this is automatically handled for you. However, other languages may
require you to use a special syntax to indicate that the variable should be passed by reference rather than
by value. For example, C# requires the use of the ref keyword to pass a variable by reference.

ReadLine
The ReadLine method is used to read a line of text from the socket, up to a terminating carriage return

and linefeed sequence. This is similar to reading a line of text from a file, and the method will return false
when there is no more data to read or an error has occurred. It is important to keep in mind that this
method should only be used with textual data, and it can force the thread to block (even if the Blocking
property is set to false) while it buffers data up to the end of line. It is recommended that this method
only be used with synchronous socket connections.

Reset
The Reset method will reset the internal state of the class instance to its defaults, terminating any
connection to a remote host and releasing resources allocated for the session. This method should only
be used when the program needs to effectively abort any active connections and return to a known state.
In most cases, it is preferable for the application to use the Disconnect method to cleanly terminate the
session.

Uninitialize
The Uninitialize method is used to unload the networking interface and release those resources which
have been allocated by the class. In most cases, it is not necessary to explicitly uninitialize the class
because this is handled automatically by the class destructor.

Write
The Write method is used to send data to the server. The first argument passed to the method should be
a string or byte array which will contain the data to be written. The second argument should be an integer
which specifies the number of bytes of data in the string or byte array. The Write method is different from
most other methods because instead of returning true or false, the method returns the number of bytes
written. If an error occurs, then the method will return -1. To determine the cause of the error, check the
value of the LastError property.

WriteLine
The WriteLine method is used to send a line of text to the server, terminated with a carriage return and
linefeed. This is similar to writing a line of text to a file, and the method will return false if no data can be
written to the socket. As with the ReadLine method, this method should only be used with textual data
and it can force the thread to block while the data is being written (even if the Blocking property is set to
false). It is recommended that this method only be used with synchronous socket connections.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Event Name Description

OnAccept This event is generated when a remote host connects with the server.

OnCancel This event is generated when a blocking operation is canceled.

OnConnect This event is generated when a client connection is established.

OnDisconnect This event is generated when a connection is terminated.

OnError This event is generated when a control error occurs.

OnProgress This event is generated during data transfer.

OnRead This event is generated when data is available to be read.

OnTimeout This event is generated when a blocking operation times out.

OnWrite This event is generated when data can be written to the server.

The events generated by SocketWrench .NET can be divided into two general categories, asynchronous
network events and status notification events. Events such as OnConnect and OnRead are examples of
network events which are generated when the class instance is placed in non-blocking mode. Events such
as OnError and OnProgress are examples of notification events which are designed to provide additional
status information to your application.

All event arguments are packaged in a class derived from EventArgs, and passed to the caller along with
an argument that specifies the instance of the class that generated the event. For more information about
how to implement an event handler, refer to to the section on Event Handling in the Developer's Guide.

When developing your event handlers, it is important to remember that the underlying event mechanism
uses Windows messages and requires that the application process those messages. That means that
events may not fire correctly if the application is executing code in a tight loop and no messages are
being dispatched. Another consideration is that some functions can interfere with the normal operation of
events. For example, the MsgBox function in Visual Basic will force event handling to be suspended until
the user closes the message box. Single stepping through code in the debugger can also prevent events
from being processed normally. To debug code in an event handler, it is recommend that you use
methods such as writing diagnostic messages to the immediate (debugging) window or a log file, rather
than more intrusive measures such as displaying a message box.

OnAccept
The OnAccept event is generated whenever a remote host (client) attempts to connect with your server
application. The Blocking property must be set to false and the Listen method must be called to enable
the socket to listen for client connections. An instance of the AcceptEventArgs class is passed to the
event handler. The class has a public property named Handle which specifies the handle of the socket
which is listening for connections. This value is passed to the Accept method in order to accept the
connection, allowing the server to begin communicating with the client.

OnCancel
The OnCancel event is generated whenever a blocking operation has been canceled using the Cancel
method. When this event fires, the class is about to return control to your application, and the blocked
method will return with the error errorOperationCanceled. It is important to note that you should not
perform another blocking operation while inside the event handler. Instead, allow the stack to unwind and
return control to the calling method.

Common Events

OnConnect
The OnConnect event is a networking event that indicates that the connection request has completed
and the client has successfully established a connection with the remote host. This event is only generated
when the Blocking property is set to false. If the class is used to establish a non-blocking connection, the
application must wait for this event to fire before attempting to perform any other functions.

OnDisconnect
The OnDisconnect event is a networking event that indicates that the remote host has closed its
connection to the client. When this event occurs, your program should attempt to read any remaining
data and then call the Disconnect method to close its connection to the server. This event is only
generated when the Blocking property is set to false.

It is important to note that a failure to check for any remaining data in the socket receive buffers in the
OnDisconnect event handler can result in unexpected data loss. It is recommended that you call the
Read method until it returns a value of zero, which indicates that there is no more data available to be
read. The IsReadable property can also be used to determine if there is any data available to be read.

OnError
The OnError event occurs whenever an error is reported by the class. An instance of the ErrorEventArgs
class is passed to the event handler. The class has two public properties, Error and Description, which
return the numeric error code and a human readable description of the error. These values correspond to
the LastError and LastErrorString properties. This event is typically used by applications to record any
errors that occur, either as information for the user or for debugging purposes.

OnProgress
The OnProgress event occurs during blocking operations when the ReadStream, StoreStream and
WriteStream methods are called, providing information to the application about the status of the data
transfer. This event is typically used to update the user interface, such as setting the value of a progress
bar control.

OnRead
The OnRead event is a networking event which occurs whenever there is data available to be read from
the socket. This event is only generated when the Blocking property is set to false. An important
consideration when handling the OnRead event is that this event is level-triggered. This means that the
event will only fire once, and will not fire again even if more data arrives, until at least one byte of data has
been read by the application. This is by design, to prevent the application from being flooded with event
messages.

OnTimeout
The OnTimeout event is generated whenever a blocking operation has exceeded the amount of time
specified by the Timeout property. When this event fires, the class is about to return control to your
application, and the blocked method will return with the error errorOperationTimeout. It is important to
note that you should not perform another blocking operation while inside the event handler. Instead,
allow the stack to unwind and return control to the calling method.

OnWrite
The OnWrite event is a networking event which occurs whenever the remote host is ready to receive
more data from your application. This event is only generated under one of two circumstances, and only
when the Blocking property is set to false. The first is when a connection has initially been established,
the OnWrite event will occur immediately after the OnConnect event. The second case is when a
previous call to the Write method failed with the error errorOperationWouldBlock, indicating that no

more data could be written to the socket at that time because the send buffer was full.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

When you begin developing your application using SocketWrench .NET, the first thing that must happen is
the class instance must be initialized. The initialization method serves two purposes. It loads the
networking libraries required to establish a connection and it validates the runtime license key that you
provide. The runtime license key is a string of characters which identifies your license to use and
redistribute SocketWrench. It is unique to your product serial number and must be used when
redistributing your application to an end-user.

Creating an instance of the class with your runtime license key can be accomplished in one of two ways,
depending on personal preferences and the design of your application. The simplest approach, and one
familiar to developers who have used the SocketWrench ActiveX control, is to explicitly call the Initialize
method in your code. The other more advanced approach is to define the RuntimeLicense attribute for
the assembly that is referencing the class. This attribute is set in the AssemblyInfo.vb or AssemblyInfo.cs
module that is part of the project. For more information on specific usage, refer to the Technical
Reference.

Developers who are evaluating SocketWrench will not have a runtime license key and must pass an empty
string to the Initialize method. This will enable that instance of the class to load on the development
system during the evaluation period, but will prevent component from being redistributed to an end-user
until a license has been purchased.

If you install the product with a serial number, the runtime license key will be automatically created for you
during the installation process. If you have installed an evaluation copy of SocketWrench and then
purchased a license, the license key can be created using the License Manager utility that was included
with the product. Simply select the License | Header File menu option and select the programming
language that you are using.

The runtime license key is normally stored in the Include folder where you installed SocketWrench and is
defined in a file named SocketWrenchLicense which can be included with your application. For example,
C# programmers would use the SocketWrenchLicense.cs header file while Visual Basic programmers
would use the SocketWrenchLicense.vb module. The Visual Basic module would define the runtime license
key as:

'
' SocketWrench 11.0
' Copyright 2024 Catalyst Development Corporation
' All rights reserved
'
' This file is licensed to you pursuant to the terms of the
' product license agreement included with the original software
' and is protected by copyright law and international treaties.
'
Public Const SocketWrenchLicenseKey As String = ""

This could either be included with your Visual Basic.NET application or you could simply copy the string
into your application. The class could then be initialized like this:

'
' Initialize the control using the specified runtime license key;
' if the key is not specified, the development license will be used
'
If Socket.Initialize(SocketWrenchLicenseKey) = False Then
 MsgBox("Unable to initialize SocketWrench component")
End If

Class Initialization

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.RuntimeLicenseAttribute.html

A return value of true indicates that the class was initialized successfully. A return value of false indicates
that the class could not be initialized with the specified runtime license key. The LastError property will
contain the error code that indicates the exact cause of the error.

An application is only required to call the Initialize method once, but it must be called for each instance of
the class that is created. It is safe to call the initialization method more than once, but for each time that it
is called, you must call the Uninitialize method for that class before your program terminates. In other
words, if you called Initialize at the beginning of your program, you must call Uninitialize before your
program ends. The Uninitialize method performs any necessary housekeeping operations, such as
returning memory allocated for the class back to the operating system. If there are any open connections
at the time that the Uninitialize method is called, they will be aborted. After the class has been
uninitialized, you must call the Initialize method again before setting any properties or calling any
methods in that instance of the class.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketWrench .NET component can be used to perform a variety of Internet related programming
tasks. Although the number of properties, methods and events may appear daunting, once you begin
using SocketWrench in your own applications you'll find that the various methods and events are
designed to work together in a cohesive fashion. If you are already familiar with using the SocketWrench
ActiveX component, then you'll find the SocketWrench .NET interface to be very similar.

Throughout the Developer's Guide there are some general concepts and terminology used that are
essential to understanding how SocketWrench works. Each of these concepts is explored in detail,
however a general, broad overview can also be useful when you are just getting started.

Protocols
A protocol, in terms of how the word is used in SocketWrench, refers to the rules for how programs
communicate with one another over a network. There are low level networking protocols such as TCP and
UDP, as well as high level application protocols like FTP and HTTP. It can be helpful to think of a protocol
as a sort of language; for two programs to communicate with each other, they must agree upon a
protocol and understand how it is implemented.

Connections
The process of establishing a connection enables one program to communicate with another. Connection
requests are made by client applications, and accepted by server applications. When the server accepts
the connection request, the connection is completed. When you use the Connect method to successfully
establish a connection to a server, a client session is created. SocketWrench uses a one-to-one
relationship between an instance of a class and a client session. By creating multiple instances of the class,
an application can create multiple client/server sessions if necessary. When you use the Listen and Accept
methods to accept incoming client connections, a server session is created. As with client-side
connections, each server session is handled by a single instance of the class which is typically created
dynamically as remote clients connect to the server.

Sessions
A session refers to an active connection between a client and server program. This term is typically used
interchangeably with connection; however in some cases a single session may involve multiple network
connections, depending on the application protocol being implemented. When the session is no longer
needed, the Disconnect method will terminate the connection to the remote host and release the
resources allocated for that session. After that point, the session is no longer valid and subsequent
function calls using the class cannot be made until another connection is established.

Authentication
Many servers require that clients authenticate themselves by providing user names and passwords.
Different application protocols implement several different types of authentication, and some protocols
may support more than one authentication method. It is the responsibility of the application to implement
whatever authentication protocol is required by the remote host. If a secure connection is being
established with a server, it also may require that a digital certificate (called a client certificate) be provided
as part negotiating the secure session. SocketWrench supports the ability to specify client certificates by
setting the CertificateName and CertificateStore properties.

Events
Developers who use programming languages such as Visual Basic will find the concept of events and
event handling to be very familiar. In general terms, the SocketWrench documentation uses "event" to
refer to a mechanism where the control notifies the application that an operation has completed, some

SocketWrench .NET Overview

action has taken place or a change in status has occurred. One example of an event is the OnConnect
event, which is generated whenever an asynchronous network connection is completed by the client.
Another example is the OnProgress event, which is generated periodically to inform the application of its
progress as it sends or receives data. To determine what events are available based on usage, refer to the
technical reference documentation..

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

The SocketWrench control provides a simplified interface to the Windows Sockets API. It was designed to
be easier to use, and to provide properties and methods which eliminate much of the redundant coding
common to Windows Sockets programming. Developers who are working in languages other than C or
C++ will find SocketWrench to be particularly useful. SocketWrench also supports creating client and
server applications which use the SSL and TLS security protocols without any dependencies on third-party
security libraries.

The following properties, methods and events are available for use by your application:

Initialize

Initialize the control and validate the runtime license key for the current process. This method
is normally not used if the control is placed on a form in languages such as Visual Basic.
However, if the control is being created dynamically using a function similar to CreateObject,
then the application must call this method to initialize the component before setting any
properties or calling any other methods in the control.

Connect

Connect to the remote host, using either a host name or IP address. When an application
calls this method, it will be acting as a client. This method creates the socket and must be
called before your application attempts to exchange data with a server. For an asynchronous
session, set the Blocking property to False.

Listen

Begin listening for incoming client connections. When an application calls this method, it will
be acting as a server. Once the Listen method returns, the socket is created and that socket
handle is used by the Accept method accept an incoming client connection. For an
asynchronous session, set the Blocking property to False.

Accept

Accept a connection from a client. This method should only be called if the application has
previously called the Listen method. If there is no client waiting to connect at the time this
method is called, it will block until a client connects or the timeout period is reached.

Uninitialize

Unload the Windows Sockets library and release any resources that have been allocated for
the current process. This is the last method call that the application should make prior to
terminating. This is only necessary if the application has previously called the Initialize
method.

Input and Output
When a TCP connection is established, data is sent and received as a stream of bytes. The following
methods can be used to send and receive data over the socket:

Read

A low-level method used to read data from the socket and copy it to the string buffer or byte
array provided by the caller. If the remote host closes the connection, this method will return
zero after all the data has been read. If the method is successful, it will return the actual
number of bytes written.

ReadLine

Class Overview

Read a line of text from the socket, up to an end-of-line character sequence or when the
remote host closes the connection.

ReadStream

A high-level method used to read a stream of bytes and copy it to a string buffer or byte
array provided by the caller. This method can be used to read an arbitrarily large amount of
data in a single call.

Write

A low-level method used to write data to the socket. If the method succeeds, the return value
is the number of bytes actually written.

WriteLine

Write a line of text to the socket, terminating it with an end-of-line character sequence.

WriteStream

A high-level method used to write a stream of bytes to the socket. This method can be used
to write an arbitrarily large amount of data to the socket in a single call.

IsReadable

This property is used to determine if there is data available to be read from the socket.

IsWritable

This property is used to determine if data can be written to the socket. In most cases this will
return True, unless the internal socket buffers are full.

Host Name Resolution
The control can be used to resolve host names into IP addresses, as well as perform reverse DNS lookups
converting IP addresses into the host names that are assigned to them. The control will search the local
system's host table first, and then perform a nameserver query if required.

HostAddress

This property can be used to set the IP address for a remote system that you wish to
communicate with. If the address is valid and matches an entry in the host table, the
HostName property will be changed to match the address.

HostName

This property should be set to the name of the remote system that you wish to communicate
with. If the name is found in the host table, the HostAddress property is updated to reflect
the IP address of the host. Note that it is legal to assign an IP address to this property, but it is
not legal to assign a host name to the HostAddress property.

Local Host Information
Several methods are provided to return information about the local host, including its fully qualified
domain name, local IP address and the physical MAC address of the primary network adapter.

LocalName

Return the fully qualified domain name of the local host, if it has been configured. If the
system has not been configured with a domain name, then the machine name is returned
instead.

LocalAddress

Return the IP address of the local host. If a connection has been established, then the IP
address of the network adapter that was used to establish the connection will be returned.

This can be particularly useful for multihomed systems that have more than one adapter and
the application needs to know which adapter is being used for the connection.

ExternalAddress

Return the IP address assigned to the router that connects the local host to the Internet. This
is typically used by an application executing on a system in a local network that uses a router
which performs Network Address Translation (NAT).

PhysicalAddress

Return the physical MAC address for the primary network adapter on the local system.

AdapterAddress

This array returns the IP addresses that are associated with the local network or remote dial-
up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench .NET is designed to be flexible enough to address the needs of developers who have very
basic needs, as well as those who have more complex requirements. As a result, the properties and
methods for the class interface can be broken down into two general categories: a high level interface to
perform common tasks, and a lower level interface which provides more control at the expense of being
somewhat more complicated and requiring more coding. For example, consider the high level methods
such as ReadLine and WriteLine. Using these methods, your application read and write lines of text to a
socket much the same way that you would to a text file. You don't need to understand how the data is
being exchanged, buffered and processed. Another example would be the StoreStream method which
allows you to easily read a stream of data from the socket and store it in a file. The high level methods
allow you to program against the component as though it is a "black box", where you can provide the
input and process the output without concerning yourself with the details of what's going on behind the
scenes.

However, in some cases it's necessary for an application to have more direct control over how the control
operates or to take advantage of features that aren't explicitly supported by one of the higher level
methods. As an example, there's the lower-level Read and Write methods which allow you to directly
read and write blocks of data on the socket and manage the buffering and data processing directly in
your application.

If you are generally new to Internet programming or are just getting started with SocketWrench, we
recommend that you begin familiarizing yourself with the higher level methods using a basic synchronous
(blocking) connection in a single-threaded application. Once you become more familiar with how the class
works, then you can move on to more complex applications which leverage the lower level methods,
taking advantage of asynchronous networking connections and so on.

One of the common pitfalls that developers can encounter with SocketWrench is the inclination to over-
design the application from the start, and then become frustrated because they don't yet have a clear
picture of how all the pieces fit together. Start out with a basic design and then as you become more
familiar with how the class works, expand on it.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Application Design

Applications which use the SocketWrench class will tend to have a similar structure, regardless of the
specific protocol or programming language. While the details vary based on the language being used, the
implementation of a typical client application can be broken down into several general steps:

Initializing an instance of the class

Connecting to the server

Authenticating the client

Performing one or more operations

Disconnecting from the server

Uninitializing the class instance

Initialization prepares an instance of the class to be used by your program, and is the first step that must
be performed before you can use any other methods. Next, a connection is established with the server
using the information provided by your program. For example, most of the connection methods require
that you provide a host name, port number, a timeout period for synchronous operations and any
additional options.

If the protocol requires that you authenticate the client in order to use the service, your application needs
to provide this information. Once the client has been authenticated, it can then perform one or more
operations, such as downloading a file, sending an email message and so on.

After you have finished, you disconnect from the remote host. Finally, before your program terminates,
you uninitialize that instance of the class which causes it to perform any necessary housekeeping prior to
releasing any system resources which were allocated on behalf of your program.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Program Structure

SocketWrench .NET supports the ability to create secure connections using the standard SSL and TLS
protocols. In most cases, it is as simple as setting the Secure property to true or specifying an additional
option when the Connect method is called. In some cases, certain Internet application protocols have
additional requirements in terms of how the secure connection is established . Secure connections may
either be implicit or explicit, depending on the protocol. An implicit secure connection is one where the
client and server begin negotiating the security options as soon as the connection is established. In most
cases, a server which accepts secure implicit connections listens on a port number that is different from
the default port it uses for standard, non-secure connections. An example of this is the Hypertext Transfer
Protocol (HTTP) which accepts standard connections on port 80 and secure connections on port 443.
When a client connects to port 443, the server automatically assumes that the client wants a secure
connection.

On the other hand, an explicit connection requires that the client explicitly specify to the server that it
wants a secure connection. Typically this is done by the client sending a command to the server that
causes the server to begin negotiating with the client to establish a secure session. An example of this is
the File Transfer Protocol (FTP), where the client can use the AUTH command to tell the server that it
wants a secure connection. Servers may also support both explicit and implicit secure connections, based
on which port the client connects to. SocketWrench supports both implicit and explicit secure connections.
If the Secure property is set to true prior to calling the Connect method, then an implicit secure
connection is established. Setting the Secure property to true after a connection has been established will
cause SocketWrench to begin negotiating a secure connection at that time.

In addition to establishing a secure connection, you may also be required to provide additional
authentication information to the server in form a client certificate. For example, a server may require that
the client provide a certificate in addition to or instead of a username and password. To support this, your
application must specify the security credentials for the client prior to establishing a connection. For more
information, refer to the CertificateStore and CertificateName properties in the Technical Reference.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Secure Connections

SocketWrench .NET provides several methods for exchanging data between your application and the
remote host. At the lowest level, this is done by calling the Write method for sending data and the Read
method for receiving data. In most cases, these methods exchange data as a stream of bytes without any
regard for the actual content. It is important to note that if the data being read or written is binary, it is
recommended that applications use byte arrays, not strings, to store the data in.

When working at this very low level, it is important to understand how data is exchanged over the
network. Many developers are inclined to think of the data that is sent or received in terms of discrete
blocks, or packets. The expectation is that if they send a certain number of bytes of data in a single write,
the remote host will receive that number of bytes in a single read. However, this is not how TCP works,
and by extension, not how SocketWrench works with regards to this kind of low level network I/O. The
Transmission Control Protocol (TCP) is called a stream-oriented protocol because data is exchanged
between the client and server as a stream of bytes. While TCP will guarantee that the data will arrive intact,
with the bytes received in the same order that they were written, there is no guarantee that the amount of
data received in a single read operation on the socket will match the amount of data written by the
remote host.

For example, consider a server that sends data to a client in four separate operations, each containing
1024 bytes of data. While it is convenient to think of these as discrete blocks of data, TCP considers it to
be a stream of 4096 bytes. The client may receive that data in a single read on the socket, returning all
4096 bytes. Alternatively, it may read the socket, and only receive the first 1460 bytes; subsequent reads
may return another 1460 bytes, followed by the remaining 1176 bytes. Applications which make
assumptions about the amount of data they can read or write in a single operation may work in some
environments, such as on a local network, but fail on slower connections.

A general rule to use when designing an application using TCP is to consider how the program would
handle the situation where reading n bytes of data only returns a single byte. If the application can
correctly handle this kind of extreme case, then it should function correctly even under adverse network
conditions.

In some situations it may be desirable to design the application to exchange information as discrete
messages or blocks of data. While this isn't directly supported by TCP, it can be implemented on top of
the data stream. There are several methods that can be used to accomplish this, depending on the
requirements of the application:

Exchange the data as fixed length structures. This is the simplest approach, and has very
little or no overhead. The client and server can either use predefined values, or negotiate
the size of the data structures when the connection is established.

Prefix variable-length data structures with the number of bytes being sent. The length
value could be expressed either as a native integer value, or as a fixed-length string that is
converted to a numeric value by the application. This allows the receiver to read this fixed
length value, and then use that value to determine how many additional bytes must be
read to obtain the complete message or data structure.

Prefix the data with a unique byte or byte sequence that would normally not be found in
the data stream. This would be followed by the data itself, with a complete message
received when another unique byte sequence is encountered. Alternatively, a unique byte
sequence could be used to terminate a message. This is the approach that many Internet
application protocols use, such as FTP, SMTP and POP3. Commands are sent as one or
more printable characters, terminated with a carriage-return (CR) and linefeed (LF) byte
sequence that tells the remote host that a complete command has been received.

A combination of the above methods, using unique byte sequences, the message length

Sending and Receiving Data

and even additional information such as a CRC-32 checksum or MD5 hash to validate the
integrity of the data. This would effectively create an "envelope" around the data being
exchanged, and additional checks could be made to ensure that the data has been
received and processed correctly.

Regardless of the method used, for best performance it is recommended that the application buffer the
data received and then process the data out of that buffer. When using asynchronous (non-blocking)
connections, the application should read all of the data available on the socket, typically in a loop which
adds the data to the buffer and exiting the loop when there is no more data available at that time.

It is important to keep in mind that all of this is only required if you decide to use the lower-level methods.
SocketWrench also has a number of high-level methods which automatically handle the lower level
network I/O for you. For example, the StoreStream method will read a data stream from the server and
store the contents in a file specified by your application. When using the high-level methods, the details of
how the data is read and processed is handled by SocketWrench and no additional coding is required on
your part.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Event notification provides a mechanism for SocketWrench to inform the application of a change in the
status of the current session. Events are generally divided into two general categories, asynchronous
network events and status events.

Asynchronous network events occur when a non-blocking connection is established and a network event
occurs, such as a connection completing or data arriving from the remote host. Status events are used to
indicate a change in status, such as a blocking operation being canceled or the progress of an operation
such as reading a stream of bytes from the socket and storing it in a file. Note that asynchronous network
events require that the Blocking property be set to false. The following events can be generated when
SocketWrench is in non-blocking mode:

OnConnect
This event is generated whenever a connection to a remote host has completed. Unlike a
blocking connection, when the component is in non-blocking mode, a successful call to the
Connect method does not indicate that you are actually connected to the host. Instead, it
means that the connection process has been started. Your application will not actually be
connected until the OnConnect event fires.

OnDisconnect
This event is generated whenever the remote host closes its socket and terminates the
connection with your application. Note that this event will not fire when you disconnect from
the host by calling the Disconnect method; it only fires when the remote host closes its
connection to you. It is also important to keep in mind that although the remote host has
disconnected from you, there still may be data buffered on your local system, waiting to be
read. If you are performing any low-level network I/O, your program should continue to call
the Read method until it returns a value of zero, indicating that all of the available data has
been read.

OnRead
This event is generated whenever the remote host sends data to your application. Once this
event has fired, it will not be triggered again until you read at least one byte of data that has
been sent to you. It is recommended that you attempt to read and buffer all of the data that
is available to be read in the socket. When the Read method returns a value less than or
equal to zero, you should exit the event handler.

OnWrite
This event is generated whenever there is enough memory available in the local send buffers
to accommodate some data. It is generated immediately after a connection has completed,
which tells your application that it may begin sending data to the remote host. It will also be
generated if a call to the Write method fails with the error that it would cause the thread to
block. In this case, when the socket is able to accept more data, the OnWrite event will fire.

An important consideration when it comes to event handling is that all asynchronous network events are
level triggered. This means that once an event is fired, it will not be fired again until some action is taken
by the application to handle the event. This is most commonly found with OnRead events, which are
generated when the remote host sends data to your application, signaling to you that there is data
available to be read. Even though the remote host may continue sending you more data, another
OnRead event will not be generated until you read at least one byte of the data that has been sent to
you. This is done to prevent the application from being flooded with event notifications. However, failure

Event Handling

to handle an event can cause event notification to appear to stall. It is recommended that you do not do
excessive processing in an event handler that would cause the thread to block or enter a message loop.
This can have a significant negative effect on performance and can lead to unexpected behavior on the
part of your application. Instead, it's recommended that you buffer the data that you receive and then
process that data after exiting the event handler.

Status related events are different because they do not depend on the value of the Blocking property,
and are not directly related to asynchronous network operations. The most typical status event is the
OnProgress event, which is used to provide information to the application about the status of a blocking
operation, such as reading a data stream using the ReadStream method. The possible status events are:

OnCancel
This event is used by the class to indicate that a blocking network operation has been
canceled by a call to the Cancel method. It is important to note that when the Cancel
method is called, the blocking socket operation will not immediately fail. An internal flag is set
which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other blocking function. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before
making any further function calls. The OnCancel event handler should only be used for
notification purposes or updating the internal state of the application. It is not recommended
that you perform any network operations inside this event handler.

OnError
This event is used by the class to indicate an error has occurred. This event is only generated
when a method is called, never as the result of setting a property value. The OnError event
handler should only be used for notification purposes or updating the internal state of the
application. It is not recommended that you perform any network operations inside this event
handler.

OnProgress
This event is used by the class to inform the application of the progress of a blocking
operation, such as a file transfer. Note that in some cases, the class may not be able to
determine the total amount of data to be transferred, which would prevent a percentage
from being calculated. In this case, because the server is unable to specify the total size of the
resource, the class will not be able to calculate a percentage. Instead, it will simply inform the
program of the amount of data copied to the local host up to that point.

OnTimeout
This event is used by the class to indicate a blocking operation has timed-out. A timeout
period is specified by setting the Timeout property to a value greater than zero. The
OnTimeout event handler should only be used for notification purposes or updating the
internal state of the application. It is not recommended that you perform any network
operations inside this event handler.

Status events are typically used to update a user interface. For example, the OnProgress event may be
used to update a ProgressBar control, or a warning message may be displayed if an OnError event
occurs.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Error conditions can occur in one of two general circumstances, either when setting a property in the
control or when calling a method. If the error occurs when setting a property, an exception will be
generated which must be caught and handled by the application. Failure to do this will typically result in
the program displaying an error message and then terminating. For example, in Visual Basic.NET, the
Try..Catch statements can be used to establish an error handler.

Methods are a bit different in that errors can be handled in one of two ways. By default, when a method is
called it will return a value that indicates success or failure. For those methods that return boolean values,
a value of true indicates success and a value of false indicates failure. For methods that return numeric
values, such as the Read and Write methods, a return value of zero or greater indicates success, and a
return value of -1 indicates failure.

If you prefer to handle exceptions, rather than check return values for each method call, SocketWrench
has a property called ThrowError. If this property is set to true, when a method fails it will throw an
exception that must be caught by the application. In that case, if an error occurs without there being an
exception handler in place, the application will typically terminate. The exception class will be of the type
SocketTools.SocketWrenchException and the ErrorCode property will specify the error that generated the
exception. Refer to the Technical Reference for more information about this exception class.

To determine the error code for the last error generated by that instance of the class, use the LastError
property. To display a description of the error to the user, the LastErrorString property will can be used.
This returns a string that describes the error which corresponds to the value of the LastError property. It is
permitted to set the LastError property to a value of zero in order to clear the last error code. It is
important to note that the last error code only has meaning if the previous method call indicates the
operation has failed. If the previous operation was successful, the value of the last error code will be
undefined and should not be used.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Error Handling

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrenchException.html

The SocketWrench .NET class includes a built-in facility for generating debugging output in the form of a
log file that provides information about the internal functions that it is using and the data that is being
exchanged between the client and server. This is commonly referred to in the documentation as
generating a trace log or enabling function logging.

To provide logging functionality for your application, you must redistribute the
SocketTools11.TraceLog.dll library along with the the class library. This library is what performs the
actual logging and must be placed in the same folder where your application is installed. Note that you
cannot add this library as a reference to your project. It is used internally by SocketWrench and cannot be
used directly by your program.

To create a trace log, your application must set the TraceFile property to the name of a file, the
TraceFlags property to the level of logging desired and then set the Trace property to true. The default
level of logging, zero, specifies that general information about the function calls being made will be
logged. The most detailed logging is provided by specifying a level of four. In that case, all data
exchanged between your application and the remote host is logged. This provides the most information,
however it also generates the largest log files. To disable logging, set the Trace property to false.

There are two important things that you need to consider when enabling trace logging. The first is that the
log file is always appended to, never overwritten by the control. This means that the files can grow to be
very large, particularly with trace that includes all of the data sent and received by your application. You
can use the standard file I/O functions in your language to manage the log file or even write your own
data out to the file. Each time the file is written to, SocketWrench will open the file, append the logging
data and then close the file; it will never keep the file open between operations. This is important because
if your application terminates abnormally, it ensures all of the logging data has been written and there are
no open file handles being held by that instance of the class. However, this does incur additional overhead
and can impact the performance of your application. When possible, it is recommended that you enable
logging around the code that you feel may be part of the problem you're trying to resolve, and then
disable logging when it is no longer required. Simply enabling logging at the beginning of your
application can result in unnecessarily large log files.

If your application uses multiple instances of the class, it is only necessary to enable logging in one of
them. Once enabled, all network operations in the current thread will be logged, regardless of which
instance has enabled logging.

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Debugging Facilities

Implements an interface to the Remote Access Services API.

For a list of all members of this type, see InternetDialer Members.

System.Object
 SocketTools.InternetDialer

[Visual Basic]
Public Class InternetDialer
 Implements IDisposable

[C#]
public class InternetDialer : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The InternetDialer class provides a way for client applications to connect to a remote server using
Microsoft Windows Remote Access Services (RAS). To use this class, the dial-up networking software must
be installed on the local system. For access to the Internet, the TCP/IP protocol must be installed and
configured. The class may configured to use either the SLIP or PPP protocols, depending on the
requirements of the service provider. Refer to your system documentation for information about installing
and configuring dial-up networking on your system.

For those applications which may be used in a mobile environment, or otherwise require remote network
access, the InternetDialer class provides a convenient interface to this service. Connections can be
established and discontinued under the direct control of the program, rather than requiring that the user
execute another program before starting your application.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
InternetDialer Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer Class

InternetDialer overview

Public Static (Shared) Fields

rasDeviceATM A constant value which specifies an ATM device
type.

rasDeviceFrameRelay A constant value which specifies a frame relay
device type.

rasDeviceGeneric A constant value which specifies a generic device
type.

rasDeviceIRDA A constant value which specifies an infrared device
type.

rasDeviceISDN A constant value which specifies an ISDN device
type.

rasDeviceModem A constant value which specifies a modem device
type.

rasDevicePad A constant value which specifies a packet
assembler/disassembler device type.

rasDeviceParallel A constant value which specifies an parallel port
device type.

rasDevicePPPoE A constant value which specifies a PPP over
Ethernet device type.

rasDeviceSerial A constant value which specifies a serial port
device type.

rasDeviceSonet A constant value which specifies a SONET device
type.

rasDeviceSW56 A constant value which specifies a SW56 device
type.

rasDeviceVPN A constant value which specifies a VPN device
type.

rasDeviceX25 A constant value which specifies an X25 device
type.

Public Instance Constructors

 InternetDialer Constructor Initializes a new instance of the InternetDialer class.

Public Instance Fields

Connection Gets the handle for a dial-up networking session.

DeviceEntry Gets the name of the specified device entry.

NameServer Gets and sets the IP addresses of the nameservers
assigned to the current phonebook entry.

InternetDialer Members

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceATM.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceFrameRelay.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceGeneric.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceIRDA.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceISDN.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceModem.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDevicePad.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceParallel.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDevicePPPoE.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceSerial.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceSonet.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceSW56.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceVPN.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceX25.html

PhoneBookEntry Gets the name for the specified phone book entry.

Public Instance Properties

AreaCode Gets and sets the area code for the current
phonebook entry.

AutoConnect Automatically inherit connections established by
another process.

AutoDial Enable and disable autodialing on the local
system.

AutoDisconnect Automatically disconnect from the remote server.

Blocking Gets and sets the blocking state of the class.

BytesIn Gets the number of bytes that have been received
by the dial-up networking device.

BytesOut Gets the number of bytes that have been
transmitted by the dial-up networking device.

Callback Specifies that the remote server should call the
system back.

CallbackNumber Gets and sets the telephone number for the
remote server to call back on.

Connections Gets the number of active dial-up networking
sessions.

ConnectSpeed Gets the line speed for the current dial-up
networking connection.

CountryCode Gets and sets the country code for the current
phonebook entry.

CountryName Gets and sets the country name for the current
phonebook entry.

DefaultGateway Enable and disable the default gateway for IP
packets through the dial-up adapter.

DeviceCount Gets the number of dial-up networking devices
available.

DeviceName Gets and sets the device name for the current dial-
up networking connection.

DeviceType Gets and sets the device type for the current dial-
up networking connection.

DynamicAddress Enables and disables the use of dynamically
allocated IP addresses.

DynamicNameServers Enables and disables the use of dynamically
assigned nameserver addresses.

EntryName Gets and sets the current phone book entry name.

FramingProtocol Gets and sets the framing protocol for the current
phonebook entry.

Handle Gets and sets the handle for the current dial-up
networking connection.

InternetAddress Gets the address assigned to the current dial-up
networking session.

Interval Gets and sets the interval at which the connection
is monitored.

IpHeaderCompression Enables and disables IP header compression for
the current phonebook entry.

IsConnected Gets a value which indicates if a connection has
been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LcpExtensions Enables and disables the use of PPP LCP
extensions for the current phonebook entry.

LocalNumber Gets and sets the local telephone number
specified in the phonebook entry.

ModemLights Enables and disables the dial-up networking
system tray icon.

ModemSpeaker Enables and disables the modem speaker.

NetworkLogon Enables and disables a network login for the
current phonebook entry.

NetworkProtocol Gets and sets the network protocol for the current
phonebook entry.

Password Gets the password required to establish a
connection with the service provider.

PhoneBook Sets the file name of the Remote Access
phonebook to use.

PhoneBookEntries Gets the number of entries in the current
phonebook.

PhoneNumber Gets and sets the telephone number of the service
provider.

RequireEncryption Enables and disables secure authentication for the
current phonebook entry.

ScriptFile Gets and sets the name of the script file for the
current phonebook entry.

ServerAddress Gets the address of the dial-up networking server.

SoftwareCompression Enables and disables software compression for the
current phonebook entry.

Status Gets a value which specifies the current status of
the dial-up networking connection.

Terminal Gets and sets the interactive terminal window
mode for the current phonebook entry.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

UserDomain Gets and sets the NT domain on which user
authentication is to occur.

UserName Gets the username required to establish a
connection with the service provider.

UserPhoneBook Gets the name of the default user phonebook.

Version Gets a value which returns the current version of
the InternetDialer class library.

Public Instance Methods

Connect Overloaded. Establish a connection with a dial-up
networking services provider.

CreateEntry Create a new entry in the current phonebook.

DeleteEntry Overloaded. Delete a phonebook entry from the
current phonebook.

Disconnect Terminate the connection with the dial-up
networking service provider.

Dispose Overloaded. Releases all resources used by
InternetDialer.

EditEntry Edit an existing phonebook entry in the current
phonebook.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
InternetDialer class.

LoadEntry Overloaded. Load the specified entry from the
current phonebook.

RenameEntry Rename an existing phonebook entry.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SaveEntry Overloaded. Save the current settings to the
specified phonebook entry in the current
phonebook.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
service provider.

OnDisconnect Occurs when the dial-up networking connection is
terminated.

OnError Occurs when an client operation fails.

OnStatus Occurs when the when the connection state
changes.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetDialer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the InternetDialer class.

[Visual Basic]
Public Sub New()

[C#]
public InternetDialer();

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer Constructor

The fields of the InternetDialer class are listed below. For a complete list of InternetDialer class
members, see the InternetDialer Members topic.

Public Static (Shared) Fields

rasDeviceATM A constant value which specifies an ATM device
type.

rasDeviceFrameRelay A constant value which specifies a frame relay
device type.

rasDeviceGeneric A constant value which specifies a generic device
type.

rasDeviceIRDA A constant value which specifies an infrared device
type.

rasDeviceISDN A constant value which specifies an ISDN device
type.

rasDeviceModem A constant value which specifies a modem device
type.

rasDevicePad A constant value which specifies a packet
assembler/disassembler device type.

rasDeviceParallel A constant value which specifies an parallel port
device type.

rasDevicePPPoE A constant value which specifies a PPP over
Ethernet device type.

rasDeviceSerial A constant value which specifies a serial port
device type.

rasDeviceSonet A constant value which specifies a SONET device
type.

rasDeviceSW56 A constant value which specifies a SW56 device
type.

rasDeviceVPN A constant value which specifies a VPN device
type.

rasDeviceX25 A constant value which specifies an X25 device
type.

Public Instance Fields

Connection Gets the handle for a dial-up networking session.

DeviceEntry Gets the name of the specified device entry.

NameServer Gets and sets the IP addresses of the nameservers
assigned to the current phonebook entry.

PhoneBookEntry Gets the name for the specified phone book entry.

See Also

InternetDialer Fields

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceATM.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceFrameRelay.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceGeneric.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceIRDA.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceISDN.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceModem.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDevicePad.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceParallel.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDevicePPPoE.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceSerial.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceSonet.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceSW56.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceVPN.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.rasDeviceX25.html

InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets the handle for a dial-up networking session.

[Visual Basic]
Public ReadOnly Connection As ConnectionArray

[C#]
public readonly ConnectionArray Connection;

Remarks
The Connection array can be used to enumerate the active dial-up networking sessions on the local
system. The index is zero-based, and the number of connections is returned by the Connections
property. The property returns an integer value which represents the handle to the session. Setting the
Handle property to this value will cause the control to inherit the session and the control's properties will
be updated with information about the connection.

Specifying an index greater than the number of available connections will generate an exception.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connection Field

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.ConnectionArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.ConnectionArray.html

Gets the name of the specified device entry.

[Visual Basic]
Public ReadOnly DeviceEntry As DeviceEntryArray

[C#]
public readonly DeviceEntryArray DeviceEntry;

Remarks
The DeviceEntry array can be used in conjunction with the DeviceCount property to enumerate the
available dial-up networking devices. Typically this is used to provide a user with a selection of dial-up
devices. The device used by the current phonebook entry can be changed by setting the DeviceName
property to one of the device entry values.

Note that you should first set the DeviceType property to the type of device which you wish to
enumerate. The default device type is rasDeviceModem, for serial analog modems or other devices
which recognize the AT command set.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeviceEntry Field

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.DeviceEntryArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.DeviceEntryArray.html

Gets and sets the IP addresses of the nameservers assigned to the current phonebook entry.

[Visual Basic]
Public ReadOnly NameServer As NameServerArray

[C#]
public readonly NameServerArray NameServer;

Remarks
The NameServer array is used to set or return the nameserver IP addresses assigned to the current
phonebook entry. Setting the array to an IP address changes the corresponding address assigned to the
phonebook entry. Note that assigned nameserver addresses are only used if the DynamicNameServers
property has been set to false. If dynamic nameservers are assigned to the session this array will not
return those addresses, it will return empty strings.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.NameServer Field

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.NameServerArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.NameServerArray.html

Gets the name for the specified phone book entry.

[Visual Basic]
Public ReadOnly PhoneBookEntry As PhoneBookEntryArray

[C#]
public readonly PhoneBookEntryArray PhoneBookEntry;

Remarks
The PhoneBookEntry array contains a list of the entries in the current phone book, and may be used to
establish a connection with a remote server. Specifying an index greater than the number of available
entries in the phone book will generate an exception.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.PhoneBookEntry Field

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.PhoneBookEntryArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.PhoneBookEntryArray.html

The properties of the InternetDialer class are listed below. For a complete list of InternetDialer class
members, see the InternetDialer Members topic.

Public Instance Properties

AreaCode Gets and sets the area code for the current
phonebook entry.

AutoConnect Automatically inherit connections established by
another process.

AutoDial Enable and disable autodialing on the local
system.

AutoDisconnect Automatically disconnect from the remote server.

Blocking Gets and sets the blocking state of the class.

BytesIn Gets the number of bytes that have been received
by the dial-up networking device.

BytesOut Gets the number of bytes that have been
transmitted by the dial-up networking device.

Callback Specifies that the remote server should call the
system back.

CallbackNumber Gets and sets the telephone number for the
remote server to call back on.

Connections Gets the number of active dial-up networking
sessions.

ConnectSpeed Gets the line speed for the current dial-up
networking connection.

CountryCode Gets and sets the country code for the current
phonebook entry.

CountryName Gets and sets the country name for the current
phonebook entry.

DefaultGateway Enable and disable the default gateway for IP
packets through the dial-up adapter.

DeviceCount Gets the number of dial-up networking devices
available.

DeviceName Gets and sets the device name for the current dial-
up networking connection.

DeviceType Gets and sets the device type for the current dial-
up networking connection.

DynamicAddress Enables and disables the use of dynamically
allocated IP addresses.

DynamicNameServers Enables and disables the use of dynamically
assigned nameserver addresses.

InternetDialer Properties

EntryName Gets and sets the current phone book entry name.

FramingProtocol Gets and sets the framing protocol for the current
phonebook entry.

Handle Gets and sets the handle for the current dial-up
networking connection.

InternetAddress Gets the address assigned to the current dial-up
networking session.

Interval Gets and sets the interval at which the connection
is monitored.

IpHeaderCompression Enables and disables IP header compression for
the current phonebook entry.

IsConnected Gets a value which indicates if a connection has
been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

LcpExtensions Enables and disables the use of PPP LCP
extensions for the current phonebook entry.

LocalNumber Gets and sets the local telephone number
specified in the phonebook entry.

ModemLights Enables and disables the dial-up networking
system tray icon.

ModemSpeaker Enables and disables the modem speaker.

NetworkLogon Enables and disables a network login for the
current phonebook entry.

NetworkProtocol Gets and sets the network protocol for the current
phonebook entry.

Password Gets the password required to establish a
connection with the service provider.

PhoneBook Sets the file name of the Remote Access
phonebook to use.

PhoneBookEntries Gets the number of entries in the current
phonebook.

PhoneNumber Gets and sets the telephone number of the service
provider.

RequireEncryption Enables and disables secure authentication for the
current phonebook entry.

ScriptFile Gets and sets the name of the script file for the
current phonebook entry.

ServerAddress Gets the address of the dial-up networking server.

SoftwareCompression Enables and disables software compression for the
current phonebook entry.

Status Gets a value which specifies the current status of
the dial-up networking connection.

Terminal Gets and sets the interactive terminal window
mode for the current phonebook entry.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

UserDomain Gets and sets the NT domain on which user
authentication is to occur.

UserName Gets the username required to establish a
connection with the service provider.

UserPhoneBook Gets the name of the default user phonebook.

Version Gets a value which returns the current version of
the InternetDialer class library.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets and sets the area code for the current phonebook entry.

[Visual Basic]
Public Property AreaCode As String

[C#]
public string AreaCode {get; set;}

Property Value
A string which specifies the area code.

Remarks
The AreaCode property is used to set or return the current phonebook entry's area code. If no area code
has been specified, then this property will return an empty string. The value of this property is ignored
unless the CountryCode property is also set to a valid country code.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.AreaCode Property

Automatically inherit connections established by another process.

[Visual Basic]
Public Property AutoConnect As Boolean

[C#]
public bool AutoConnect {get; set;}

Property Value
A boolean value which specifies if connections are automatically inherited by the class.

Remarks
The AutoConnect property determines if the class automatically detects if a connection has been
established by another process. When enabled, the class will periodically check for any connections that
have been established. The Interval property controls the frequency in which the control performs this
check.

If the class detects that a connection has been made, it will immediately fire the OnConnect event,
followed by the OnStatus event, to indicate that a connection has been established. The class then begins
to monitor that connection as usual, until that connection is dropped or the control is unloaded.

To periodically check to see if a connection has been established by another process without using the
AutoConnect property, read the value of the Connections property, which returns the number of active
dial-up networking connections. A value greater than zero indicates that a dial-up networking connection
has been established.

If there are multiple dial-up networking devices on the system, it may be possible for more than one
connection to be active at a time. If this is the case, setting the AutoConnect property to true will cause
the class to inherit the first active connection. To manage multiple dial-up connections, use the
Connection array to enumerate the available connections and set the Handle property to take control of
a specific session.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.AutoConnect Property

Enable and disable autodialing on the local system.

[Visual Basic]
Public Property AutoDial As Boolean

[C#]
public bool AutoDial {get; set;}

Property Value
A boolean value which specifies if autodialing has been enabled.

Remarks
The AutoDial property can be used to determine if autodialing is enabled or disabled on the current
system. When autodialing is enabled and an application attempts to establish a connection over the
Internet, a dialog box will be displayed asking the user if they want to connect to their default service
provider. This property will return true if autodialing is currently enabled, or false if it has been disabled.

Setting the AutoDial property allows an application to change the autodial settings for the current user.
Setting the property value to true specifies that you wish to enable autodialing, and the system will
prompt the user to establish a dial-up connection when necessary. Setting the property to false disables
autodialing, and prevents the system from prompting the user. This can be beneficial if your application
needs to run in an unattended mode. If you change the autodial settings for the user, it is recommended
that you restore them to their original value before the application terminates.

If the autodial settings cannot be changed by the current user, an exception will be generated.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.AutoDial Property

Automatically disconnect from the remote server.

[Visual Basic]
Public Property AutoDisconnect As Boolean

[C#]
public bool AutoDisconnect {get; set;}

Property Value
A boolean value that specifies if connections are automatically terminated.

Remarks
The AutoDisconnect property determines if this instance of the class should automatically disconnect
from a remote host when the destructor is called, typically when the application terminates. The default
value for this property is true.

If a dial-up connection was already established at the time an instance of the class is created, this property
will be reset to false, preventing it from automatically disconnecting from the host when it is unloaded.
Therefore, to always force the control to automatically terminate a connection when it is unloaded, you
must explicitly set the property value to true in your application.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.AutoDisconnect Property

Gets and sets the blocking state of the class.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
A boolean value which specifies the blocking state of the class.

Remarks
The Blocking property determines how the class establishes a dial-up connection. If set to true, the class
will wait until a connection has been established or the connection attempt fails before returning control
to the application. If set to false, the class will begin the connection process and return control
immediately to the application. For a non-blocking connection, the application should monitor the
OnStatus event to determine the progress of the connection attempt. The default value for this property
is false.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Blocking Property

Gets the number of bytes that have been received by the dial-up networking device.

[Visual Basic]
Public ReadOnly Property BytesIn As Integer

[C#]
public int BytesIn {get;}

Property Value
An integer which specifies the number of bytes received.

Remarks
The BytesIn property returns the number of bytes that have been received by the dial-up networking
device. If the control is unable to determine the number of bytes received, it will return a value of zero.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.BytesIn Property

Gets the number of bytes that have been transmitted by the dial-up networking device.

[Visual Basic]
Public ReadOnly Property BytesOut As Integer

[C#]
public int BytesOut {get;}

Property Value
An integer which specifies the number of bytes transmitted.

Remarks
The BytesOut property returns the number of bytes that have been transmitted by the dial-up networking
device. If the control is unable to determine the number of bytes transmitted, it will return a value of zero.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.BytesOut Property

Specifies that the remote server should call the system back.

[Visual Basic]
Public Property Callback As Boolean

[C#]
public bool Callback {get; set;}

Property Value
A boolean value which specifies if the server should call the local system back.

Remarks
Setting the Callback property specifies that the server should call the user back at the telephone number
specified by the CallbackNumber property. This property is ignored unless the user has "Set By Caller"
callback permission on the server.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Callback Property

Gets and sets the telephone number for the remote server to call back on.

[Visual Basic]
Public Property CallbackNumber As String

[C#]
public string CallbackNumber {get; set;}

Property Value
A string which specifies the callback telephone number.

Remarks
Setting the CallbackNumber property specifies that the server should call the user back at the given
telephone number. This property is ignored unless the user has "Set By Caller" callback permission on the
server. Assigning an asterisk to this property causes the number stored in the phone book entry to be
used for callback.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.CallbackNumber Property

Gets the number of active dial-up networking sessions.

[Visual Basic]
Public ReadOnly Property Connections As Integer

[C#]
public int Connections {get;}

Property Value
An integer value which specifies the number of active dial-up networking sessions.

Remarks
The Connections property returns the number of active dial-up networking connections on the local
system. A value of zero indicates that there is no dial-up networking connection. This property is used in
conjunction with the Connection array to enumerate the connections on the current system.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connections Property

Gets the line speed for the current dial-up networking connection.

[Visual Basic]
Public ReadOnly Property ConnectSpeed As Integer

[C#]
public int ConnectSpeed {get;}

Property Value
An integer value which specifies the connection speed.

Remarks
The ConnectSpeed property returns the speed, in bytes per second, at which the current dial-up
networking device has established a connection. If the class is unable to determine the connection speed,
it will return a value of zero.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ConnectSpeed Property

Gets and sets the country code for the current phonebook entry.

[Visual Basic]
Public Property CountryCode As Integer

[C#]
public int CountryCode {get; set;}

Property Value
An integer value which specifies the country code.

Remarks
The CountryCode property specifies the numeric country code for the current phonebook entry. If this
value is zero, then the country and area code information is not used when dialing the phone number.
The country code for the United States is 1.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.CountryCode Property

Gets and sets the country name for the current phonebook entry.

[Visual Basic]
Public Property CountryName As String

[C#]
public string CountryName {get; set;}

Property Value
A string which specifies the country name.

Remarks
The CountryName property returns the name of the country associated with the country code used when
dialing the current phonebook entry. If no country code has been specified, this property will return an
empty string. Setting this property to the name of a country will change the current country code. If no
area code has been defined, and the country code specifies the current dialing location, the AreaCode
property will be updated to the current area code.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.CountryName Property

Enable and disable the default gateway for IP packets through the dial-up adapter.

[Visual Basic]
Public Property DefaultGateway As Boolean

[C#]
public bool DefaultGateway {get; set;}

Property Value
A boolean value which specifies if the default gateway should be used.

Remarks
The DefaultGateway property is used to determine the default gateway for IP packets. If set to true, then
packets are routed through the dial-up networking adapter when the connection is active. The value of
this property corresponds to the Use Default Gateway checkbox on the TCP/IP configuration dialog.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DefaultGateway Property

Gets the number of dial-up networking devices available.

[Visual Basic]
Public ReadOnly Property DeviceCount As Integer

[C#]
public int DeviceCount {get;}

Property Value
An integer value which specifies the number of devices.

Remarks
The DeviceCount property returns the number of dial-up networking devices available. This property can
be used in conjunction with the DeviceEntry array to enumerate the devices.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeviceCount Property

Gets and sets the device name for the current dial-up networking connection.

[Visual Basic]
Public Property DeviceName As String

[C#]
public string DeviceName {get; set;}

Property Value
A string which specifies the device name.

Remarks
The DeviceName property returns a description of the device that the connection was established on. For
example, the string "US Robotics Sportster 56000" may be returned for a modem. Note that this property
value may change if the DeviceType property is modified. Setting this property will change the device
used to establish the dial-up networking connection. Changes to this property value should be made after
changes to the DeviceType property.

To enumerate a list of available devices for a given device type, use the DeviceCount property and
DeviceEntry array.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeviceName Property

Gets and sets the device type for the current dial-up networking connection.

[Visual Basic]
Public Property DeviceType As String

[C#]
public string DeviceType {get; set;}

Property Value
A string which specifies the device type.

Remarks
The DeviceType property returns the type of device that the connection was established with. Setting this
property will change the type of device that will be used to establish the connection. Examples of valid
device types are:

DeviceType Description

modem An internal or external serial analog modem
device, or other serial communications device
which supports the AT command set.

isdn An ISDN terminal adapter. Note that some ISDN
devices, such as the 3Com ImpactIQ are
considered modem devices.

vpn A virtual private network connection.

Because changing the device type can change the current device name, it is recommended that
applications change this property value before changing the value of the DeviceName property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeviceType Property

Enables and disables the use of dynamically allocated IP addresses.

[Visual Basic]
Public Property DynamicAddress As Boolean

[C#]
public bool DynamicAddress {get; set;}

Property Value
A boolean value which specifies if a dynamically allocated IP address should be used.

Remarks
The DynamicAddress property determines if the current phonebook entry should use a dynamically
assigned IP address. If this property is set to true, then an IP address is assigned to the dial-up adapter
when the connection is established. If set to false, then the dial-up adapter IP address is set to the value
of the InternetAddress property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DynamicAddress Property

Enables and disables the use of dynamically assigned nameserver addresses.

[Visual Basic]
Public Property DynamicNameServers As Boolean

[C#]
public bool DynamicNameServers {get; set;}

Property Value
A boolean value which specifies if dynamically allocated nameservers should be used.

Remarks
The DynamicNameServers property determines if the current phonebook entry should use dynamically
assigned nameservers. If this property is set to true, then one or more nameservers are assigned to the
dial-up adapter when the connection is established. If set to false, then the dial-up adapter nameservers
are set to the values specified by the NameServer property array.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DynamicNameServers Property

Gets and sets the current phone book entry name.

[Visual Basic]
Public Property EntryName As String

[C#]
public string EntryName {get; set;}

Property Value
A string which specifies the current phonebook entry name.

Remarks
The EntryName property can be used to specify a phone book entry to use to connect with a remote
server. The entry name identifies a communications profile which includes the telephone number, callback
number and domain name of the remote host. Setting the EntryName property to an empty string
indicates that a telephone number will be provided to establish the connection.

In Windows documentation, the phonebook entry name is also referred to as a connectoid.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.EntryName Property

Gets and sets the framing protocol for the current phonebook entry.

[Visual Basic]
Public Property FramingProtocol As RasFramingProtocol

[C#]
public InternetDialer.RasFramingProtocol FramingProtocol {get; set;}

Property Value
A RasFramingProtocol enumeration which specifies the framing protocol.

Remarks
The FramingProtocol property is used to set or return the framing protocol used for the current
phonebook entry.

Note that unless there is a specific need for the application to use SLIP or the Microsoft RAS protocol, it is
recommended that PPP always be selected as the framing protocol.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.FramingProtocol Property

Gets and sets the handle for the current dial-up networking connection.

[Visual Basic]
Public Property Handle As Integer

[C#]
public int Handle {get; set;}

Property Value
An integer value which specifies a dial-up networking connection.

Remarks
The Handle property returns the handle to the current dial-up networking connection, or a value of zero
if the class has not been used to establish a connection. Setting the value of this property to a valid handle
causes the class to inherit the specified connection, and its properties will be updated with information
about that connection. This enables an application to monitor and control a connection that was
established by another program.

Setting the Handle property to a value of zero causes the class to release the current connection,
however it will not cause the dial-up networking session to terminate. To disconnect from the remote
server, the Disconnect method must be called by the application. Setting the property to a non-zero
value which does not specify a valid handle will generate an exception.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Handle Property

Gets the address assigned to the current dial-up networking session.

[Visual Basic]
Public Property InternetAddress As String

[C#]
public string InternetAddress {get; set;}

Property Value
A string which specifies an Internet Protocol (IP) address.

Remarks
The InternetAddress property returns the address assigned to the current dial-up networking session. If
no connection has been established, or the connection has not been made with a PPP server, then this
property will return an empty string. If the DynamicAddress property is set to false, changing this
property value will update the address assigned to the current phonebook entry.

The address may only be changed before a connection is established.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.InternetAddress Property

Gets and sets the interval at which the connection is monitored.

[Visual Basic]
Public Property Interval As Integer

[C#]
public int Interval {get; set;}

Property Value
An integer value which specifies the interval in milliseconds.

Remarks
The Interval property specifies the interval, in milliseconds, at which the connection is monitored by the
class. The minimum value of 0 indicates that the class should not monitor the connection. The maximum
interval value is 65536 milliseconds, which is slightly more than one minute. The default value is 1000,
which causes the control to check the connection status every second.

Note that setting the property value to zero will prevent the class from detecting certain conditions, such
as a disconnected telephone line or a modem that is turned off.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Interval Property

Enables and disables IP header compression for the current phonebook entry.

[Visual Basic]
Public Property IpHeaderCompression As Boolean

[C#]
public bool IpHeaderCompression {get; set;}

Property Value
A boolean value which specifies if IP header compression is enabled.

Remarks
The IpHeaderCompression property is used to enable or disable IP header compression. If set to true,
when a connection is established, RAS will negotiate with the dial-up server to use header compression. If
set to false, header compression will not be negotiated. This property corresponds to the Use IP Header
Compression checkbox on the TCP/IP configuration dialog.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.IpHeaderCompression Property

Gets a value which indicates if a connection has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
A boolean value which specifies if a connection has been established with a service provider.

Remarks
The IsConnected property is used to determine if the class has connected to the remote host. A value of
true indicates that a connection has been established.

Note that the IsConnected property should not be used to determine if an active dial-up networking
connection has been established by another application. The property will only return true if the class has
been used to establish the connection itself, or if a connection is inherited by setting either the
AutoConnect or Handle properties. To determine if there are any active dial-up networking connections,
check the value of the Connections property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.IsInitialized Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public InternetDialer.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LastErrorString Property

Enables and disables the use of PPP LCP extensions for the current phonebook entry.

[Visual Basic]
Public Property LcpExtensions As Boolean

[C#]
public bool LcpExtensions {get; set;}

Property Value
A boolean value which specifies if PPP LCP extensions are enabled.

Remarks
The LcpExtensions property determines if the PPP LCP extensions defined in RFC 1570 will be used. If the
PPP framing protocol is being used for the dial-up connection, it is recommended that this property be
set to true. However, some older implementations of PPP may require that this property be set to false in
order to establish a connection.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LcpExtensions Property

Gets and sets the local telephone number specified in the phonebook entry.

[Visual Basic]
Public Property LocalNumber As String

[C#]
public string LocalNumber {get; set;}

Property Value
A string which specifies the local telephone number.

Remarks
The LocalNumber property sets or returns the local phone number that is specified in the current
phonebook entry. If the CountryCode property has a value of zero, then the local number is dialed to
connect to the server. If the CountryCode property is set to a valid country code, then RAS will also use
the country and area code values when dialing the phone number.

Note that this property only determines the local phone number for the phonebook entry, and can be
overridden by setting the PhoneNumber property to a specific value.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LocalNumber Property

Enables and disables the dial-up networking system tray icon.

[Visual Basic]
Public Property ModemLights As Boolean

[C#]
public bool ModemLights {get; set;}

Property Value
A boolean value which specifies if the system tray icon is displayed.

Remarks
The ModemLights property determines if the dial-up networking icon in the system tray is displayed
when a connection is established.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ModemLights Property

Enables and disables the modem speaker.

[Visual Basic]
Public Property ModemSpeaker As Boolean

[C#]
public bool ModemSpeaker {get; set;}

Property Value
A boolean value which specifies if the modem speaker is enabled.

Remarks
The ModemSpeaker property determines if the modem speaker is enabled when dialing the remote
server. If the property is set to false, the modem will be silent when dialing the telephone number and
establishing the connection. Note that setting this property to true will not force the speaker on if the
modem hardware has been configured to explicitly disable the speaker.

To disable the speaker, the modem must support changes to the speaker volume. Disabling the speaker is
typically done by instructing the modem to set the speaker volume to zero.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ModemSpeaker Property

Enables and disables a network login for the current phonebook entry.

[Visual Basic]
Public Property NetworkLogon As Boolean

[C#]
public bool NetworkLogon {get; set;}

Property Value
A boolean value which specifies if a network login is enabled.

Remarks
The NetworkLogon property determines if the client automatically logs on to the network after a
connection has been established.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.NetworkLogon Property

Gets and sets the network protocol for the current phonebook entry.

[Visual Basic]
Public Property NetworkProtocol As RasNetworkProtocol

[C#]
public InternetDialer.RasNetworkProtocol NetworkProtocol {get; set;}

Property Value
A RasNetworkProtocol enumeration value which specifies the network protocol.

Remarks
The NetworkProtocol property is used to set or return the network protocol used for the current
phonebook entry.

Note that unless there is a specific need for the application to use the NetBEUI or IPX protocols, it is
recommended that only the TCP/IP protocol be specified.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.NetworkProtocol Property

Gets the password required to establish a connection with the service provider.

[Visual Basic]
Public Property Password As String

[C#]
public string Password {get; set;}

Property Value
A string which specifies the password for the current phonebook entry.

Remarks
The Password property specifies the password required to establish a connection with the service
provider.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Password Property

Sets the file name of the Remote Access phonebook to use.

[Visual Basic]
Public Property PhoneBook As String

[C#]
public string PhoneBook {get; set;}

Property Value
A string which specifies the current phonebook.

Remarks
The PhoneBook property specifies the file name of the Remote Access phone book. Setting this property
to an empty string causes the default phonebook to be used.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.PhoneBook Property

Gets the number of entries in the current phonebook.

[Visual Basic]
Public ReadOnly Property PhoneBookEntries As Integer

[C#]
public int PhoneBookEntries {get;}

Property Value
An integer value which specifies the number of phonebook entries.

Remarks
The PhoneBookEntries property returns the number of entries in the current phonebook. A value of zero
indicates that no phonebook entries are available.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.PhoneBookEntries Property

Gets and sets the telephone number of the service provider.

[Visual Basic]
Public Property PhoneNumber As String

[C#]
public string PhoneNumber {get; set;}

Property Value
A string which specifies a telephone number.

Remarks
The PhoneNumber property specifies the telephone number of the service provider. If this property is
not set, then the PhoneEntry property must be set to a valid phone book entry. If both the
PhoneNumber and PhoneEntry properties are defined, the PhoneNumber property will override the
value specified in the phonebook.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.PhoneNumber Property

Enables and disables secure authentication for the current phonebook entry.

[Visual Basic]
Public Property RequireEncryption As Boolean

[C#]
public bool RequireEncryption {get; set;}

Property Value
A boolean value which specifies if secure authentication is enabled.

Remarks
The RequireEncryption property determines if encryption is required during PPP authentication. If the
property is set to true, then only secure password schemes can be used to authenticate the client. If the
property is set to false, the client can use the PAP plain-text authentication protocol to authenticate the
client. Some older PPP implementations may require that this property be set to false in order to establish
a connection.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RequireEncryption Property

Gets and sets the name of the script file for the current phonebook entry.

[Visual Basic]
Public Property ScriptFile As String

[C#]
public string ScriptFile {get; set;}

Property Value
A string which specifies the name of the script file.

Remarks
The ScriptFile property specifies the name of the login script used to establish a connection with the
remote host. This property must be set to the full pathname of the script file. If a script file is not required,
then this property should be set to an empty string.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ScriptFile Property

Gets the address of the dial-up networking server.

[Visual Basic]
Public ReadOnly Property ServerAddress As String

[C#]
public string ServerAddress {get;}

Property Value
A string which specifies an Internet Protocol (IP) address.

Remarks
The ServerAddress property returns the address of the dial-up networking server that the local host has
connected to. If no connection has been established, or the connection has not been made with a PPP
server, then this property will return an empty string. This property may also return an empty string if the
remote server did not provide this information during the connection process.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ServerAddress Property

Enables and disables software compression for the current phonebook entry.

[Visual Basic]
Public Property SoftwareCompression As Boolean

[C#]
public bool SoftwareCompression {get; set;}

Property Value
A boolean value which specifies if software compression is enabled.

Remarks
The SoftwareCompression property determines if data compression is negotiated during the connection.
If the property is set to true, then the client will negotiate a compatible compression protocol. Software
compression should only be disabled if the client is unable to establish a connection with the server.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.SoftwareCompression Property

Gets a value which specifies the current status of the dial-up networking connection.

[Visual Basic]
Public ReadOnly Property Status As DialerStatus

[C#]
public InternetDialer.DialerStatus Status {get;}

Property Value
A DialerStatus enumeration value which specifies the current status.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Status Property

Gets and sets the interactive terminal window mode for the current phonebook entry.

[Visual Basic]
Public Property Terminal As RasTerminalMode

[C#]
public InternetDialer.RasTerminalMode Terminal {get; set;}

Property Value
A RasTerminalMode enumeration which specifies the terminal window mode.

Remarks
The Terminal array is used to control if a terminal window is displayed during the dial-up networking
connection process. The terminal window can be used to allow user input before and/or after the dial-up
networking connection has been established. If scripting has been enabled by setting the ScriptFile
property, no terminal window should be displayed after the connection. This is because scripting has it's
own terminal implementation.

Displaying a terminal window also imposes several restrictions on the behavior of the class. Because of
how the Remote Access Services API is implemented by Microsoft, a connection dialog will be displayed
after the Connect method is called if the Terminal property is non-zero. Setting this property to a non-
zero value will also disable any asynchronous event notifications. It is not recommended that you set this
property unless it is absolutely necessary.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Terminal Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking operation fails and returns
an error. The timeout period is only used when the client is in blocking mode. Although this property can
be changed when the client is in non-blocking mode, the value will be ignored until the client is returned
to blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Timeout Property

Gets and sets the NT domain on which user authentication is to occur.

[Visual Basic]
Public Property UserDomain As String

[C#]
public string UserDomain {get; set;}

Property Value
A string which specifies the NT domain name.

Remarks
The UserDomain property is used to specify the NT domain on which the user name and password will
be authenticated. An empty string specifies the domain in which the Remote Access server is a member.
An asterisk specifies the domain stored in the phone book entry.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.UserDomain Property

Gets the username required to establish a connection with the service provider.

[Visual Basic]
Public Property UserName As String

[C#]
public string UserName {get; set;}

Property Value
A string which specifies the username for the current phonebook entry.

Remarks
The UserName property specifies the username required to establish a connection with the service
provider.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.UserName Property

Gets the name of the default user phonebook.

[Visual Basic]
Public ReadOnly Property UserPhoneBook As String

[C#]
public string UserPhoneBook {get;}

Property Value
A string which specifies a phonebook name.

Remarks
The UserPhoneBook property returns the name of the default user phonebook. The value returned
depends on how the user has configured dial-up networking, specifically whether the system, user or
alternate phonebook has been selected. The current phonebook can be changed by setting the
PhoneBook property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.UserPhoneBook Property

Gets a value which returns the current version of the InternetDialer class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the InternetDialer
class library. This value can be used by an application for validation and debugging purposes.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Version Property

The methods of the InternetDialer class are listed below. For a complete list of InternetDialer class
members, see the InternetDialer Members topic.

Public Instance Methods

Connect Overloaded. Establish a connection with a dial-up
networking services provider.

CreateEntry Create a new entry in the current phonebook.

DeleteEntry Overloaded. Delete a phonebook entry from the
current phonebook.

Disconnect Terminate the connection with the dial-up
networking service provider.

Dispose Overloaded. Releases all resources used by
InternetDialer.

EditEntry Edit an existing phonebook entry in the current
phonebook.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
InternetDialer class.

LoadEntry Overloaded. Load the specified entry from the
current phonebook.

RenameEntry Rename an existing phonebook entry.

Reset Reset the internal state of the object, resetting all
properties to their default values.

SaveEntry Overloaded. Save the current settings to the
specified phonebook entry in the current
phonebook.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetDialer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading

InternetDialer Methods

the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a dial-up networking services provider.

Overload List
Establish a connection with a dial-up networking services provider.

public bool Connect();

Establish a connection with a dial-up networking services provider.

public bool Connect(string);

Establish a connection with a dial-up networking services provider.

public bool Connect(string,string,string);

Establish a connection with a dial-up networking services provider.

public bool Connect(string,string,string,string);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method

Establish a connection with a dial-up networking services provider.

[Visual Basic]
Overloads Public Function Connect() As Boolean

[C#]
public bool Connect();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Connect method establishes a dial-up networking connection with a service provider using the
current phonebook entry.

The current phonebook entry name is specified by the EntryName property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method ()

Establish a connection with a dial-up networking services provider.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool Connect(
 string entryName
);

Parameters
entryName

A string which specifies the phonebook entry that should be used when establishing the connection.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Connect method establishes a dial-up networking connection with a service provider using the
specified phonebook entry. The entry name is the same name as the connectoid that is displayed when
you list the available dial-up networking connections on the local system.

For a list of all of the available phonebook entries, reference the PhoneBookEntry array.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method (String)

Establish a connection with a dial-up networking services provider.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal phoneNumber As String, _
 ByVal userName As String, _
 ByVal userPassword As String _
) As Boolean

[C#]
public bool Connect(
 string phoneNumber,
 string userName,
 string userPassword
);

Parameters
phoneNumber

A string which specifies the phone number to dial.

userName
A string which specifies the username which will be used to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the session.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Connect method establishes a dial-up networking connection with a service provider. A temporary
phonebook entry will be created for the dial-up networking session, and this entry will be removed when
the local host disconnects from the service provider.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method (String, String, String)

Establish a connection with a dial-up networking services provider.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal phoneNumber As String, _
 ByVal userName As String, _
 ByVal userPassword As String, _
 ByVal userDomain As String _
) As Boolean

[C#]
public bool Connect(
 string phoneNumber,
 string userName,
 string userPassword,
 string userDomain
);

Parameters
phoneNumber

A string which specifies the phone number to dial.

userName
A string which specifies the username which will be used to authenticate the session.

userPassword
A string which specifies the password which will be used to authenticate the session.

userDomain
A string which specifies the domain on which the username and password will be authenticated. An
empty string specifies the domain in which the Remote Access Server is a member.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Connect method establishes a dial-up networking connection with a service provider. A temporary
phonebook entry will be created for the dial-up networking session, and this entry will be removed when
the local host disconnects from the service provider.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Connect Method (String, String, String, String)

Create a new entry in the current phonebook.

[Visual Basic]
Public Function CreateEntry() As Boolean

[C#]
public bool CreateEntry();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The CreateEntry method displays a dialog box which allows the user to create a new phonebook entry on
the system. If you do not wish to display a dialog box, use the SaveEntry method instead.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.CreateEntry Method

Delete the current phonebook entry from the phonebook.

Overload List
Delete the current phonebook entry from the phonebook.

public bool DeleteEntry();

Delete a phonebook entry from the current phonebook.

public bool DeleteEntry(string);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeleteEntry Method

Delete the current phonebook entry from the phonebook.

[Visual Basic]
Overloads Public Function DeleteEntry() As Boolean

[C#]
public bool DeleteEntry();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The current phonebook entry name is specified by the EntryName property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.DeleteEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeleteEntry Method ()

Delete a phonebook entry from the current phonebook.

[Visual Basic]
Overloads Public Function DeleteEntry(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool DeleteEntry(
 string entryName
);

Parameters
entryName

A string which specifies the phonebook entry name to delete.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.DeleteEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.DeleteEntry Method (String)

Terminate the connection with the dial-up networking service provider.

[Visual Basic]
Public Function Disconnect() As Boolean

[C#]
public bool Disconnect();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method may cause the current thread to block as the connection is terminated and the dial-up
network device is being reset to its default state. Any active network connections using this dial-up
networking connection will be terminated.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Disconnect Method

Releases all resources used by InternetDialer.

Overload List
Releases all resources used by InternetDialer.

public void Dispose();

Releases the unmanaged resources allocated by the InternetDialer class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Dispose Method

Releases all resources used by InternetDialer.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Dispose Method ()

Releases the unmanaged resources allocated by the InternetDialer class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the InternetDialer class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Dispose Method (Boolean)

Edit an existing phonebook entry in the current phonebook.

[Visual Basic]
Public Function EditEntry(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool EditEntry(
 string entryName
);

Parameters
entryName

A string which specifies the name of the phonebook entry to be edited.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The EditEntry method edits the specified entry from the local phonebook. This will cause a dialog box to
be displayed from which the user can change the connection information. If you do not want to display a
dialog, then use the SaveEntry method instead.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.EditEntry Method

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Finalize Method

Initialize an instance of the InternetDialer class.

Overload List
Initialize an instance of the InternetDialer class.

public bool Initialize();

Initialize an instance of the InternetDialer class.

public bool Initialize(string);

See Also
InternetDialer Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Initialize Method

Initialize an instance of the InternetDialer class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetDialer class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Initialize Method ()

Initialize an instance of the InternetDialer class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetDialer class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketTools can be generated using the License Manager utility
that is included with the product. Note that if you have installed an evaluation license, you will not have a
runtime license key and cannot redistribute any applications which use the InternetDialer class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.InternetDialer xxxClient = new SocketTools.InternetDialer();

if (xxxClient.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(xxxClient.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim xxxClient As New SocketTools.InternetDialer

If xxxClient.Initialize(strLicenseKey) = False Then
 MsgBox(xxxClient.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Initialize Method (String)

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetDialer.RuntimeLicenseAttribute.html

Reload the current phonebook entry from the phonebook.

Overload List
Reload the current phonebook entry from the phonebook.

public bool LoadEntry();

Load the specified entry from the current phonebook.

public bool LoadEntry(string);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LoadEntry Method

Reload the current phonebook entry from the phonebook.

[Visual Basic]
Overloads Public Function LoadEntry() As Boolean

[C#]
public bool LoadEntry();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The current entry from the phonebook will be reloaded and any changes made to the current entry will be
abandoned.

The current phonebook entry name is specified by the EntryName property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.LoadEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LoadEntry Method ()

Load the specified entry from the current phonebook.

[Visual Basic]
Overloads Public Function LoadEntry(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool LoadEntry(
 string entryName
);

Parameters
entryName

A string which specifies the name of a phonebook entry.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The LoadEntry method loads the specified entry from the current phonebook and sets the class
properties to match the configuration.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.LoadEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.LoadEntry Method (String)

Rename an existing phonebook entry.

[Visual Basic]
Public Function RenameEntry(_
 ByVal oldEntryName As String, _
 ByVal newEntryName As String _
) As Boolean

[C#]
public bool RenameEntry(
 string oldEntryName,
 string newEntryName
);

Parameters
oldEntryName

A string which specifies the phonebook entry which will be renamed.

newEntryName
A string which specifies the new name for the phonebook entry.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The RenameEntry method renames the specified entry in the local phonebook. The new entry name
must not already exist in the phonebook.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RenameEntry Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Reset Method

Save the current phonebook entry settings.

Overload List
Save the current phonebook entry settings.

public bool SaveEntry();

Save the current settings to the specified phonebook entry in the current phonebook.

public bool SaveEntry(string);

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.SaveEntry Method

Save the current phonebook entry settings.

[Visual Basic]
Overloads Public Function SaveEntry() As Boolean

[C#]
public bool SaveEntry();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SaveEntry method saves the current phonebook entry settings, based on the class property values. If
the entry does not exist, it will be created. If the entry does exist, it will be overwritten. Note that unlike the
CreateEntry method, this method does not display any user-interface dialogs.

The current phonebook entry name is specified by the EntryName property.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.SaveEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.SaveEntry Method ()

Save the current settings to the specified phonebook entry in the current phonebook.

[Visual Basic]
Overloads Public Function SaveEntry(_
 ByVal entryName As String _
) As Boolean

[C#]
public bool SaveEntry(
 string entryName
);

Parameters
entryName

A string which specifies the name of the phonebook entry.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The SaveEntry method saves the specified entry to the current phonebook, based on the class property
values. If the entry does not exist, it will be created. If the entry does exist, it will be overwritten. Note that
unlike the CreateEntry method, this method does not display any user-interface dialogs.

See Also
InternetDialer Class | SocketTools Namespace | InternetDialer.SaveEntry Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.SaveEntry Method (String)

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further client operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
InternetDialer Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.Uninitialize Method

The events of the InternetDialer class are listed below. For a complete list of InternetDialer class
members, see the InternetDialer Members topic.

Public Instance Events

OnCancel Occurs when a blocking client operation is
canceled.

OnConnect Occurs when a connection is established with the
service provider.

OnDisconnect Occurs when the dial-up networking connection is
terminated.

OnError Occurs when an client operation fails.

OnStatus Occurs when the when the connection state
changes.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer Events

Occurs when a blocking client operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking client operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnCancel Event

Occurs when a connection is established with the service provider.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a service provider as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a dial-up
networking connection is initiated, but the connection is not actually established until after this event
occurs. Between the time connection process is started and this event fires, no operation may be
performed by the client other than calling the Disconnect method.

This event is only generated if the client is in non-blocking mode.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnConnect Event

Occurs when the dial-up networking connection is terminated.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the dial-up networking connection has been terminated. This
event is only generated if the client is in non-blocking mode.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnDisconnect Event

Occurs when an client operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type InternetDialer.ErrorEventArgs containing data related to
this event. The following InternetDialer.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a client operation fails.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see InternetDialer.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetDialer.ErrorEventArgs

[Visual Basic]
Public Class InternetDialer.ErrorEventArgs
 Inherits EventArgs

[C#]
public class InternetDialer.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
InternetDialer.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs Class

InternetDialer.ErrorEventArgs overview

Public Instance Constructors

 InternetDialer.ErrorEventArgs Constructor Initializes a new instance of the
InternetDialer.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs Members

Initializes a new instance of the InternetDialer.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetDialer.ErrorEventArgs();

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs Constructor

The properties of the InternetDialer.ErrorEventArgs class are listed below. For a complete list of
InternetDialer.ErrorEventArgs class members, see the InternetDialer.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public InternetDialer.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
InternetDialer.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.ErrorEventArgs.Error Property

Occurs when the when the connection state changes.

[Visual Basic]
Public Event OnStatus As OnStatusEventHandler

[C#]
public event OnStatusEventHandler OnStatus;

Event Data
The event handler receives an argument of type InternetDialer.StatusEventArgs containing data related to
this event. The following InternetDialer.StatusEventArgs properties provide information specific to this
event.

Property Description

Description Gets a description of the current dial-up
networking connection status.

Status Gets a value which specifies the current status of
the dial-up networking connection.

Remarks
The OnStatus event is generated when the status of the connection changes. Typically this occurs when a
connection is being established with a dial-up networking server.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnStatus Event

Provides data for the OnStatus event.

For a list of all members of this type, see InternetDialer.StatusEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetDialer.StatusEventArgs

[Visual Basic]
Public Class InternetDialer.StatusEventArgs
 Inherits EventArgs

[C#]
public class InternetDialer.StatusEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
StatusEventArgs specifies the status code and a description of the status for the last status change that
has occurred.

The OnStatus event occurs whenever the status of the dial-up networking connection changes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
InternetDialer.StatusEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs Class

InternetDialer.StatusEventArgs overview

Public Instance Constructors

 InternetDialer.StatusEventArgs Constructor Initializes a new instance of the
InternetDialer.StatusEventArgs class.

Public Instance Properties

Description Gets a description of the current dial-up
networking connection status.

Status Gets a value which specifies the current status of
the dial-up networking connection.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs Members

Initializes a new instance of the InternetDialer.StatusEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetDialer.StatusEventArgs();

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs Constructor

The properties of the InternetDialer.StatusEventArgs class are listed below. For a complete list of
InternetDialer.StatusEventArgs class members, see the InternetDialer.StatusEventArgs Members topic.

Public Instance Properties

Description Gets a description of the current dial-up
networking connection status.

Status Gets a value which specifies the current status of
the dial-up networking connection.

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs Properties

Gets a description of the current dial-up networking connection status.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the connection status.

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs.Description Property

Gets a value which specifies the current status of the dial-up networking connection.

[Visual Basic]
Public ReadOnly Property Status As DialerStatus

[C#]
public InternetDialer.DialerStatus Status {get;}

Property Value
A DialerStatus enumeration value which specifies the current status.

See Also
InternetDialer.StatusEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.StatusEventArgs.Status Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the client,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

This event is only generated if the client is in blocking mode.

See Also
InternetDialer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnTimeout Event

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub InternetDialer.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void InternetDialer.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnErrorEventHandler Delegate

Represents the method that will handle the OnStatus event.

[Visual Basic]
Public Delegate Sub InternetDialer.OnStatusEventHandler(_
 ByVal sender As Object, _
 ByVal e As StatusEventArgs _
)

[C#]
public delegate void InternetDialer.OnStatusEventHandler(

 object sender,
 StatusEventArgs e
);

Parameters
sender

The source of the event.

e
A StatusEventArgs object that contains the event data.

Remarks
When you create an OnStatusEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnStatusEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.OnStatusEventHandler Delegate

Specifies the status values that may be returned by the InternetDialer class.

[Visual Basic]
Public Enum InternetDialer.DialerStatus

[C#]
public enum InternetDialer.DialerStatus

Remarks
The InternetDialer class uses the DialerStatus enumeration to identify the current status of the client.

Members

Member Name Description

statusUnused No connection has been established.

statusOpenPort The communications port is about to be opened.

statusPortOpened The communications port has been opened.

statusConnectDevice A device is about to be connected.

statusDeviceConnected A device has been connected successfully.

statusAllDevicesConnected All devices have been connected.

statusAuthenticate Authenticating username and password.

statusAuthNotify An authentication event has occurred.

statusAuthRetry Requesting authentication with new credentials.

statusAuthCallback The remote server has requested a callback
number.

statusAuthChangePassword The user has requested to change the password.

statusAuthProject Registering computer on the network.

statusAuthLinkSpeed The link speed calculation phase is starting.

statusAuthAck An authentication request is being acknowledged.

statusReAuthenticate Authenticating username and password.

statusAuthenticated The user has been authenticated.

statusPrepareForCallback The line is about to be disconnected in
preparation for callback.

statusWaitForModemReset The modem is resetting itself in preparation for
callback.

statusWaitForCallback Waiting for callback from remote server.

statusProjected Protocol specific information has been negotiated.

statusStartAuthentication User authentication is being initiated.

statusCallbackComplete Callback completed and resuming authentication.

InternetDialer.DialerStatus Enumeration

statusLogonNetwork Logging on to the network.

statusSubEntryConnected A subentry has been connected.

statusSubEntryDisconnected A subentry has been disconnected.

statusInteractive Initiating interactive login session.

statusRetryAuthentication Retrying user authentication.

statusCallbackSetByCaller Callback has been set by caller.

statusPasswordExpired Password has expired.

statusConnected Connected to remote server.

statusDisconnected Disconnected from remote server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the error codes returned by the InternetDialer class.

[Visual Basic]
Public Enum InternetDialer.ErrorCode

[C#]
public enum InternetDialer.ErrorCode

Remarks
The InternetDialer class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorDeviceNotFound The specified device could not be found.

errorOperationTimeout The specified operation has timed out.

errorPending An operation is pending.

errorInvalidPortHandle An invalid port handle was detected.

errorPortAlreadyOpen The specified port is already open.

errorBufferTooSmall The caller's buffer is too small.

errorWrongInfoSpecified Incorrect information was specified.

errorCannotSetPortInfo The port information cannot be set.

errorPortNotConnected The specified port is not connected.

errorEventInvalid An invalid event was detected.

errorDeviceDoesNotExist A device was specified that does not exist.

errorDevicetypeDoesNotExist A device type was specified that does not exist.

errorBufferInvalid An invalid buffer was specified.

errorRouteNotAvailable A route was specified that is not available.

errorRouteNotAllocated A route was specified that is not allocated.

errorInvalidCompressionSpecified An invalid compression was specified.

errorOutOfBuffers There were insufficient buffers available.

InternetDialer.ErrorCode Enumeration

errorPortNotFound The specified port was not found.

errorAsyncRequestPending An asynchronous request is pending.

errorAlreadyDisconnecting The modem or other connecting device is already
disconnecting.

errorPortNotOpen The specified port is not open.

errorPortDisconnected A connection to the remote computer could not
be established.

errorNoEndpoints No endpoints could be determined.

errorCannotOpenPhonebook The system could not open the phone book file.

errorCannotLoadPhonebook The system could not load the phone book file.

errorCannotFindPhonebookEntry The system could not find the phone book entry
for this connection.

errorCannotWritePhonebook The system could not update the phone book file.

errorCorruptPhonebook The system found invalid information in the phone
book file.

errorCannotLoadString A string could not be loaded.

errorKeyNotFound A key could not be found.

errorDisconnection The connection was terminated by the remote
computer before it could be completed.

errorRemoteDisconnection The connection was closed by the remote
computer.

errorHardwareFailure The modem or other connecting device was
disconnected due to hardware failure.

errorUserDisconnection The user disconnected the modem or other
connecting device.

errorInvalidSize An incorrect structure size was detected.

errorPortNotAvailable The modem or other connecting device is already
in use or is not configured properly.

errorCannotProjectClient Your computer could not be registered on the
remote network.

errorUnknown There was an unknown error.

errorWrongDeviceAttached The device attached to the port is not the one
expected.

errorBadString A string was detected that could not be converted.

errorRequestTimeout The request has timed out.

errorCannotGetLana No asynchronous net is available.

errorNetBIOSError An error has occurred involving NetBIOS.

errorServerOutOfResources The server cannot allocate NetBIOS resources
needed to support the client.

errorNameExistsOnNet One of your computer's NetBIOS names is already

registered on the remote network.

errorServerGeneralNetFailure A network adapter at the server failed.

errorMsgAliasNotAdded You will not receive network message popups.

errorAuthInternal There was an internal authentication error.

errorRestrictedLogonHours The account is not permitted to log on at this time
of day.

errorAcctDisabled The account is disabled.

errorPasswdExpired The password for this account has expired.

errorNoDialInPermission The account does not have permission to dial in.

errorServerNotResponding The remote access server is not responding.

errorFromDevice The modem or other connecting device has
reported an error.

errorUnrecognizedResponse There was an unrecognized response from the
modem or other connecting device.

errorMacroNotFound A macro required by the modem or other
connecting device was not found in the
configuration file.

errorMacroNotDefined A command or response in the configuration file
refers to an undefined macro.

errorMessageMacroNotFound The message macro was not found in the
configuration file.

errorDefaultOffMacroNotFound The configuration file contains an undefined
macro.

errorFileCouldNotBeOpened The configuration file could not be opened.

errorDevicenameTooLong The device name in the configuration file is too
long.

errorDevicenameNotFound The configuration file refers to an unknown device
name.

errorNoResponses The configuration file contains no responses for
the command.

errorNoCommandFound The configuration file is missing a command.

errorWrongKeySpecified There was an attempt to set a macro not listed in
configuration file.

errorUnknownDeviceType The configuration file refers to an unknown device
type.

errorAllocatingMemory The system has run out of memory.

errorPortNotConfigured The modem or other connecting device is not
properly configured.

errorDeviceNotReady The modem or other connecting device is not
functioning.

errorReadingIniFile The system was unable to read the configuration
file.

errorNoConnection The connection was terminated.

errorBadUsageInIniFile The usage parameter in the configuration file is
invalid.

errorReadingSectionname The system was unable to read the section name
from the configuration file.

errorReadingDeviceType The system was unable to read the device type
from the configuration file.

errorReadingDeviceName The system was unable to read the device name
from the configuration file.

errorReadingUsage The system was unable to read the usage from the
configuration file.

errorReadingMaxConnectBps The system was unable to read the maximum
connection BPS rate from the configuration file.

errorReadingMaxCarrierBps The system was unable to read the maximum
carrier connection speed from the configuration
file.

errorLineBusy The phone line is busy.

errorVoiceAnswer A person answered instead of a modem or other
connecting device.

errorNoAnswer The remote computer did not respond.

errorNoCarrier The system could not detect the carrier.

errorNoDialtone There was no dial tone.

errorInCommand The modem or other connecting device reported
a general error.

errorWritingSectionname There was an error in writing the section name.

errorWritingDeviceType There was an error in writing the device type.

errorWritingDeviceName There was an error in writing the device name.

errorWritingMaxConnectBps There was an error in writing the maximum
connection speed..

errorWritingMaxCarrierBps There was an error in writing the maximum carrier
speed.

errorWritingUsage There was an error in writing the usage.

errorWritingDefaultOff There was an error in writing the default-off.

errorReadingDefaultOff There was an error in reading the default-off.

errorEmptyIniFile The configuration file is empty.

errorAuthenticationFailure Access was denied because the username and/or
password was invalid on the domain.

errorPortOrDevice There was a hardware failure in the modem or
other connecting device.

errorNotBinaryMacro An internal error has occurred.

errorDcbNotFound An internal error has occurred.

errorStateMachinesNotStarted The state machines are not started.

errorStateMachinesAlreadyStarted The state machines are already started.

errorPartialResponseLooping The response looping did not complete.

errorUnknownResponseKey A response keyname in the configuration file is not
in the expected format.

errorRecvBufFull The modem or other connecting device response
caused a buffer overflow.

errorCmdTooLong The expanded command in the configuration file is
too long.

errorUnsupportedBps The modem moved to a connection speed not
supported by the COM driver.

errorUnexpectedResponse Device response received when none expected.

errorInteractiveMode The connection needs information from you, but
the application does not allow user interaction.

errorBadCallbackNumber The callback number is invalid.

errorInvalidAuthState The authorization state is invalid.

errorWritingInitBps An internal error has occurred.

errorX25Diagnostic There was an error related to the X.25 protocol.

errorAcctExpired The account has expired.

errorChangingPassword There was an error changing the password on the
domain.

errorOverrun Serial overrun errors were detected while
communicating with the modem.

errorRasmanCannotInitialize A configuration error on this computer is
preventing this connection.

errorBiplexPortNotAvailable The two-way port is initializing, wait a few seconds
and redial.

errorNoActiveIsdnLines No active ISDN lines are available.

errorNoIsdnChannelsAvailable No ISDN channels are available to make the call.

errorTooManyLineErrors Too many errors occurred because of poor phone
line quality.

errorIpConfiguration The Remote Access Service IP configuration is
unusable.

errorNoIpAddresses No IP addresses are available in the static pool of
Remote Access Service IP addresses.

errorPppTimeout The connection was terminated because the
remote computer did not respond in a timely
manner.

errorPppRemoteTerminated The connection was terminated by the remote
computer.

errorPppNoProtocolsConfigured A connection to the remote computer could not
be established.

errorPppNoResponse The remote computer did not respond.

errorPppInvalidPacket Invalid data was received from the remote
computer.

errorPhoneNumberTooLong The phone number, including prefix and suffix, is
too long.

errorIpxcpNoDialoutConfigured The IPX protocol cannot dial out on the modem
because this computer is not configured for dialing
out.

errorIpxcpNoDialinConfigured The IPX protocol cannot dial in on the modem
because this computer is not configured for dialing
in.

errorIpxcpDialoutAlreadyActive The IPX protocol cannot be used for dialing out on
more than one modem.

errorAccessingTcpcfgDll Cannot access TCPCFG.DLL.

errorNoIpRasAdapter The system cannot find an IP adapter.

errorSlipRequiresIp SLIP cannot be used unless the IP protocol is
installed.

errorProjectionNotComplete Computer registration is not complete.

errorProtocolNotConfigured The protocol is not configured.

errorPppNotConverging Your computer and the remote computer could
not agree on PPP control protocols.

errorPppCpRejected A connection to the remote computer could not
be completed.

errorPppLcpTerminated The PPP link control protocol was terminated.

errorPppRequiredAddressRejected The requested address was rejected by the server.

errorPppNcpTerminated The remote computer terminated the control
protocol.

errorPppLoopbackDetected Loopback was detected.

errorPppNoAddressAssigned The server did not assign an address.

errorCannotUseLogonCredentials The authentication protocol required by the
remote server cannot use the stored password.

errorTapiConfiguration An invalid dialing rule was detected.

errorNoLocalEncryption The local computer does not support the required
data encryption type.

errorNoRemoteEncryption The remote computer does not support the
required data encryption type.

errorRemoteRequiresEncryption The remote computer requires data encryption.

errorIpxcpNetNumberConflict The system cannot use the IPX network number
assigned by the remote computer.

errorInvalidSMM An internal error has occurred.

errorSMMUninitialized An internal error has occurred.

errorNoMacForPort An internal error has occurred.

errorSmmTimeout An internal error has occurred.

errorBadPhoneNumber An invalid telephone number has been specified.

errorWrongModule An internal error has occurred.

errorInvalidCallbackNumber The callback number contains an invalid character.

errorScriptSyntax A syntax error was encountered while processing a
script.

errorHangupFailed The connection could not be disconnected
because it was created by the multi-protocol
router.

errorBundleNotFound The system could not find the multi-link bundle.

errorCannotDoCustomdial The system cannot perform automated dial
because this connection has a custom dialer
specified.

errorDialAlreadyInProgress This connection is already being dialed.

errorRasautoCannotInitialize Remote Access Services could not be started
automatically.

errorConnectionAlreadyShared Internet Connection Sharing is already enabled on
the connection.

errorSharingChangeFailed An error occurred while the existing Internet
Connection Sharing settings were being changed.

errorSharingRouterInstall An error occurred while routing capabilities were
being enabled.

errorShareConnectionFailed An error occurred while Internet Connection
Sharing was being enabled for the connection.

errorSharingPrivateInstall An error occurred while the local network was
being configured for sharing.

errorCannotShareConnection Internet Connection Sharing cannot be enabled.

errorNoSmartCardReader No smart card reader is installed.

errorSharingAddressExists Internet Connection Sharing cannot be enabled.

errorNoCertificate A certificate could not be found.

errorSharingMultipleAddresses Internet Connection Sharing cannot be enabled.

errorFailedToEncrypt The connection attempt failed because of failure
to encrypt data.

errorBadAddressSpecified The specified destination is not reachable.

errorConnectionReject The remote computer rejected the connection

attempt.

errorCongestion The connection attempt failed because the
network is busy.

errorIncompatible The remote computer's network hardware is
incompatible with the type of call requested.

errorNumberchanged The connection attempt failed because the
destination number has changed.

errorTempfailure The connection attempt failed because of a
temporary failure.

errorBlocked The call was blocked by the remote computer.

errorDonotdisturb The call could not be connected because the
remote computer has invoked the Do Not Disturb
feature.

errorOutoforder The connection attempt failed because the
modem on the remote computer is out of order.

errorUnableToAuthenticateServer It was not possible to verify the identity of the
server.

errorSmartCardRequired To dial out using this connection you must use a
smart card.

errorInvalidFunctionForEntry An attempted function is not valid for this
connection.

errorCertForEncryptionNotFound The connection requires a certificate, and no valid
certificate was found.

errorSharingRrasConflict Network Address Translation must be removed
before enabling Internet Connection Sharing.

errorSharingNoPrivateLan Internet Connection Sharing cannot be enabled.

errorNoDiffUserAtLogon You cannot dial using this connection at logon
time.

errorNoRegCertAtLogon You cannot dial using this connection at logon
time.

errorOakleyNoCert The L2TP connection attempt failed because there
is no valid machine certificate on your computer
for security authentication.

errorOakleyAuthFail The L2TP connection attempt failed because the
security layer could not authenticate the remote
computer.

errorOakleyAttribFail The L2TP connection attempt failed because the
security layer could not negotiate compatible
parameters with the remote computer.

errorOakleyGeneralProcessing The L2TP connection attempt failed because the
security layer encountered a processing error
during initial negotiations with the remote
computer.

errorOakleyNoPeerCert The L2TP connection attempt failed because
certificate validation on the remote computer
failed.

errorOakleyNoPolicy The L2TP connection attempt failed because
security policy for the connection was not found.

errorOakleyTimedOut The L2TP connection attempt failed because
security negotiation timed out.

errorOakleyError The L2TP connection attempt failed because an
error occurred while negotiating security.

errorUnknownFramedProtocol The Framed Protocol RADIUS attribute for this user
is not PPP.

errorWrongTunnelType The Tunnel Type RADIUS attribute for this user is
not correct.

errorUnknownServiceType The Service Type RADIUS attribute for this user is
neither Framed nor Callback Framed.

errorConnectingDeviceNotFound A connection to the remote computer could not
be established because the modem was not found
or was busy.

errorNoEaptlsCertificate A certificate could not be found that can be used
with this Extensible Authentication Protocol.

errorSharingHostAddressConflict Internet Connection Sharing cannot be enabled.

errorAutomaticVpnFailed Unable to establish the VPN connection.

errorValidatingServerCert Unable to verify the digital certificate sent by the
server.

errorReadSCard The card supplied was not recognized, please
check that the card is inserted correctly, and fits
tightly

errorInvalidPEAPCookieConfig The PEAP configuration stored in the session
cookie does not match the current session
configuration

errorInvalidPEAPCookieUser The PEAP identity stored in the session cookie
does not match the current identity

errorInvalidMSCHAPV2Config You cannot dial using this connection at logon
time, because it is configured to use logged on
user's credentials

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorOperationNotSupported The specified operation is not supported.

Requirements

Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the framing protocols supported by the InternetDialer class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetDialer.RasFramingProtocol

[C#]
[Flags]
public enum InternetDialer.RasFramingProtocol

Members

Member Name Description Value

framingProtocolPPP Point-to-Point Protocol (PPP). This is the
most common protocol used by
Internet Service Providers (ISPs).

1

framingProtocolSLIP Serial Line Internet Protocol (SLIP). This
is a protocol commonly used when
connecting to older UNIX systems.

2

framingProtocolRAS A proprietary Microsoft protocol
implemented in Windows for
Workgroups 3.11 and Windows NT.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RasFramingProtocol Enumeration

Specifies the networking protocols supported by the InternetDialer class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetDialer.RasNetworkProtocol

[C#]
[Flags]
public enum InternetDialer.RasNetworkProtocol

Remarks
These values may be combined if multiple protocols should be negotiated when the connection is
established. Note that unless there is a specific need for the application to use the NetBEUI or IPX
protocols, it is recommended that only the TCP/IP protocol be specified.

Members

Member Name Description Value

networkProtocolNetBEUI Negotiate the NetBEUI protocol. 1

networkProtocolIPX Negotiate the IPX protocol. 2

networkProtocolIP Negotiate the TCP/IP protocol. 4

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RasNetworkProtocol Enumeration

Specifies the interactive terminal modes supported by the InternetDialer class.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetDialer.RasTerminalMode

[C#]
[Flags]
public enum InternetDialer.RasTerminalMode

Remarks
These values may be combined if multiple terminal modes should be used when the connection is
established. If scripting has been enabled by setting the ScriptFile property, no terminal window should
be displayed after the connection. This is because scripting has it's own terminal implementation.

Members

Member Name Description Value

terminalNone No terminal window is displayed 0

terminalBeforeDial Terminal window is displayed before
dialing.

1

terminalAfterDial Terminal window is displayed after
dialing. Do not use if scripting has been
enabled.

2

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetDialer (in SocketTools.InternetDialer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetDialer.RasTerminalMode Enumeration

A general purpose class for developing Internet server applications.

For a list of all members of this type, see InternetServer Members.

System.Object
 SocketTools.InternetServer

[Visual Basic]
Public Class InternetServer
 Implements IDisposable

[C#]
public class InternetServer : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
The InternetServer class provides a simplified interface for creating event-driven, multithreaded server
applications using the TCP/IP protocol. The class interface is similar to the SocketWrench class, however
it is designed specifically to make it easier to implement a server application without requiring the need to
manage multiple socket classes. In addition, the InternetServer class supports secure communications
using the Transport Layer Security (TLS) protocol.

Each instance of the class represents a server, and each active client connection is managed internally and
referenced by an integer value which uniquely identifies the client session. All interaction with the server
and the clients connected to it uses an event-driven model, with the server application written to respond
to events such as OnConnect, OnRead and OnWrite.

Developers who have used the SocketWrench class will find the InternetServer class has a familiar
interface, with a subset of properties and methods that are specific to creating a server application. Each
of the network events have an extra parameter which specifies the socket handle which should be used
when communicating with the client. This enables the application to communicate with multiple clients
without having to create multiple socket classes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer Class

InternetServer overview

Public Instance Constructors

 InternetServer Constructor Initializes a new instance of the InternetServer
class.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

ClientHandle Return the socket handle associated with a specific
client session.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

Backlog Gets and sets the number of client connections
that may be queued by the server.

CertificateName Gets and sets a value that specifies the name of
the server certificate.

CertificatePassword Gets and sets the password associated with the
server certificate.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateUser Gets and sets the user that owns the server
certificate.

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientCount Gets the number of active client sessions
connected to the server.

ClientHost Gets a value that specifies the hostname for the
current client session.

ClientId Gets the unique client identifier for the current
client session.

ClientName Gets and sets a unique string moniker that is
associated with the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

ClientThread Gets the thread ID for the current client session.

CodePage Gets and sets the code page used when reading
and writing text.

ExternalAddress Gets a value that specifies the external Internet

InternetServer Members

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.CertificateUser.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.CodePage.html

address for the local system.

IdleTime Gets a value which specifies the amount of time a
socket has been idle

IsActive Gets a value which indicates if the server is active.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking socket operation.

IsClosed Gets a value which indicates if the connection to
the client has been closed.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the server is
listening for client connections.

IsLocked Gets a value which indicates if the server has been
locked.

IsReadable Gets a value which indicates if there is data
available to be read from the current client.

IsWritable Gets a value which indicates if data can be written
to the current client without blocking.

KeepAlive Gets and sets a value which indicates if keep-alive
packets are sent on a connected socket.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

MaxClients Gets and sets the maximum number of clients that
can connect to the server.

NoDelay Gets and sets a value which specifies if the Nagle
algorithm should be enabled or disabled.

Options Gets and sets a value which specifies one or more
server options.

Priority Gets and sets a value which specifies the server
priority.

ReuseAddress Gets and sets a value which indicates if the server
address can be reused.

Secure Gets and sets a value which specifies if client
connections are secure.

SecureProtocol Gets and sets a value which specifies the protocol
used for secure client connections.

ServerAddress Gets and sets the address that will be used by the
server to listen for connections.

ServerHandle Gets the handle to the socket created to listen for
client connections.

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.IdleTime.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.IsActive.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.ServerHandle.html

ServerName Gets a value which specifies the host name for the
local system.

ServerPort Gets and sets the port number that will be used by
the server to listen for connections.

ServerThread Gets the thread ID for the current server.

StackSize Gets and sets the size of the stack allocated for
threads created by the server.

Status Gets a value which specifies the current status of
the server.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Version Gets a value which returns the current version of
the InternetServer class library.

Public Instance Methods

Abort Overloaded. Abort the connection with a remote
host.

Broadcast Overloaded. Broadcast data to all active clients
connected to the server

Cancel Overloaded. Cancel the current blocking socket
operation.

Disconnect Overloaded. Disconnect the specified client
connection from the server.

Dispose Overloaded. Releases all resources used by
InternetServer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FindClient Overloaded. Return the socket handle for the
client session with the specified moniker.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.StackSize.html

InternetServer class.

Lock Lock the server to synchronize access to shared
data for all active client sessions.

Peek Overloaded. Read data from the client and store it
in a byte array, but do not remove the data from
the socket buffers.

Read Overloaded. Read data from the client socket and
store it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
client and return it in a string buffer.

Reject Overloaded. Rejects a connection request from a
client.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Resolve Resolves a host name to a host IP address.

Restart Restarts the server and terminates all active client
connections.

Resume Resume accepting new client connections.

Start Overloaded. Start listening for client connections
on the specified IP address and port number.

Stop Stop listening for new client connections and
terminate all active clients already connected to
the server.

Suspend Overloaded. Suspend accepting new client
connections with additional options.

Throttle Overloaded. Limit the maximum number of client
connections, connections per IP address and
connection rate.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the server.

Unlock Unlock the server and allow other server threads
to resume execution.

Write Overloaded. Write one or more bytes of data to a
client.

WriteLine Overloaded. Send a line of text to a client,
terminated by a carriage-return and linefeed.

Public Instance Events

OnAccept Occurs when a client attempts to establish a
connection with the server.

OnCancel Occurs when a blocking socket operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnIdle Occurs when the there are no clients connected to
the server.

OnRead Occurs when data is available to be read from the
client.

OnStart Occurs when the server starts accepting
connections.

OnStop Occurs when the server stops accepting
connections.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetServer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.OnIdle.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.OnStart.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.OnStop.html

Initializes a new instance of the InternetServer class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer();

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)

If Server.Start(strLocalAddress, nLocalPort) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer Constructor

The fields of the InternetServer class are listed below. For a complete list of InternetServer class
members, see the InternetServer Members topic.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

ClientHandle Return the socket handle associated with a specific
client session.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer Fields

Returns the IP address associated with the specified network adapter.

[Visual Basic]
Public ReadOnly AdapterAddress As AdapterAddressArray

[C#]
public readonly AdapterAddressArray AdapterAddress;

Remarks
The AdapterAddress array returns the IP addresses that are associated with the local network or remote
dial-up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and dial-up
adapters will not be listed in a specific order. An application should not make the assumption that the first
address returned by AdapterAddress always refers to a local network adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
InternetServer Class | SocketTools Namespace | AdapterAddressArray Class | AdapterCount Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AdapterAddress Field

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.AdapterAddressArray.html

Return the socket handle associated with a specific client session.

[Visual Basic]
Public ReadOnly ClientHandle As ClientHandleArray

[C#]
public readonly ClientHandleArray ClientHandle;

Remarks
The ClientHandle array is a read-only, zero-based property array that returns the socket handle allocated
for the client session specified by the Index parameter. An exception will be thrown if the index value
exceeds the maximum number of active client sessions. To determine the number of clients that are
currently connected to the server, use the ClientCount property.

You should always check the value of the ClientCount property prior to enumerating through the client
connections using the ClientHandle array. Never assume that a particular client session will always be
found in the same position in the array. The socket handles returned by the array can be used in
conjunction with the Read and Write methods to exchange data with a particular client session outside of
an event handler.

The index into this array may also be a string which specifies the name of a client session, as set by the
ClientName property. This can be a convenient way to obtain the socket handle for a specific client by
name, rather than a numeric index.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientHandle Field

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.ClientHandleArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.ClientHandleArray.html

The properties of the InternetServer class are listed below. For a complete list of InternetServer class
members, see the InternetServer Members topic.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

Backlog Gets and sets the number of client connections
that may be queued by the server.

CertificateName Gets and sets a value that specifies the name of
the server certificate.

CertificatePassword Gets and sets the password associated with the
server certificate.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateUser Gets and sets the user that owns the server
certificate.

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientCount Gets the number of active client sessions
connected to the server.

ClientHost Gets a value that specifies the hostname for the
current client session.

ClientId Gets the unique client identifier for the current
client session.

ClientName Gets and sets a unique string moniker that is
associated with the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

ClientThread Gets the thread ID for the current client session.

CodePage Gets and sets the code page used when reading
and writing text.

ExternalAddress Gets a value that specifies the external Internet
address for the local system.

IdleTime Gets a value which specifies the amount of time a
socket has been idle

IsActive Gets a value which indicates if the server is active.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking socket operation.

IsClosed Gets a value which indicates if the connection to
the client has been closed.

InternetServer Properties

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.CertificateUser.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.CodePage.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.IdleTime.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.IsActive.html

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the server is
listening for client connections.

IsLocked Gets a value which indicates if the server has been
locked.

IsReadable Gets a value which indicates if there is data
available to be read from the current client.

IsWritable Gets a value which indicates if data can be written
to the current client without blocking.

KeepAlive Gets and sets a value which indicates if keep-alive
packets are sent on a connected socket.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

MaxClients Gets and sets the maximum number of clients that
can connect to the server.

NoDelay Gets and sets a value which specifies if the Nagle
algorithm should be enabled or disabled.

Options Gets and sets a value which specifies one or more
server options.

Priority Gets and sets a value which specifies the server
priority.

ReuseAddress Gets and sets a value which indicates if the server
address can be reused.

Secure Gets and sets a value which specifies if client
connections are secure.

SecureProtocol Gets and sets a value which specifies the protocol
used for secure client connections.

ServerAddress Gets and sets the address that will be used by the
server to listen for connections.

ServerHandle Gets the handle to the socket created to listen for
client connections.

ServerName Gets a value which specifies the host name for the
local system.

ServerPort Gets and sets the port number that will be used by
the server to listen for connections.

ServerThread Gets the thread ID for the current server.

StackSize Gets and sets the size of the stack allocated for
threads created by the server.

Status Gets a value which specifies the current status of

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.ServerHandle.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.StackSize.html

the server.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Version Gets a value which returns the current version of
the InternetServer class library.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the number of available local and remote network adapters.

[Visual Basic]
Public ReadOnly Property AdapterCount As Integer

[C#]
public int AdapterCount {get;}

Property Value
Returns the number of available local and remote network adapters.

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress array to
enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
InternetServer Class | SocketTools Namespace | AdapterAddress Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AdapterCount Property

Gets and sets the number of client connections that may be queued by the server.

[Visual Basic]
Public Property Backlog As Integer

[C#]
public int Backlog {get; set;}

Property Value
Returns an integer value that specifies the size of the backlog queue. The default value is 5.

Remarks
The Backlog property specifies the maximum size of the queue used to manage pending connections to
the service. If the property is set to value which exceeds the maximum size for the underlying service
provider, it will be silently adjusted to the nearest legal value. There is no standard way to determine what
the maximum backlog value is.

This property should be set to the desired value before the Start method is called. The default backlog
value is 5 on all Windows platforms. The Windows Server platforms support a maximum backlog value of
200.

Note that this property does not specify the total number of connections that the server application may
accept. It only specifies the size of the backlog queue which is used to manage pending client
connections. Once the client connection has been accepted, it is removed from the queue. Set the
MaxClients property to specify the maximum number of clients that may connect with the server.

See Also
InternetServer Class | SocketTools Namespace | IsListening Property | MaxClients Property | Start Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Backlog Property

Gets and sets a value that specifies the name of the server certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the server certificate name.

Remarks
The CertificateName property sets the common name or friendly name of the certificate that should be
used when starting a secure server. If the Secure property is set to True, this property must be specify a
valid certificate name. The certificate must have a private key associated with it, otherwise client
connections will fail because the class will be unable to create a security context for the session.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
InternetServer Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CertificateName Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when security is enabled for the server. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the server certificate will be installed in the user's personal certificate store, and therefore it
is not necessary to set this property value because that is the default location that will be used to search
for the certificate. This property is only used if the CertificateName property is also set to a valid
certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the server certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private key in

InternetServer.CertificateStore Property

PKCS #12 format. If the file is protected by a password, the CertificatePassword property must also be
set to specify the password.

This property may also be used to specify a file that contains the server certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private key in
PKCS #12 format. If the file is protected by a password, the CertificatePassword property must also be
set to specify the password.

See Also
InternetServer Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.CertificatePassword.html

Gets a value that specifies the Internet address of the current client session.

[Visual Basic]
Public ReadOnly Property ClientAddress As String

[C#]
public string ClientAddress {get;}

Property Value
A string which specifies an Internet address in dotted notation.

Remarks
The ClientAddress property returns the address of the current client session which has connected to the
server. This property only returns a meaningful value inside an event handler such as OnAccept or
OnConnect.

If this property is accessed inside an OnAccept event handler, it will return the address of the client that is
requesting the connection. The server application may use this information to determine if it wishes to
accept or reject the client connection.

See Also
InternetServer Class | SocketTools Namespace | ClientHost Property | ClientPort Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientAddress Property

Gets the number of active client sessions connected to the server.

[Visual Basic]
Public ReadOnly Property ClientCount As Integer

[C#]
public int ClientCount {get;}

Property Value
An integer value which specifies the number of active client sessions.

Remarks
The ClientCount read-only property returns the number of active client sessions that have been
established with the server. This property is typically used in conjunction with the ClientHandle array to
enumerate the handles for all client sessions.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientCount Property

Gets a value that specifies the hostname for the current client session.

[Visual Basic]
Public ReadOnly Property ClientHost As String

[C#]
public string ClientHost {get;}

Property Value
A string which specifies the peer host name.

Remarks
The ClientHost property returns the hostname of the current client session which has established a
connection with the server. This property value is only meaningful when accessed within an event handler,
such as the OnConnect event.

Accessing this property causes the class to perform a blocking reverse DNS lookup, attempting to match
the client Internet address with a hostname. Not all addresses have a reverse DNS record, in which case
this property will return an empty string. It is recommended that most applications use the value of the
ClientAddress property rather than use the ClientHost property to distinguish between client
connections.

See Also
InternetServer Class | SocketTools Namespace | ClientAddress Property | ClientPort Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientHost Property

Gets the unique client identifier for the current client session.

[Visual Basic]
Public ReadOnly Property ClientId As Integer

[C#]
public int ClientId {get;}

Property Value
An integer value which uniquely identifies the client session.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This value can be
used by the application to identify that client session, and is different than the socket handle allocated for
the client. While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

It is important to note that the actual value of the client ID should be considered opaque. It is only
guaranteed that the value will be greater than zero, and that it will be unique to the client session.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientId Property

Gets and sets a unique string moniker that is associated with the current client session.

[Visual Basic]
Public Property ClientName As String

[C#]
public string ClientName {get; set;}

Property Value
A string moniker which uniquely identifies the client session. If no moniker has been specified for the client
session, this property will return an empty string.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside from its
socket handle. A moniker can be assigned to the client session by setting the ClientName property from
within a class event handler such as the OnConnect event.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular server
can have the same moniker. The maximum length for a moniker is 127 characters.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

Example
The following example sets the moniker for the client session in the OnConnect event handler.

private void Server1_OnConnect(object sender,
SocketTools.InternetServer.ConnectEventArgs e)
{
 Server1.ClientName = "Client" + Server1.ClientId.ToString();
}

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientName Property

Gets a value that specifies the port number used by the current client session.

[Visual Basic]
Public ReadOnly Property ClientPort As Integer

[C#]
public int ClientPort {get;}

Property Value
An integer value which specifies the peer port number.

Remarks
The ClientPort property returns the port number that the current client has used when establishing a
connection with the server. This property value is only meaningful when accessed within an event handler
such as the OnConnect event.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientPort Property

Gets the thread ID for the current client session.

[Visual Basic]
Public ReadOnly Property ClientThread As Integer

[C#]
public int ClientThread {get;}

Property Value
An integer value which identifies the client thread that was created to manage the client session.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ClientThread Property

Gets a value that specifies the external Internet address for the local system.

[Visual Basic]
Public ReadOnly Property ExternalAddress As String

[C#]
public string ExternalAddress {get;}

Property Value
A string which specifies an Internet address using dotted notation.

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the local host
to the Internet. This is typically used by an application executing on a system in a local network that uses a
router which performs Network Address Translation (NAT). The ExternalAddress property can be used to
determine the IP address assigned to the router on the Internet side of the connection and can be
particularly useful for servers running on a system behind a NAT router.

Using this property requires that you have an active connection to the Internet; checking the value of this
property on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. The class may be unable to determine the external IP address for
the local host for a number of reasons, particularly if the system is behind a firewall or uses a proxy server
that restricts access to external sites on the Internet. If the external address for the local host cannot be
determined, the property will return an empty string.

If the class is able to obtain a valid external address for the local host, that address will be cached for sixty
minutes. Because dial-up connections typically have different IP addresses assigned to them each time the
system is connected to the Internet, it is recommended that this property only be used in conjunction with
broadband connections using a NAT router.

It is important to note that checking this property value may cause the current thread to block until the
external IP address can be resolved.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ExternalAddress Property

Gets a value which indicates if the current thread is performing a blocking socket operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next socket operation will not fail. An application
should always check the return value from a socket operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsBlocked Property

Gets a value which indicates if the connection to the client has been closed.

[Visual Basic]
Public ReadOnly Property IsClosed As Boolean

[C#]
public bool IsClosed {get;}

Property Value
Returns true if the connection has been closed; otherwise returns false.

Remarks
This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsClosed Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsInitialized Property

Gets a value which indicates if the server is listening for client connections.

[Visual Basic]
Public ReadOnly Property IsListening As Boolean

[C#]
public bool IsListening {get;}

Property Value
Returns true if the server is listening for client connections; otherwise returns false.

Remarks
The IsListening property will return true if the Start method was called and the server is currently
accepting incoming client connections. In all other situations, this property will return false.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsListening Property

Gets a value which indicates if the server has been locked.

[Visual Basic]
Public ReadOnly Property IsLocked As Boolean

[C#]
public bool IsLocked {get;}

Property Value
Returns true if the server has been locked; otherwise returns false.

Remarks
The IsLocked property returns true if the server has been locked using the Lock method. When a server
is locked, all background threads created by the server will block, waiting for the lock to be released. If this
property returns a value of true, no client connections can be accepted by the server, and no network
events will be generated.

The Lock method creates a critical section which prevents other threads from performing any network
operation. This is useful when the program needs to update global data and wants to ensure that no
network operations occur while the data is being modified. However, applications must take care to
release the lock as quickly as possible. If a function locks the server, it must make sure that it releases the
lock before exiting that function. Leaving the server locked across function calls or event handlers can
result in the server becoming non-responsive.

See Also
InternetServer Class | SocketTools Namespace | Lock Method | Unlock Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsLocked Property

Gets a value which indicates if there is data available to be read from the current client.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the current client session without causing
the current thread to block. Note that even if this property does return true indicating that there is data
available to be read, applications should always check the return value from the Read method.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsReadable Property

Gets a value which indicates if data can be written to the current client without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the client; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the client without causing the current
thread to block. Note that even if this property does return true indicating that data can be written to the
client, applications should always check the return value from the Write method.

This property only returns a meaningful value when accessed from within a class event handler, or a
method that has been invoked from within an event handler.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.IsWritable Property

Gets and sets a value which indicates if keep-alive packets are sent on a connected socket.

[Visual Basic]
Public Property KeepAlive As Boolean

[C#]
public bool KeepAlive {get; set;}

Property Value
Returns true if keep-alive packets are enabled, otherwise returns false. The default value is false.

Remarks
Setting the KeepAlive property to a value of true specifies that special packets are to be sent to the
remote system when no data is being exchanged to ensure the connection remains active. This property
can only be set for sockets that were created with the Protocol property set to a value of
SocketProtocol.protocolStream.

It is important to note that the system will not start generating keep-alive packets until two hours after it
has been enabled, so this option is only relevant for connections that will be maintained for long periods
of time. The actual interval for the keep-alive period can only be changed in the system registry and
affects all sockets, system-wide. For more information, refer to Microsoft Knowledge Base article 314053.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.KeepAlive Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public InternetServer.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.LastErrorString Property

Gets and sets the maximum number of clients that can connect to the server.

[Visual Basic]
Public Property MaxClients As Integer

[C#]
public int MaxClients {get; set;}

Property Value
An integer value which specifies the maximum number of client sessions that will be accepted by the
server. A value of zero specifies that there is no fixed limit to the maximum number of clients.

Remarks
The MaxClients property specifies the maximum number of client connections that will be accepted by
the server. Once the maximum number of connections has been established, the server will reject any
subsequent connections until the number of active client connections drops below the specified value. A
value of zero specifies that there should be no limit on the number of clients.

Changing the value of this property while a server is actively listening for connections will modify the
maximum number of client connections permitted, but it will not affect connections that have already
been established.

By default, there are no limits on the number of client connections or the connection rate when a server is
started. Use the Throttle method to change the maximum number of client connections per IP address or
the overall connection rate threshold for the server.

It is important to note that regardless of the maximum number of clients specified by this property, the
actual number of client connections that can be managed by the server depends on the number of
sockets that can be allocated from the operating system. The amount of physical memory installed on the
system affects the number of connections that can be maintained because each connection allocates
memory for the socket context from the non-paged memory pool.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.MaxClients Property

Gets and sets a value which specifies if the Nagle algorithm should be enabled or disabled.

[Visual Basic]
Public Property NoDelay As Boolean

[C#]
public bool NoDelay {get; set;}

Property Value
Returns true if the Nagle algorithm has been disabled; otherwise it returns false. The default value is
false.

Remarks
The NoDelay property is used to enable or disable the Nagle algorithm, which buffers unacknowledged
data and insures that a full-size packet can be sent to the remote host. By default this property value is set
to false, which enables the Nagle algorithm (in other words, the data being written may not actually be
sent until it is optimal to do so). Setting this property to true disables the Nagle algorithm, maintaining the
time delays between the data packets being sent.

This property should be set to true only if it is absolutely required and the implications of doing so are
understood. Disabling the Nagle algorithm can have a significant negative impact on the performance of
your server.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.NoDelay Property

Gets and sets a value which specifies one or more server options.

[Visual Basic]
Public Property Options As ServerOptions

[C#]
public InternetServer.ServerOptions Options {get; set;}

Property Value
Returns one or more ServerOptions enumeration flags which specify the options for the server. The
default value for this property is serverOptionNone.

Remarks
The Options property specifies one or more default options which are used when starting the server
using the Start method.

See Also
InternetServer Class | SocketTools Namespace | Start Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Options Property

Gets and sets a value which specifies the server priority.

[Visual Basic]
Public Property Priority As ServerPriority

[C#]
public InternetServer.ServerPriority Priority {get; set;}

Property Value
Returns a ServerPriority enumeration value which specifies the current server priority. The default value for
this property is priorityNormal.

Remarks
The Priority property can be used to control the processor usage, memory and network bandwidth
allocated by the server for client sessions. The default priority balances resource utilization and client
throughput while ensuring that the user interface remains responsive to the user. Lower priorities reduce
the overall resource utilization at the expense of throughput.

Higher priority values increases the thread priority and processor utilization for the client sessions. It is not
recommended that you increase the server priority unless you understand the implications of doing so
and have thoroughly tested your application. Raising the priority of the server can have a negative impact
on the responsiveness of the user interface.

See Also
InternetServer Class | SocketTools Namespace | ServerPriority Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Priority Property

Gets and sets a value which indicates if the server address can be reused.

[Visual Basic]
Public Property ReuseAddress As Boolean

[C#]
public bool ReuseAddress {get; set;}

Property Value
Returns true if an address can be reused; otherwise returns false. The default value is true.

Remarks
The ReuseAddress property is used to determine if the local address and port number can be reused
when starting a new instance of the server. Setting this property to true enables a server application to
listen for connections using the specified address and port number even if they were in use recently. This
is typically used to enable the server to close the listening socket and immediately reopen it without
getting an error that the address is in use.

When a listening socket closed, the socket will normally go into a TIME-WAIT state where the local
address and port number cannot be immediately reused. A consequence of this is that calling the Stop
method immediately followed by the Start method using the same address and port number values may
result in an error indicating that the specified address is already in use. By setting this property to true,
that error is avoided and the listening socket can be created immediately without waiting for the TIME-
WAIT period to elapse. Note that calling the Restart method allows the local address and port number to
be reused, regardless of this property value.

If you wish to determine if a local port number is already in use by another application, set this property to
false and attempt to start the server using that port number. If another application is already using that
port number, an error will be generated indicating that the address is in use and the server could not be
started.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReuseAddress Property

Gets and sets a value which specifies if client connections are secure.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connections are enabled; otherwise returns false. The default value is false.

Remarks
The Secure property determines if client connections are encrypted using the standard SSL or TLS security
protocols. The default value for this property is false, which specifies that clients will use a standard,
unencrypted connection to the server. To enable secure connections, the application should set this
property value to true prior to calling the Start method.

When secure connections are enabled, the server will accept the client connection and then wait for the
client to initiate the handshake where both the client and server negotiate the various encryption options
available. This process is handled automatically by the server, and all that is required is that the application
specify the server certificate which should be used. This is done by setting the CertificateName property,
and optionally the CertificateStore property if required.

It is recommended that the application use exception handling to catch any errors that may occur when
changing the value of this property. If the class is unable to initialize the Windows security libraries, an
exception will be thrown when this property value is modified.

See Also
InternetServer Class | SocketTools Namespace | CertificateName Property | CertificateStore Property |
SecureProtocol Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Secure Property

Gets and sets a value which specifies the protocol used for secure client connections.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public InternetServer.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when accepting a secure
client connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when accepting a
secure connection. By default, the class will attempt to use either SSL v3 or TLS v1 to accept the
connection, with the appropriate protocol automatically selected based on the capabilities of the client. It
is recommended that you only change this property value if you fully understand the implications of doing
so. Assigning a value to this property will override the default protocol and force the class to attempt to
use only the protocol specified.

Attempting to set this property after the server has been started will result in an exception being thrown.
This property should only be set after setting the Secure property to true and before calling the Start
method.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.SecureProtocol Property

Gets and sets the address that will be used by the server to listen for connections.

[Visual Basic]
Public Property ServerAddress As String

[C#]
public string ServerAddress {get; set;}

Property Value
A string which specifies the IP address that the server will use to listen for incoming client connections. An
empty string indicates that the server will accept connections on any valid network interface configured for
the local system.

Remarks
The ServerAddress property is used to specify the default address that the server will use when listening
for connections. Setting this property to the value 0.0.0.0 or an empty string indicates that the server
should listen for client connections using any valid network interface. If an address is specified, it must be a
valid Internet address that is bound to a network adapter configured on the local system. Clients will only
be able to connect to the server using that specific address.

It is common to set this property to the value 127.0.0.1 for testing purposes. It is a non-routable address
that specifies the local system, and most software firewalls are configured so they do not block
applications using this address.

See Also
InternetServer Class | SocketTools Namespace | ServerName Property | ServerPort Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property ServerName As String

[C#]
public string ServerName {get;}

Property Value
A string which specifies the local host name.

Remarks
The ServerName property returns the fully-qualified host name assigned to the local system. This consists
of the local computer name and its domain name. The actual value returned depends on the system
configuration. If no domain has been specified for the system, then only the machine name will be
returned.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerName Property

Gets and sets the port number that will be used by the server to listen for connections.

[Visual Basic]
Public Property ServerPort As Integer

[C#]
public int ServerPort {get; set;}

Property Value
An integer value which specifies the port number.

Remarks
The ServerPort property is used to set the port number that server will use to listen for incoming client
connections. Valid port numbers are in the range of 1 to 65535. It is recommended that most custom
servers specify a port number larger than 5000 to avoid potential conflicts with standard Internet services
and ephemeral ports used by client applications.

If a port number is specified that is already in use by another application, the OnError event will fire and
the background server thread will terminate. To enable a server to be stopped and immediately restarted
using the same address and port number, make sure that the ReuseAddress property is set to a value of
true.

See Also
InternetServer Class | SocketTools Namespace | ServerAddress Property | ServerName Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerPort Property

Gets the thread ID for the current server.

[Visual Basic]
Public ReadOnly Property ServerThread As Integer

[C#]
public int ServerThread {get;}

Property Value
An integer value which identifies the server thread that was created. A return value of zero specifies that
no server has been started.

Remarks
Until the thread terminates, the thread identifier uniquely identifies the thread throughout the system.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerThread Property

Gets a value which specifies the current status of the server.

[Visual Basic]
Public ReadOnly Property Status As ServerStatus

[C#]
public InternetServer.ServerStatus Status {get;}

Property Value
A ServerStatus enumeration value which specifies the current server status.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Status Property

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a socket operation fails and returns an
error.

For most server applications it is recommended the timeout period be set between 10 and 20 seconds. It
is not recommended that you set the timeout period to zero.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Trace Property

Gets and sets a value which specifies the name of the network function tracing logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
control is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TraceFile Property

Gets and sets a value which specifies the network function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public InternetServer.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TraceFlags Property

Gets a value which returns the current version of the InternetServer class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the InternetServer
class library. This value can be used by an application for validation and debugging purposes.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Version Property

The methods of the InternetServer class are listed below. For a complete list of InternetServer class
members, see the InternetServer Members topic.

Public Instance Methods

Abort Overloaded. Abort the connection with a remote
host.

Broadcast Overloaded. Broadcast data to all active clients
connected to the server

Cancel Overloaded. Cancel the current blocking socket
operation.

Disconnect Overloaded. Disconnect the specified client
connection from the server.

Dispose Overloaded. Releases all resources used by
InternetServer.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

FindClient Overloaded. Return the socket handle for the
client session with the specified moniker.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
InternetServer class.

Lock Lock the server to synchronize access to shared
data for all active client sessions.

Peek Overloaded. Read data from the client and store it
in a byte array, but do not remove the data from
the socket buffers.

Read Overloaded. Read data from the client socket and
store it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
client and return it in a string buffer.

Reject Overloaded. Rejects a connection request from a
client.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Resolve Resolves a host name to a host IP address.

Restart Restarts the server and terminates all active client
connections.

InternetServer Methods

Resume Resume accepting new client connections.

Start Overloaded. Start listening for client connections
on the specified IP address and port number.

Stop Stop listening for new client connections and
terminate all active clients already connected to
the server.

Suspend Overloaded. Suspend accepting new client
connections with additional options.

Throttle Overloaded. Limit the maximum number of client
connections, connections per IP address and
connection rate.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the server.

Unlock Unlock the server and allow other server threads
to resume execution.

Write Overloaded. Write one or more bytes of data to a
client.

WriteLine Overloaded. Send a line of text to a client,
terminated by a carriage-return and linefeed.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the InternetServer class and optionally
releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Abort the connection with a remote host.

Overload List
Abort the connection with a remote host.

public void Abort();

Abort the connection with a remote host.

public void Abort(int);

See Also
InternetServer Class | SocketTools Namespace | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Abort Method

Abort the connection with a remote host.

[Visual Basic]
Overloads Public Sub Abort()

[C#]
public void Abort();

Remarks
The Abort method immediately terminates the client connection, without waiting for any remaining data
in the socket buffer to be written out. This method should only be used when the connection must be
closed immediately. If this method is used, the client will see the connection as being terminated
abnormally.

It is recommended that applications using the Disconnect method unless it is absolutely necessary to
terminate the connection and immediately release the socket handle.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Abort method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Abort Overload List | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Abort Method ()

Abort the connection with a remote host.

[Visual Basic]
Overloads Public Sub Abort(_
 ByVal handle As Integer _
)

[C#]
public void Abort(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Remarks
The Abort method immediately terminates the client connection, without waiting for any remaining data
in the socket buffers to be written out. This method should only be used when the connection must be
closed immediately. If this method is used, the client will see the connection as being terminated
abnormally.

It is recommended that applications using the Disconnect method unless it is absolutely necessary to
terminate the connection and immediately release the socket handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Abort Overload List | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Abort Method (Int32)

Broadcast data to all active clients connected to the server

Overload List
Broadcast data to all active clients connected to the server

public int Broadcast(byte[]);

Broadcast data to all active clients connected to the server

public int Broadcast(byte[],int);

Broadcast data to all active clients connected to the server

public int Broadcast(string);

Broadcast data to all active clients connected to the server

public int Broadcast(string,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method

Broadcast data to all active clients connected to the server

[Visual Basic]
Overloads Public Function Broadcast(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Broadcast(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data that will be broadcast.

Return Value
An integer value which specifies the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the failure.

Remarks
The Broadcast method broadcasts contents of the specified byte array to all clients connected to the
server. If this method is called inside a server event handler, the message is broadcast to all clients except
for the current, active client that is processing the event notification. If this method is called outside of an
event handler, the data is broadcast to all connected clients.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Broadcast Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method (Byte[])

Broadcast data to all active clients connected to the server

[Visual Basic]
Overloads Public Function Broadcast(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Broadcast(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data that will be broadcast.

length
An integer value which specifies the maximum number of bytes of data to broadcast. This value
cannot be larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the failure.

Remarks
The Broadcast method broadcasts contents of the specified byte array to all clients connected to the
server. If this method is called inside a server event handler, the message is broadcast to all clients except
for the current, active client that is processing the event notification. If this method is called outside of an
event handler, the data is broadcast to all connected clients.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Broadcast Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method (Byte[], Int32)

Broadcast data to all active clients connected to the server

[Visual Basic]
Overloads Public Function Broadcast(_
 ByVal buffer As String _
) As Integer

[C#]
public int Broadcast(
 string buffer
);

Parameters
buffer

A string that contains the data that will be broadcast.

Return Value
An integer value which specifies the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the failure.

Remarks
The Broadcast method broadcasts contents of the specified string to all clients connected to the server. If
this method is called inside a server event handler, the message is broadcast to all clients except for the
current, active client that is processing the event notification. If this method is called outside of an event
handler, the data is broadcast to all connected clients.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Broadcast Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method (String)

Broadcast data to all active clients connected to the server

[Visual Basic]
Overloads Public Function Broadcast(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Broadcast(
 string buffer,
 int length
);

Parameters
buffer

A string that contains the data that will be broadcast.

length
An integer value which specifies the maximum number of bytes of data to broadcast. This value
cannot be larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the failure.

Remarks
The Broadcast method broadcasts contents of the specified string to all clients connected to the server. If
this method is called inside a server event handler, the message is broadcast to all clients except for the
current, active client that is processing the event notification. If this method is called outside of an event
handler, the data is broadcast to all connected clients.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Broadcast Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Broadcast Method (String, Int32)

Cancel the current blocking socket operation.

Overload List
Cancel the current blocking socket operation.

public void Cancel();

Cancel the current blocking socket operation.

public void Cancel(int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Cancel Method

Cancel the current blocking socket operation.

[Visual Basic]
Overloads Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking socket operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Cancel method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Cancel Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Cancel Method ()

Cancel the current blocking socket operation.

[Visual Basic]
Overloads Public Sub Cancel(_
 ByVal handle As Integer _
)

[C#]
public void Cancel(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Remarks
When the Cancel method is called, the blocking socket operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Cancel Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Cancel Method (Int32)

Disconnect the specified client connection from the server.

Overload List
Disconnect the specified client connection from the server.

public void Disconnect();

Disconnect the specified client connection from the server.

public void Disconnect(int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Disconnect Method

Disconnect the specified client connection from the server.

[Visual Basic]
Overloads Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the specified client connection with the server and closes the socket
handle allocated by the class. Note that the client socket is not immediately released when the connection
is terminated and will enter a wait state for two minutes. After the time wait period has elapsed, the socket
will be released by the operating system. This is a normal safety mechanism to handle any packets that
may arrive after the connection has been closed.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Disconnect method outside of an
event handler, you must explicitly specify the client handle.

To immediately terminate the connection and release the socket, use the Abort method.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Disconnect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Disconnect Method ()

Disconnect the specified client connection from the server.

[Visual Basic]
Overloads Public Sub Disconnect(_
 ByVal handle As Integer _
)

[C#]
public void Disconnect(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Remarks
The Disconnect method terminates the specified client connection with the server and closes the socket
handle allocated by the class. Note that the client socket is not immediately released when the connection
is terminated and will enter a wait state for two minutes. After the time wait period has elapsed, the socket
will be released by the operating system. This is a normal safety mechanism to handle any packets that
may arrive after the connection has been closed.

To immediately terminate the connection and release the socket, use the Abort method.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Disconnect Overload List | Abort Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Disconnect Method (Int32)

Releases all resources used by InternetServer.

Overload List
Releases all resources used by InternetServer.

public void Dispose();

Releases the unmanaged resources allocated by the InternetServer class and optionally releases the
managed resources.

protected void Dispose(bool);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Dispose Method

Releases all resources used by InternetServer.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method stops the server, terminates all active client sessions and explicitly releases the
resources allocated for this instance of the class. In some cases, better performance can be achieved if the
programmer explicitly releases resources when they are no longer being used. The Dispose method
provides explicit control over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Dispose Method ()

Releases the unmanaged resources allocated by the InternetServer class and optionally releases the
managed resources.

[Visual Basic]
Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the InternetServer class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Finalize Method

Return the socket handle for the client session with the specified ID.

Overload List
Return the socket handle for the client session with the specified ID.

public int FindClient(int);

Return the socket handle for the client session with the specified moniker.

public int FindClient(string);

See Also
InternetServer Class | SocketTools Namespace | ClientId Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.FindClient Method

Return the socket handle for the client session with the specified ID.

[Visual Basic]
Overloads Public Function FindClient(_
 ByVal clientId As Integer _
) As Integer

[C#]
public int FindClient(
 int clientId
);

Parameters
clientId

An integer value which uniquely identifies the client session.

Return Value
An integer value which specifies the socket handle for the client session. If the specified client ID does not
match an active client session, the method will return a value of -1 and the value of the LastError
property will indicate the cause of the failure.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This value can be
used by the application to identify that client session, and is different than the socket handle allocated for
the client. While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

The application can determine the ID assigned to the current client session using the ClientId property
from within an event handler such as OnConnect.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.FindClient Overload List | ClientId Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.FindClient Method (Int32)

Return the socket handle for the client session with the specified moniker.

[Visual Basic]
Overloads Public Function FindClient(_
 ByVal clientName As String _
) As Integer

[C#]
public int FindClient(
 string clientName
);

Parameters
clientName

A string which specifies the moniker for the client session.

Return Value
An integer value which specifies the socket handle for the client session. If the specified moniker does not
match an active client session, the method will return a value of -1 and the value of the LastError
property will indicate the cause of the failure.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside from its
socket handle. A moniker can be assigned to the client session by setting the ClientName property from
within a class event handler such as the OnConnect event.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular server
can have the same moniker. The maximum length for a moniker is 127 characters.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.FindClient Overload List | ClientName
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.FindClient Method (String)

Initialize an instance of the InternetServer class.

Overload List
Initialize an instance of the InternetServer class.

public bool Initialize();

Initialize an instance of the InternetServer class.

public bool Initialize(string);

See Also
InternetServer Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Initialize Method

Initialize an instance of the InternetServer class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetServer class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Initialize Method ()

Initialize an instance of the InternetServer class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the InternetServer class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of InternetServer can be generated using the License Manager
utility that is included with the product. Note that if you have installed an evaluation license, you will not
have a runtime license key and cannot redistribute any applications which use the InternetServer class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.InternetServer server = new SocketTools.InternetServer();

if (server.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(server.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim Server As New SocketTools.InternetServer

If Server.Initialize(strLicenseKey) = False Then
 MsgBox(Server.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Initialize Method (String)

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.RuntimeLicenseAttribute.html

Lock the server to synchronize access to shared data for all active client sessions.

[Visual Basic]
Public Function Lock() As Boolean

[C#]
public bool Lock();

Return Value
A boolean value which specifies if the server was locked. A return value of true specifies that the server
was locked, and all other threads being managed by the server have been blocked. A return value of false
indicates that the server could not be locked, typically because a potential deadlock was detected.

Remarks
The Lock method causes the server to enter a locked state where only the current thread may interact
with the server and the clients that are connected to it. While a server is locked, all other threads will block
when they attempt to perform a network operation. When the server is unlocked, the blocked threads will
resume normal execution.

This method should be used carefully, and a server should never be left in a locked state for an extended
period of time. It is meant to be used when the server process updates a global data structure and it must
prevent any other threads from performing a network operation during the update. Only one server can
be locked at any one time, and once a server has been locked, it can only be unlocked by the same
thread.

The program should always check the return value from this method, and should never assume that the
lock has been established. If more than one thread attempts to lock a server at the same time, there is no
guarantee as to which thread will actually establish the lock. If a potential deadlock situation is detected,
this function will fail and return a value of false.

Every time the Lock method is called, an internal lock counter is incremented, and the lock will not be
released until the lock count drops to zero. This means that each call to the Lock method must be
matched by an equal number of calls to the Unlock method. Failure to do so will result in the server
becoming non-responsive as it remains in a locked state.

The IsLocked property can be used to determine if the server has been locked.

See Also
InternetServer Class | SocketTools Namespace | Unlock Method | IsLocked Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Lock Method

Return the number of bytes available to be read from the client socket.

Overload List
Return the number of bytes available to be read from the client socket.

public int Peek();

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

public int Peek(byte[]);

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

public int Peek(byte[],int);

Return the number of bytes available to be read from the client socket.

public int Peek(int);

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

public int Peek(int,byte[]);

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

public int Peek(int,byte[],int);

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

public int Peek(int,ref string);

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

public int Peek(int,ref string,int);

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

public int Peek(ref string);

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

public int Peek(ref string,int);

See Also
InternetServer Class | SocketTools Namespace | IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method

Return the number of bytes available to be read from the client socket.

[Visual Basic]
Overloads Public Function Peek() As Integer

[C#]
public int Peek();

Return Value
An integer value which specifies the number of bytes available to be read from the client socket. A return
value of zero specifies that there is no data available to be read. If an error occurs, a value of -1 is
returned and the application should check the value of the LastError property to determine the cause of
the failure.

Remarks
The Peek method returns the number of bytes that can be read in a single operation. However, it is
important to note that it may not indicate the total amount of data available to be read from the socket at
that time.

If no data is available to be read, the method will return a value of zero. Using this method in a loop to
poll a socket can cause the application to become non-responsive. To determine if there is data available
to be read, use the IsReadable property.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | IsReadable Property |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method ()

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Peek(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client. The data returned by this method
is not removed from the socket buffers. It must be consumed by a subsequent call to the Read method.
The return value indicates the number of bytes that can be read in a single operation. However, it is
important to note that it may not indicate the total amount of data available to be read from the socket at
that time.

If no data is available to be read, the method will return a value of zero. To determine if there is data
available to be read, use the IsReadable property.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Byte[])

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. To determine if there is data
available to be read, use the IsReadable property.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Byte[], Int32)

Return the number of bytes available to be read from the client socket.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer _
) As Integer

[C#]
public int Peek(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Return Value
An integer value which specifies the number of bytes available to be read from the specified client socket.
A return value of zero specifies that there is no data available to be read. If an error occurs, a value of -1 is
returned and the application should check the value of the LastError property to determine the cause of
the failure.

Remarks
The Peek method returns the number of bytes that can be read in a single operation. However, it is
important to note that it may not indicate the total amount of data available to be read from the socket at
that time.

If no data is available to be read, the method will return a value of zero. Using this method in a loop to
poll a socket can cause the application to become non-responsive. To determine if there is data available
to be read, use the IsReadable property.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32)

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer, _
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Peek(
 int handle,
 byte[] buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32, Byte[])

Read data from the client and store it in a byte array, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 int handle,
 byte[] buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32, Byte[], Int32)

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer, _
 ByRef buffer As String _
) As Integer

[C#]
public int Peek(
 int handle,
 ref string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to a maximum of 8192 bytes.
The data returned by this method is not removed from the socket buffers. It must be consumed by a
subsequent call to the Read method. The return value indicates the number of bytes that can be read in a
single operation. However, it is important to note that it may not indicate the total amount of data
available to be read from the socket at that time.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32, String)

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal handle As Integer, _
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 int handle,
 ref string buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (Int32, String, Int32)

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByRef buffer As String _
) As Integer

[C#]
public int Peek(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the client, up to a maximum of 8192 bytes.
The data returned by this method is not removed from the socket buffers. It must be consumed by a
subsequent call to the Read method. The return value indicates the number of bytes that can be read in a
single operation. However, it is important to note that it may not indicate the total amount of data
available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. To determine if there is data
available to be read, use the IsReadable property.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (String)

Read data from the client and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. To determine if there is data
available to be read, use the IsReadable property.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Peek method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Peek Overload List | Read Method |
IsReadable Property | OnRead Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Peek Method (String, Int32)

Read data from the client socket and store it in a byte array.

Overload List
Read data from the client socket and store it in a byte array.

public int Read(byte[]);

Read data from the client socket and store it in a byte array.

public int Read(byte[],int);

Read data from the client socket and store it in a byte array.

public int Read(int,byte[]);

Read data from the client socket and store it in a byte array.

public int Read(int,byte[],int);

Read data from the client socket and store it in a string.

public int Read(int,ref string);

Read data from the client socket and store it in a string.

public int Read(int,ref string,int);

Read data from the client socket and store it in a string.

public int Read(ref string);

Read data from the client socket and store it in a string.

public int Read(ref string,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method

Read data from the client socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the size of the byte array
passed to the method. If no data is available to be read, the calling thread will block until data is received
from the server or the connection is closed.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Read method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Byte[])

Read data from the client socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes specified. If
no data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Read method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Byte[], Int32)

Read data from the client socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal handle As Integer, _
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 int handle,
 byte[] buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the specified client socket. A
return value of zero specifies that the remote host has closed the connection and there is no more data
available to be read. If an error occurs, a value of -1 is returned and the application should check the
value of the LastError property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the size of the byte array
passed to the method. If no data is available to be read, the calling thread will block until data is received
from the server or the connection is closed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Int32, Byte[])

Read data from the client socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal handle As Integer, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 int handle,
 byte[] buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the specified client socket. A
return value of zero specifies that the remote host has closed the connection and there is no more data
available to be read. If an error occurs, a value of -1 is returned and the application should check the
value of the LastError property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes specified. If
no data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Int32, Byte[], Int32)

Read data from the client socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByVal handle As Integer, _
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 int handle,
 ref string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the specified client socket. A
return value of zero specifies that the remote host has closed the connection and there is no more data
available to be read. If an error occurs, a value of -1 is returned and the application should check the
value of the LastError property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to a maximum of 8192 bytes. If no
data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Int32, String)

Read data from the client socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByVal handle As Integer, _
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 int handle,
 ref string buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string that will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the specified client socket. A
return value of zero specifies that the remote host has closed the connection and there is no more data
available to be read. If an error occurs, a value of -1 is returned and the application should check the
value of the LastError property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the specified client socket, up to the number of
bytes specified. If no data is available to be read, the calling thread will block until data is received from
the server or the connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (Int32, String, Int32)

Read data from the client socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the client.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the client, up to a maximum of 8192 bytes. If no
data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Read method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (String)

Read data from the client socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the client. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the client, up to the number of bytes specified. If
no data is available to be read, the calling thread will block until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Read method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Read Method (String, Int32)

Read up to a line of data from the client and return it in a string buffer.

Overload List
Read up to a line of data from the client and return it in a string buffer.

public bool ReadLine(int,ref string);

Read up to a line of data from the client and return it in a string buffer.

public bool ReadLine(int,ref string,int);

Read up to a line of data from the client and return it in a string buffer.

public bool ReadLine(ref string);

Read up to a line of data from the client and return it in a string buffer.

public bool ReadLine(ref string,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadLine Method

Read up to a line of data from the client and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByVal handle As Integer, _
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadLine(
 int handle,
 ref string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A string which will contain the data read from the client.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the client until an end-of-line character sequence is encountered.
Unlike the Read method which reads arbitrary bytes of data, this method is specifically designed to return
a single line of text data in a string variable. When an end-of-line character sequence is encountered, the
method will stop and return the data up to that point; the string will not contain the carriage-return or
linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the calling thread to block until an end-of-line character sequence is processed, the
read operation times out or the remote host closes its end of the socket connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadLine Method (Int32, String)

Read up to a line of data from the client and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByVal handle As Integer, _
 ByRef buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool ReadLine(
 int handle,
 ref string buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer

A string which will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the client up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the calling thread to block until an end-of-line character sequence is processed, the
read operation times out or the remote host closes its end of the socket connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

InternetServer.ReadLine Method (Int32, String, Int32)

See Also
InternetServer Class | SocketTools Namespace | InternetServer.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read up to a line of data from the client and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer
);

Parameters
buffer

A string which will contain the data read from the client.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the client until an end-of-line character sequence is encountered.
Unlike the Read method which reads arbitrary bytes of data, this method is specifically designed to return
a single line of text data in a string variable. When an end-of-line character sequence is encountered, the
method will stop and return the data up to that point; the string will not contain the carriage-return or
linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the calling thread to block until an end-of-line character sequence is processed, the
read operation times out or the remote host closes its end of the socket connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the ReadLine method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadLine Method (String)

Read up to a line of data from the client and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer,
 int length
);

Parameters
buffer

A string which will contain the data read from the client.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the client up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the calling thread to block until an end-of-line character sequence is processed, the
read operation times out or the remote host closes its end of the socket connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the ReadLine method outside of an event
handler, you must explicitly specify the client handle.

See Also

InternetServer.ReadLine Method (String, Int32)

InternetServer Class | SocketTools Namespace | InternetServer.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Rejects a connection request from a client.

Overload List
Rejects a connection request from a client.

public bool Reject();

Rejects a connection request from a client.

public bool Reject(int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Reject Method

Rejects a connection request from a client.

[Visual Basic]
Overloads Public Function Reject() As Boolean

[C#]
public bool Reject();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the connection
being aborted. If there are no pending client connections at the time, this method will immediately return
with an error indicating that the operation would cause the thread to block.

This method is typically called from within the OnAccept event handler when the application determines
that it does not wish to accept the incoming client connection.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Reject method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Reject Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Reject Method ()

Rejects a connection request from a client.

[Visual Basic]
Overloads Public Function Reject(_
 ByVal handle As Integer _
) As Boolean

[C#]
public bool Reject(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the connection
being aborted. If there are no pending client connections at the time, this method will immediately return
with an error indicating that the operation would cause the thread to block.

This method is typically called from within the OnAccept event handler when the application determines
that it does not wish to accept the incoming client connection.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Reject Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Reject Method (Int32)

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a server has been started, it will be stopped
and any active client connections will be terminated. All properties will be reset to their default values.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Reset Method

Resolves a host name to a host IP address.

[Visual Basic]
Public Function Resolve(_
 ByVal hostName As String, _
 ByRef hostAddress As String _
) As Boolean

[C#]
public bool Resolve(
 string hostName,
 ref string hostAddress
);

Parameters
hostName

A string which specifies the host name to be resolved.

hostAddress
A string which will contain the Internet address for the specified host.

Return Value
This method returns a Boolean value. If the host name can be resolved, the return value is true. If the host
name cannot be resolved, the return value is false. To get extended error information, check the value of
the LastError property.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Resolve Method

Restarts the server and terminates all active client connections.

[Visual Basic]
Public Function Restart() As Boolean

[C#]
public bool Restart();

Return Value
A boolean value which specifies if the server was restarted. A return value of true specifies that the server
has been successfully restarted. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Restart method terminates all active client connections, recreates a new listening socket bound to the
same address and port number, and then resumes accepting new client connections.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Restart Method

Resume accepting new client connections.

[Visual Basic]
Public Function Resume() As Boolean

[C#]
public bool Resume();

Return Value
A boolean value which specifies if the server has resumed accepting client connections. A return value of
true specifies that the operation was successful. If an error occurs, the method returns false and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Resume method instructs the server to resume accepting new client connections. Any pending client
connections that were requested while the server was suspended will be accepted.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Resume Method

Start listening for client connections.

Overload List
Start listening for client connections.

public bool Start();

Start listening for client connections on the specified port number.

public bool Start(int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,int,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,int,int,int);

Start listening for client connections on the specified IP address and port number.

public bool Start(string,int,int,int,int,ServerOptions);

See Also
InternetServer Class | SocketTools Namespace | Backlog Property | MaxClients Property | Options Property
| ServerAddress Property | ServerPort Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Start Method

Start listening for client connections.

[Visual Basic]
Overloads Public Function Start() As Boolean

[C#]
public bool Start();

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the default local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Backlog property will determine the default size of the queue for incoming client
connections. The value of the MaxClients property will determine the maximum number of clients that
may connect to the server. The value of the Options property will determine the default options used
when starting the server. The value of the ServerAddress and ServerPort properties will determine the
address and port number that the server will accept client connections on. The value of the Timeout
property will determine the default timeout period.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer

Server = New SocketTools.InternetServer
Server.ServerAddress = TextBox1.Text.Trim()
Server.ServerPort = Val(TextBox2.Text)

If Server.Start() Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Backlog Property |
MaxClients Property | Options Property | ServerAddress Property | ServerPort Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Start Method ()

Start listening for client connections on the specified port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Start(
 int localPort
);

Parameters
localPort

An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Backlog property will determine the default size of the queue for incoming client
connections. The value of the MaxClients property will determine the maximum number of clients that
may connect to the server. The value of the Options property will determine the default options used
when starting the server. The value of the ServerAddress property will determine the address that the
server will accept client connections on. The value of the Timeout property will determine the default
timeout period.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim nLocalPort As Integer

nLocalPort = Val(TextBox1.Text)

If Server.Start(nLocalPort) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Backlog Property |

InternetServer.Start Method (Int32)

MaxClients Property | Options Property | ServerAddress Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Backlog property will determine the default size of the queue for incoming client
connections. The value of the MaxClients property will determine the maximum number of clients that
may connect to the server. The value of the Options property will determine the default options used
when starting the server. The value of the Timeout property will determine the default timeout period.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)

If Server.Start(strLocalAddress, nLocalPor) Then
 StatusBar1.Text = "The server has started listening for connections"

InternetServer.Start Method (String, Int32)

Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Backlog Property |
MaxClients Property | Options Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 int maxClients
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

maxClients
An integer value which specifies the maximum number of clients that may connect to the server. A
value of zero specifies that there is no fixed limit to the number of active client connections that may
be established with the server. This value can be adjusted after the server has been created by calling
the Throttle method.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Backlog property will determine the default size of the queue for incoming client
connections. The value of the Options property will determine the default options used when starting the
server. The value of the Timeout property will determine the default timeout period.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer
Dim nMaxClients As Integer

InternetServer.Start Method (String, Int32, Int32)

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)
nMaxClients = Val(TextBox4.Text)

If Server.Start(strLocalAddress, nLocalPort, nMaxClients) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Backlog Property |
Options Property | Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal backlog As Integer, _
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 int backlog,
 int maxClients
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

backlog
An integer value which specifies the maximum size of the queue used to manage pending connections
to the service. If the argument is set to value which exceeds the maximum size for the underlying
service provider, it will be silently adjusted to the nearest legal value. On Windows workstations, the
maximum backlog value is 5. On Windows servers, the maximum value is 200.

maxClients
An integer value which specifies the maximum number of clients that may connect to the server. A
value of zero specifies that there is no fixed limit to the number of active client connections that may
be established with the server. This value can be adjusted after the server has been created by calling
the Throttle method.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Options property will determine the default options used when starting the server. The
value of the Timeout property will determine the default timeout period.

Example

InternetServer.Start Method (String, Int32, Int32, Int32)

The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer
Dim nBacklog As Integer
Dim nMaxClients As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)
nBacklog = Val(TextBox3.Text)
nMaxClients = Val(TextBox4.Text)

If Server.Start(strLocalAddress, nLocalPort, nBacklog, nMaxClients) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Options Property |
Timeout Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal backlog As Integer, _
 ByVal maxClients As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 int backlog,
 int maxClients,
 int timeout
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

backlog
An integer value which specifies the maximum size of the queue used to manage pending connections
to the service. If the argument is set to value which exceeds the maximum size for the underlying
service provider, it will be silently adjusted to the nearest legal value. On Windows workstations, the
maximum backlog value is 5. On Windows servers, the maximum value is 200.

maxClients
An integer value which specifies the maximum number of clients that may connect to the server. A
value of zero specifies that there is no fixed limit to the number of active client connections that may
be established with the server. This value can be adjusted after the server has been created by calling
the Throttle method.

timeout
An integer value which specifies the number of seconds the control will wait for a network operation to
complete. The default timeout period of 20 seconds is sufficient for most applications.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the
operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.

InternetServer.Start Method (String, Int32, Int32, Int32, Int32)

The server is started in its own thread and manages the client sessions independently of the calling thread.

The value of the Options property determines the default options that will be used when starting the
server.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer
Dim nBacklog As Integer
Dim nMaxClients As Integer
Dim nTimeout As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)
nBacklog = Val(TextBox3.Text)
nMaxClients = Val(TextBox4.Text)
nTimeout = Val(TextBox5.Text)

If Server.Start(strLocalAddress, nLocalPort, nBacklog, nMaxClients, nTimeout) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List | Options Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Start listening for client connections on the specified IP address and port number.

[Visual Basic]
Overloads Public Function Start(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal backlog As Integer, _
 ByVal maxClients As Integer, _
 ByVal timeout As Integer, _
 ByVal options As ServerOptions _
) As Boolean

[C#]
public bool Start(
 string localAddress,
 int localPort,
 int backlog,
 int maxClients,
 int timeout,
 ServerOptions options
);

Parameters
localAddress

A string value which specifies the IP address of the network adapter that the control should use when
listening for connection requests. If this is an empty string or the special address "0.0.0.0" is specified,
the server will listen for connection on all valid network interfaces configured for the local system.

localPort
An integer value which specifies the port number that the server should use when listening for
incoming client connections. Valid port numbers are in the range of 1 through 65535.

backlog
An integer value which specifies the maximum size of the queue used to manage pending connections
to the service. If the argument is set to value which exceeds the maximum size for the underlying
service provider, it will be silently adjusted to the nearest legal value. On Windows workstations, the
maximum backlog value is 5. On Windows servers, the maximum value is 200.

maxClients
An integer value which specifies the maximum number of clients that may connect to the server. A
value of zero specifies that there is no fixed limit to the number of active client connections that may
be established with the server. This value can be adjusted after the server has been created by calling
the Throttle method.

timeout
An integer value which specifies the number of seconds the control will wait for a network operation to
complete. The default timeout period of 20 seconds is sufficient for most applications.

options
One or more of the ServerOptions enumeration flags.

Return Value
A boolean value which specifies if the server has been started. A return value of true specifies that the

InternetServer.Start Method (String, Int32, Int32, Int32, Int32,
ServerOptions)

operation was successful. If an error occurs, the method returns false and the application should check
the value of the LastError property to determine the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port number.
The server is started in its own thread and manages the client sessions independently of the calling thread.

Example
The following example demonstrates creating an instance of the InternetServer class object and starting
a server using the Start method.

Dim Server As SocketTools.InternetServer
Dim strLocalAddress As String
Dim nLocalPort As Integer
Dim nBacklog As Integer
Dim nMaxClients As Integer
Dim nTimeout As Integer

Server = New SocketTools.InternetServer

strLocalAddress = TextBox1.Text.Trim()
nLocalPort = Val(TextBox2.Text)
nBacklog = Val(TextBox3.Text)
nMaxClients = Val(TextBox4.Text)
nTimeout = Val(TextBox5.Text)

If Server.Start(strLocalAddress, nLocalPort, nBacklog, nMaxClients, nTimeout) Then
 StatusBar1.Text = "The server has started listening for connections"
Else
 StatusBar1.Text = "The server could not be started"
End If

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Start Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Stop listening for new client connections and terminate all active clients already connected to the server.

[Visual Basic]
Public Function Stop() As Boolean

[C#]
public bool Stop();

Return Value
A boolean value which specifies if the server was stopped. A return value of true specifies that the server
has been successfully stopped. If an error occurs, the method returns false and the application should
check the value of the LastError property to determine the cause of the failure.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active client
connections and terminates the thread that is managing the server session.

If this method is called when there is one or more clients connected to the server, it will signal each client
thread to terminate and then wait for the server thread to terminate. As the client sessions are terminated,
the OnDisconnect event handler will not be invoked. If you wish to ensure that all clients are
disconnected normally before stopping the server, call the Suspend method with the
suspendDisconnect option and then stop the server after the last client has disconnected.

After the server has been terminated, the closed listening socket will go into a TIME-WAIT state which
prevents an application from reusing the same address and port number bound to that socket for a brief
period of time, typically two to four minutes. This is normal behavior designed to prevent delayed or
misrouted packets of data from being read by a subsequent connection. To immediately start a new
server using the same local address and port number, set the ReuseAddress property to a value of true.

See Also
InternetServer Class | SocketTools Namespace | Restart Method | Resume Method | Start Method | Throttle
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Stop Method

Suspend accepting new client connections.

Overload List
Suspend accepting new client connections.

public bool Suspend();

Suspend accepting new client connections with additional options.

public bool Suspend(SuspendOptions);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Suspend Method

Suspend accepting new client connections.

[Visual Basic]
Overloads Public Function Suspend() As Boolean

[C#]
public bool Suspend();

Return Value
A boolean value which specifies if the server was suspended. A return value of true specifies that the
server has suspended accepting new client connections. If an error occurs, the method returns false and
the application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. By default, any
incoming client connections will be queued up to the maximum backlog value specified when the server
was started. To resume accepting client connections, call the Resume method.

It is not recommended that you leave a server in a suspended state for extended periods of time. Once
the connection backlog queue has filled, subsequent incoming client connections will be rejected. If you
wish to suspend the server for more than a few seconds, call the overloaded version of this method and
specify the suspendReject option. This will reject all incoming client connections to the server, rather than
forcing clients to wait.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Suspend Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Suspend Method ()

Suspend accepting new client connections with additional options.

[Visual Basic]
Overloads Public Function Suspend(_
 ByVal options As SuspendOptions _
) As Boolean

[C#]
public bool Suspend(
 SuspendOptions options
);

Parameters
options

One or more of the SuspendOptions enumeration flags.

Return Value
A boolean value which specifies if the server was suspended. A return value of true specifies that the
server has suspended accepting new client connections. If an error occurs, the method returns false and
the application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. By default, any
incoming client connections will be queued up to the maximum backlog value specified when the server
was started. To resume accepting client connections, call the Resume method.

If the suspendDisconnect option is specified, the server will signal each client to disconnect and will stop
accepting new connections. The OnDisconnect event handler will be invoked for each client that
disconnects from the server. If the suspendWait option is also specified, this method will wait until the last
client has disconnected from the server before returning to the caller. If there are a large number of clients
connected to the server, this process may cause the application to block for an extended period of time
and appear to be non-responsive to the user. For this reason, you should not specify the suspendWait
option if the method is being called from the application's main UI thread.

To perform a graceful shutdown of the server, it is recommended that you call the Suspend method with
the suspendReject and suspendDisconnect options. This will allow each client to disconnect from the
server and the server will reject any new incoming connections. After the last client has disconnected from
the server, the OnIdle event handler will be invoked and the application can call the Stop method to
complete the shutdown process.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Suspend Overload List | SuspendOptions
Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Suspend Method (SuspendOptions)

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.SuspendOptions.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.SuspendOptions.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.SuspendOptions.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.SuspendOptions.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.SuspendOptions.html

Limit the maximum number of client connections.

Overload List
Limit the maximum number of client connections.

public bool Throttle(int);

Limit the maximum number of client connections and connections per IP address.

public bool Throttle(int,int);

Limit the maximum number of client connections, connections per IP address and connection rate.

public bool Throttle(int,int,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Throttle Method

Limit the maximum number of client connections.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Throttle Method (Int32)

Limit the maximum number of client connections and connections per IP address.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Throttle Method (Int32, Int32)

Limit the maximum number of client connections, connections per IP address and connection rate.

[Visual Basic]
Overloads Public Function Throttle(_
 ByVal maxClients As Integer, _
 ByVal maxClientsPerAddress As Integer, _
 ByVal connectionRate As Integer _
) As Boolean

[C#]
public bool Throttle(
 int maxClients,
 int maxClientsPerAddress,
 int connectionRate
);

Parameters
maxClients

An integer value that specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

maxClientsPerAddress
An integer value that specifies the maximum number of clients that may connect to the server from
the same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per address.

connectionRate
An integer value that specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there is no
restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on the
client connection rate.

Return Value
A boolean value which specifies if the method was successful. A return value of true indicates success. If
an error occurs, the method returns false and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client sessions
drops below the specified threshold. Note that adjusting these values lower than the current connection
limits will not affect clients that have already connected to the server. For example, if the Start method is
called with the maximum number of clients set to 100, and then the Throttle method is called lowering
that value to 75, no existing client connections will be affected by the change. However, the server will not
accept any new connections until the number of active clients drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will accept
incoming client connection requests. For example, setting this parameter to a value of 1000 would limit
the server to accepting one client connection every second, while a value of 250 would allow the server to
accept four client connections per second. Note that significantly increasing the amount of time the server
must wait to accept client connections can exceed the connection backlog queue, resulting in client

InternetServer.Throttle Method (Int32, Int32, Int32)

connections being rejected.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Throttle Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the server.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the server and
unloads the networking library. After this method has been called, no further network operations may be
performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
InternetServer Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Uninitialize Method

Unlock the server and allow other server threads to resume execution.

[Visual Basic]
Public Function Unlock() As Boolean

[C#]
public bool Unlock();

Return Value
A boolean value which specifies if the server was unlocked. A return value of true specifies that the server
was unlocked, and the threads being managed by the server have resumed normal execution. A return
value of false indicates that the server could not be unlocked, typically because a potential deadlock was
detected.

Remarks
The Unlock method releases the lock on the server and allows any blocked threads to resume execution.
Only one server may be locked at any one time, and only the thread which established the lock can unlock
the server.

Every time the Lock method is called, an internal lock counter is incremented, and the lock will not be
released until the lock count drops to zero. This means that each call to the Lock method must be
matched by an equal number of calls to the Unlock method. Failure to do so will result in the server
becoming non-responsive as it remains in a locked state.

The program should always check the return value from this method, and should never assume that the
lock has been released. If a potential deadlock situation is detected, this method will fail and return a value
of false.

The IsLocked property can be used to determine if the server has been locked.

See Also
InternetServer Class | SocketTools Namespace | Lock Method | IsLocked Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Unlock Method

Write one or more bytes of data to a client.

Overload List
Write one or more bytes of data to a client.

public int Write(byte[]);

Write one or more bytes of data to a client.

public int Write(byte[],int);

Write one or more bytes of data to a client.

public int Write(int,byte[]);

Write one or more bytes of data to a client.

public int Write(int,byte[],int);

Write a string of characters to a client.

public int Write(int,string);

Write a string of characters to a client.

public int Write(int,string,int);

Write a string of characters to a client.

public int Write(string);

Write a string of characters to a client.

public int Write(string,int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method

Write one or more bytes of data to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the client.

Return Value
An integer value which specifies the number of bytes actually written to the client. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to a client. If there is enough room in the client
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space the method will
block the current thread until the data can be sent.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Write method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Byte[])

Write one or more bytes of data to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the client.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the client. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to a client. If there is enough room in the client
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space the method will
block the current thread until the data can be sent.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Write method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Byte[], Int32)

Write one or more bytes of data to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal handle As Integer, _
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 int handle,
 byte[] buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A byte array that contains the data to be written to the client.

Return Value
An integer value which specifies the number of bytes actually written to the client. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the specified client. If there is enough room in the
client socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and
control immediately returns to the caller. If amount of data exceeds the available buffer space the method
will block the current thread until the data can be sent.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Int32, Byte[])

Write one or more bytes of data to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal handle As Integer, _
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 int handle,
 byte[] buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A byte array that contains the data to be written to the client.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the client. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the specified client. If there is enough room in the
client socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and
control immediately returns to the caller. If amount of data exceeds the available buffer space the method
will block the current thread until the data can be sent.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List | Broadcast Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Int32, Byte[], Int32)

Write a string of characters to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal handle As Integer, _
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 int handle,
 string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string which contains the data to be written to the client.

Return Value
An integer value which specifies the number of characters actually written to the client. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to a client. If there is enough room in the socket's internal
send buffer to accommodate all of the data, it is copied to the send buffer and control immediately
returns to the caller. If amount of data exceeds the available buffer space the method will block the
current thread until the data can be sent.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Int32, String)

Write a string of characters to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal handle As Integer, _
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 int handle,
 string buffer,
 int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string which contains the data to be written to the client.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the client. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to a client. If there is enough room in the socket's internal
send buffer to accommodate all of the data, it is copied to the send buffer and control immediately
returns to the caller. If amount of data exceeds the available buffer space the method will block the
current thread until the data can be sent.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (Int32, String, Int32)

Write a string of characters to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the client.

Return Value
An integer value which specifies the number of characters actually written to the client. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to a client. If there is enough room in the socket's internal
send buffer to accommodate all of the data, it is copied to the send buffer and control immediately
returns to the caller. If amount of data exceeds the available buffer space the method will block the
current thread until the data can be sent.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Write method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (String)

Write a string of characters to a client.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the client.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the client. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to a client. If there is enough room in the socket's internal
send buffer to accommodate all of the data, it is copied to the send buffer and control immediately
returns to the caller. If amount of data exceeds the available buffer space the method will block the
current thread until the data can be sent.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the Write method outside of an event
handler, you must explicitly specify the client handle.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.Write Method (String, Int32)

Send an empty line of text to a client, terminated by a carriage-return and linefeed.

Overload List
Send an empty line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine();

Send an empty line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(int);

Send a line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(int,string);

Send a line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(int,string,ref int);

Send a line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(string);

Send a line of text to a client, terminated by a carriage-return and linefeed.

public bool WriteLine(string,ref int);

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method

Send an empty line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine() As Boolean

[C#]
public bool WriteLine();

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method will send an empty line of text to the client, terminated by a carriage-return and
linefeed. Calling this method will force the calling thread to block until the complete line of text has been
written, the write operation times out or the remote host aborts the connection.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the WriteLine method outside of an event
handler, you must explicitly specify the client handle.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method ()

Send an empty line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal handle As Integer _
) As Boolean

[C#]
public bool WriteLine(
 int handle
);

Parameters
handle

An integer value which specifies the handle to the client session.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method will send an empty line of text to the specified client, terminated by a carriage-
return and linefeed. Calling this method will force the calling thread to block until the complete line of text
has been written, the write operation times out or the remote host aborts the connection.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method (Int32)

Send a line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal handle As Integer, _
 ByVal buffer As String _
) As Boolean

[C#]
public bool WriteLine(
 int handle,
 string buffer
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string which contains the data that will be sent to the specified client. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method (Int32, String)

Send a line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal handle As Integer, _
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteLine(
 int handle,
 string buffer,
 ref int length
);

Parameters
handle

An integer value which specifies the handle to the client session.

buffer
A string which contains the data that will be sent to the specified client. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the client. Note that if the string contains a null
character, any data that follows the null character will be discarded.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

InternetServer.WriteLine Method (Int32, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Send a line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool WriteLine(
 string buffer
);

Parameters
buffer

A string which contains the data that will be sent to the client. The data will always be terminated with
a carriage-return and linefeed control character sequence. If the string is empty, then a only a
carriage-return and linefeed are written to the socket. Note that if the string contains a null character,
any data that follows the null byte will be discarded.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the WriteLine method outside of an event
handler, you must explicitly specify the client handle.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method (String)

Send a line of text to a client, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteLine(
 string buffer,
 ref int length
);

Parameters
buffer

A string which contains the data that will be sent to the client. The data will always be terminated with
a carriage-return and linefeed control character sequence. If the string is empty, then a only a
carriage-return and linefeed are written to the socket. Note that if the string contains a null character,
any data that follows the null byte will be discarded.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection.

This implementation of the method can only be used within a class event handler, or a method that has
been invoked from within an event handler. If you need to call the WriteLine method outside of an event
handler, you must explicitly specify the client handle.

The Write and WriteLine methods can be safely intermixed.

See Also
InternetServer Class | SocketTools Namespace | InternetServer.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteLine Method (String, Int32)

The events of the InternetServer class are listed below. For a complete list of InternetServer class
members, see the InternetServer Members topic.

Public Instance Events

OnAccept Occurs when a client attempts to establish a
connection with the server.

OnCancel Occurs when a blocking socket operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnIdle Occurs when the there are no clients connected to
the server.

OnRead Occurs when data is available to be read from the
client.

OnStart Occurs when the server starts accepting
connections.

OnStop Occurs when the server stops accepting
connections.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the client.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer Events

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.OnIdle.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.OnStart.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.InternetServer.OnStop.html

Occurs when a client attempts to establish a connection with the server.

[Visual Basic]
Public Event OnAccept As OnAcceptEventHandler

[C#]
public event OnAcceptEventHandler OnAccept;

Event Data
The event handler receives an argument of type InternetServer.AcceptEventArgs containing data related
to this event. The following InternetServer.AcceptEventArgs properties provide information specific to
this event.

Property Description

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

Handle Gets a value that specifies the socket handle for
the listening server.

Remarks
The OnAccept event occurs when a client attempts to connect to the local system. A connection is not
actually established until it has been accepted by the server.

The ClientAddress or ClientHost properties may be used to determine the Internet address and host
name of the remote host that is establishing the connection. To prevent the client from completing the
connection, call the Reject method.

After the client connection has been established and the worker thread for that client session has started,
the OnConnect event will fire.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the server thread, not the thread that
created the class instance, you cannot directly modify a control from within this event handler. Instead,
you must create a delegate and use the Invoke method to marshal invocations to the associated UI
thread. For more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnAccept Event

Provides data for the OnAccept event.

For a list of all members of this type, see InternetServer.AcceptEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.AcceptEventArgs

[Visual Basic]
Public Class InternetServer.AcceptEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.AcceptEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
AcceptEventArgs specifies the socket handle for the server that should accept the incoming client
connection.

The OnAccept event occurs when a remote host attempts to establish a connection with the local system.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.AcceptEventArgs Members | SocketTools Namespace | OnAccept Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs Class

InternetServer.AcceptEventArgs overview

Public Instance Constructors

 InternetServer.AcceptEventArgs Constructor Initializes a new instance of the
InternetServer.AcceptEventArgs class.

Public Instance Properties

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

Handle Gets a value that specifies the socket handle for
the listening server.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace | OnAccept Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs Members

Initializes a new instance of the InternetServer.AcceptEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.AcceptEventArgs();

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs Constructor

The properties of the InternetServer.AcceptEventArgs class are listed below. For a complete list of
InternetServer.AcceptEventArgs class members, see the InternetServer.AcceptEventArgs Members
topic.

Public Instance Properties

ClientAddress Gets a value that specifies the Internet address of
the current client session.

ClientPort Gets a value that specifies the port number used
by the current client session.

Handle Gets a value that specifies the socket handle for
the listening server.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace | OnAccept Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs Properties

Gets a value that specifies the Internet address of the current client session.

[Visual Basic]
Public ReadOnly Property ClientAddress As String

[C#]
public string ClientAddress {get;}

Remarks
The ClientAddress property will return the address of the client that is requesting the connection. The
server application may use this information to determine if it wishes to accept or reject the client
connection.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs.ClientAddress Property

Gets a value that specifies the port number used by the current client session.

[Visual Basic]
Public ReadOnly Property ClientPort As Integer

[C#]
public int ClientPort {get;}

Remarks
The ClientPort property returns the port number that the client has used when establishing a connection
with the server.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs.ClientPort Property

Gets a value that specifies the socket handle for the listening server.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the server socket handle.

Remarks
The Handle property returns the socket handle for the server that generated the event. This value is used
for identification purposes only and should not be used in conjunction with methods such as Read and
Write, which may only be used with client handles.

See Also
InternetServer.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.AcceptEventArgs.Handle Property

Occurs when a blocking socket operation is canceled.

[Visual Basic]
Public Event OnCancel As OnCancelEventHandler

[C#]
public event OnCancelEventHandler OnCancel;

Event Data
The event handler receives an argument of type InternetServer.CancelEventArgs containing data related
to this event. The following InternetServer.CancelEventArgs property provides information specific to
this event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnCancel event is generated when a blocking socket operation, such as sending or receiving data, is
canceled with the Cancel method.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnCancel Event

Provides data for the OnCancel event.

For a list of all members of this type, see InternetServer.CancelEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.CancelEventArgs

[Visual Basic]
Public Class InternetServer.CancelEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.CancelEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
CancelEventArgs specifies the socket handle for the current client session.

The OnCancel event occurs when a blocking network operation has been canceled.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.CancelEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs Class

InternetServer.CancelEventArgs overview

Public Instance Constructors

 InternetServer.CancelEventArgs Constructor Initializes a new instance of the
InternetServer.CancelEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.CancelEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs Members

Initializes a new instance of the InternetServer.CancelEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.CancelEventArgs();

See Also
InternetServer.CancelEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs Constructor

The properties of the InternetServer.CancelEventArgs class are listed below. For a complete list of
InternetServer.CancelEventArgs class members, see the InternetServer.CancelEventArgs Members topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.CancelEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.CancelEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.CancelEventArgs.Handle Property

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As OnConnectEventHandler

[C#]
public event OnConnectEventHandler OnConnect;

Event Data
The event handler receives an argument of type InternetServer.ConnectEventArgs containing data related
to this event. The following InternetServer.ConnectEventArgs property provides information specific to
this event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnConnect event occurs when the client connection to the server has completed.

The ClientAddress property can be used to determine the IP address of the client which established the
connection. To terminate the client connection, use the Disconnect method.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnConnect Event

Provides data for the OnConnect event.

For a list of all members of this type, see InternetServer.ConnectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.ConnectEventArgs

[Visual Basic]
Public Class InternetServer.ConnectEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.ConnectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ConnectEventArgs specifies the socket handle for the current client session.

The OnConnect event occurs when the client connection to the server has completed. The Handle
property specifies the handle to the client socket that was allocated for the session. This handle can be
used with methods such as Read and Write to exchange information with the client.

The ClientAddress property can be used to determine the IP address of the client which established the
connection. To terminate the client connection, use the Disconnect method.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.ConnectEventArgs Members | SocketTools Namespace | OnConnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs Class

InternetServer.ConnectEventArgs overview

Public Instance Constructors

 InternetServer.ConnectEventArgs Constructor Initializes a new instance of the
InternetServer.ConnectEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.ConnectEventArgs Class | SocketTools Namespace | OnConnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs Members

Initializes a new instance of the InternetServer.ConnectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.ConnectEventArgs();

See Also
InternetServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs Constructor

The properties of the InternetServer.ConnectEventArgs class are listed below. For a complete list of
InternetServer.ConnectEventArgs class members, see the InternetServer.ConnectEventArgs Members
topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.ConnectEventArgs Class | SocketTools Namespace | OnConnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.ConnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ConnectEventArgs.Handle Property

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As OnDisconnectEventHandler

[C#]
public event OnDisconnectEventHandler OnDisconnect;

Event Data
The event handler receives an argument of type InternetServer.DisconnectEventArgs containing data
related to this event. The following InternetServer.DisconnectEventArgs property provides information
specific to this event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnDisconnect event is generated when the connection is terminated by the client and there is no
more data available to be read.

It is not necessary to call the Disconnect method inside the OnDisconnect event handler because the
client session is already in the process of disconnecting from the server.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnDisconnect Event

Provides data for the OnDisconnect event.

For a list of all members of this type, see InternetServer.DisconnectEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.DisconnectEventArgs

[Visual Basic]
Public Class InternetServer.DisconnectEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.DisconnectEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
DisconnectEventArgs specifies the socket handle for the current client session.

The OnDisconnect event is generated when the connection is terminated by the client and there is no
more data available to be read. The Handle property specifies the socket handle of the client session
which has terminated. It is important to note that the client handle is provided for informational purposes
only and the application should not attempt to read or write data using this handle from within this event
handler.

It is not necessary to call the Disconnect method inside the OnDisconnect event handler because the
client session is already in the process of disconnecting from the server.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.DisconnectEventArgs Members | SocketTools Namespace | OnDisconnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs Class

InternetServer.DisconnectEventArgs overview

Public Instance Constructors

 InternetServer.DisconnectEventArgs
Constructor

Initializes a new instance of the
InternetServer.DisconnectEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.DisconnectEventArgs Class | SocketTools Namespace | OnDisconnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs Members

Initializes a new instance of the InternetServer.DisconnectEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.DisconnectEventArgs();

See Also
InternetServer.DisconnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs Constructor

The properties of the InternetServer.DisconnectEventArgs class are listed below. For a complete list of
InternetServer.DisconnectEventArgs class members, see the InternetServer.DisconnectEventArgs
Members topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.DisconnectEventArgs Class | SocketTools Namespace | OnDisconnect Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.DisconnectEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.DisconnectEventArgs.Handle Property

Occurs when an socket operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type InternetServer.ErrorEventArgs containing data related to
this event. The following InternetServer.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Handle Gets a value that specifies the socket handle that
generated the error.

Remarks
The OnError event occurs when a socket operation fails.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event may be generated in the context of the client or server thread, not the
thread that created the class instance, you cannot directly modify a control from within this event handler.
Instead, you must create a delegate and use the Invoke method to marshal invocations to the associated
UI thread. For more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see InternetServer.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.ErrorEventArgs

[Visual Basic]
Public Class InternetServer.ErrorEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs Class

InternetServer.ErrorEventArgs overview

Public Instance Constructors

 InternetServer.ErrorEventArgs Constructor Initializes a new instance of the
InternetServer.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Handle Gets a value that specifies the socket handle that
generated the error.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs Members

Initializes a new instance of the InternetServer.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.ErrorEventArgs();

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs Constructor

The properties of the InternetServer.ErrorEventArgs class are listed below. For a complete list of
InternetServer.ErrorEventArgs class members, see the InternetServer.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Handle Gets a value that specifies the socket handle that
generated the error.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public InternetServer.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs.Error Property

Gets a value that specifies the socket handle that generated the error.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies a socket handle.

Remarks
The Handle property returns the socket handle for the client or server that generated the event. If no
server is active, then this property will return a value of -1.

See Also
InternetServer.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ErrorEventArgs.Handle Property

Occurs when data is available to be read from the client.

[Visual Basic]
Public Event OnRead As OnReadEventHandler

[C#]
public event OnReadEventHandler OnRead;

Event Data
The event handler receives an argument of type InternetServer.ReadEventArgs containing data related to
this event. The following InternetServer.ReadEventArgs property provides information specific to this
event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnRead event is generated when the client sends data to the server. The Handle event argument
property specifies the handle to the client socket which can be used with the Read or ReadLine methods
to read the data that was sent.

When this event fires, it guarantees that data can be read from the specified client without causing the
current thread to enter a blocked state. However, calling this method multiple times inside the event
handler may cause the current thread to block when there is no more data available to read. The
IsReadable property can be used to determine if there is additional data available to be read.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

Example

Private Sub Server_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 ' Read up to m_nBufferSize bytes of data from the client
 nRead = Server1.Read(e.Handle, strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Process the data that has been read from the client
 ProcessData(strBuffer)
 End If
End Sub

See Also

InternetServer.OnRead Event

InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Provides data for the OnRead event.

For a list of all members of this type, see InternetServer.ReadEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.ReadEventArgs

[Visual Basic]
Public Class InternetServer.ReadEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.ReadEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ReadEventArgs specifies the socket handle for the current client session.

The OnRead event is generated when the client sends data to the server. The Handle event argument
property specifies the handle to the client socket which can be used with the Read or ReadLine methods
to read the data that was sent.

When this event fires, it guarantees that data can be read from the specified client without causing the
current thread to enter a blocked state. However, calling this method multiple times inside the event
handler may cause the current thread to block when there is no more data available to read. The
IsReadable property can be used to determine if there is additional data available to be read.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.ReadEventArgs Members | SocketTools Namespace | OnRead Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs Class

InternetServer.ReadEventArgs overview

Public Instance Constructors

 InternetServer.ReadEventArgs Constructor Initializes a new instance of the
InternetServer.ReadEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.ReadEventArgs Class | SocketTools Namespace | OnRead Event (SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs Members

Initializes a new instance of the InternetServer.ReadEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.ReadEventArgs();

See Also
InternetServer.ReadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs Constructor

The properties of the InternetServer.ReadEventArgs class are listed below. For a complete list of
InternetServer.ReadEventArgs class members, see the InternetServer.ReadEventArgs Members topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.ReadEventArgs Class | SocketTools Namespace | OnRead Event (SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.ReadEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ReadEventArgs.Handle Property

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As OnTimeoutEventHandler

[C#]
public event OnTimeoutEventHandler OnTimeout;

Event Data
The event handler receives an argument of type InternetServer.TimeoutEventArgs containing data related
to this event. The following InternetServer.TimeoutEventArgs property provides information specific to
this event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the
socket, fails to complete before the specified timeout period elapses. The timeout period for a blocking
operation can be adjusted by setting the Timeout property.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnTimeout Event

Provides data for the OnTimeout event.

For a list of all members of this type, see InternetServer.TimeoutEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.TimeoutEventArgs

[Visual Basic]
Public Class InternetServer.TimeoutEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.TimeoutEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
TimeoutEventArgs specifies the socket handle for the current client session.

The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the socket,
fails to complete before the specified timeout period elapses. The timeout period for a blocking operation
can be adjusted by setting the Timeout property.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.TimeoutEventArgs Members | SocketTools Namespace | OnTimeout Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs Class

InternetServer.TimeoutEventArgs overview

Public Instance Constructors

 InternetServer.TimeoutEventArgs Constructor Initializes a new instance of the
InternetServer.TimeoutEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.TimeoutEventArgs Class | SocketTools Namespace | OnTimeout Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs Members

Initializes a new instance of the InternetServer.TimeoutEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.TimeoutEventArgs();

See Also
InternetServer.TimeoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs Constructor

The properties of the InternetServer.TimeoutEventArgs class are listed below. For a complete list of
InternetServer.TimeoutEventArgs class members, see the InternetServer.TimeoutEventArgs Members
topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.TimeoutEventArgs Class | SocketTools Namespace | OnTimeout Event
(SocketTools.InternetServer)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.TimeoutEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.TimeoutEventArgs.Handle Property

Occurs when data can be written to the client.

[Visual Basic]
Public Event OnWrite As OnWriteEventHandler

[C#]
public event OnWriteEventHandler OnWrite;

Event Data
The event handler receives an argument of type InternetServer.WriteEventArgs containing data related to
this event. The following InternetServer.WriteEventArgs property provides information specific to this
event.

Property Description

Handle Gets a value that specifies the socket handle for
the client session.

Remarks
The OnWrite event is generated when the client can accept data from the server. The Handle event
argument property specifies the handle to the client socket and can be used in conjunction with the Write
or WriteLine methods.

This event is typically fired once when the client connection is established with the server, the session
thread starts and the client socket enters a writable state. If the internal send buffer for the client socket
becomes full, this event will fire again when more data can be written to the socket. It is important to note
that this event is level-triggered and will not fire repeatedly if the client socket is writable. Under most
circumstances this event fire only once for each client session after the initial connection has been
established.

User interface controls can only be accessed from the UI thread that created them, and attempting to
update a control from another thread can result in the program becoming non-responsive or terminating
abnormally. Because this event is generated in the context of the client thread, not the thread that created
the class instance, you cannot directly modify a control from within this event handler. Instead, you must
create a delegate and use the Invoke method to marshal invocations to the associated UI thread. For
more information, refer to the documentation for the control.

See Also
InternetServer Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnWrite Event

Provides data for the OnWrite event.

For a list of all members of this type, see InternetServer.WriteEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.InternetServer.WriteEventArgs

[Visual Basic]
Public Class InternetServer.WriteEventArgs
 Inherits EventArgs

[C#]
public class InternetServer.WriteEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
WriteEventArgs specifies the socket handle for the current client session.

The OnWrite event is generated when the client can accept data from the server. The Handle event
argument property specifies the handle to the client socket and can be used in conjunction with the Write
or WriteLine methods.

This event is typically fired once when the client connection is established with the server, the session
thread starts and the client socket enters a writable state. If the internal send buffer for the client socket
becomes full, this event will fire again when more data can be written to the socket. It is important to note
that this event is level-triggered and will not fire repeatedly if the client socket is writable. Under most
circumstances this event fire only once for each client session after the initial connection has been
established.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
InternetServer.WriteEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs Class

InternetServer.WriteEventArgs overview

Public Instance Constructors

 InternetServer.WriteEventArgs Constructor Initializes a new instance of the
InternetServer.WriteEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
InternetServer.WriteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs Members

Initializes a new instance of the InternetServer.WriteEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public InternetServer.WriteEventArgs();

See Also
InternetServer.WriteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs Constructor

The properties of the InternetServer.WriteEventArgs class are listed below. For a complete list of
InternetServer.WriteEventArgs class members, see the InternetServer.WriteEventArgs Members topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the client session.

See Also
InternetServer.WriteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs Properties

Gets a value that specifies the socket handle for the client session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the client socket handle.

Remarks
The Handle property returns the socket handle for the client that generated the event. This handle can be
used in conjunction with methods such as Read and Write to exchange data with the client.

See Also
InternetServer.WriteEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.WriteEventArgs.Handle Property

Represents the method that will handle the OnAccept event.

[Visual Basic]
Public Delegate Sub InternetServer.OnAcceptEventHandler(_
 ByVal sender As Object, _
 ByVal e As AcceptEventArgs _
)

[C#]
public delegate void InternetServer.OnAcceptEventHandler(

 object sender,
 AcceptEventArgs e
);

Parameters
sender

The source of the event.

e
An AcceptEventArgs that contains the event data.

Remarks
When you create an OnAcceptEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnAcceptEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnAcceptEventHandler Delegate

Represents the method that will handle the OnCancel event.

[Visual Basic]
Public Delegate Sub InternetServer.OnCancelEventHandler(_
 ByVal sender As Object, _
 ByVal e As CancelEventArgs _
)

[C#]
public delegate void InternetServer.OnCancelEventHandler(

 object sender,
 CancelEventArgs e
);

Parameters
sender

The source of the event.

e
An CancelEventArgs that contains the event data.

Remarks
When you create an OnCancelEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnCancelEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnCancelEventHandler Delegate

Represents the method that will handle the OnConnect event.

[Visual Basic]
Public Delegate Sub InternetServer.OnConnectEventHandler(_
 ByVal sender As Object, _
 ByVal e As ConnectEventArgs _
)

[C#]
public delegate void InternetServer.OnConnectEventHandler(

 object sender,
 ConnectEventArgs e
);

Parameters
sender

The source of the event.

e
An ConnectEventArgs that contains the event data.

Remarks
When you create an OnConnectEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnConnectEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnConnectEventHandler Delegate

Represents the method that will handle the OnDisconnect event.

[Visual Basic]
Public Delegate Sub InternetServer.OnDisconnectEventHandler(_
 ByVal sender As Object, _
 ByVal e As DisconnectEventArgs _
)

[C#]
public delegate void InternetServer.OnDisconnectEventHandler(

 object sender,
 DisconnectEventArgs e
);

Parameters
sender

The source of the event.

e
An DisconnectEventArgs that contains the event data.

Remarks
When you create an OnDisconnectEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnDisconnectEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnDisconnectEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub InternetServer.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void InternetServer.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnErrorEventHandler Delegate

Represents the method that will handle the OnRead event.

[Visual Basic]
Public Delegate Sub InternetServer.OnReadEventHandler(_
 ByVal sender As Object, _
 ByVal e As ReadEventArgs _
)

[C#]
public delegate void InternetServer.OnReadEventHandler(

 object sender,
 ReadEventArgs e
);

Parameters
sender

The source of the event.

e
An ReadEventArgs that contains the event data.

Remarks
When you create an OnReadEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnReadEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnReadEventHandler Delegate

Represents the method that will handle the OnTimeout event.

[Visual Basic]
Public Delegate Sub InternetServer.OnTimeoutEventHandler(_
 ByVal sender As Object, _
 ByVal e As TimeoutEventArgs _
)

[C#]
public delegate void InternetServer.OnTimeoutEventHandler(

 object sender,
 TimeoutEventArgs e
);

Parameters
sender

The source of the event.

e
An TimeoutEventArgs that contains the event data.

Remarks
When you create an OnTimeoutEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnTimeoutEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnTimeoutEventHandler Delegate

Represents the method that will handle the OnWrite event.

[Visual Basic]
Public Delegate Sub InternetServer.OnWriteEventHandler(_
 ByVal sender As Object, _
 ByVal e As WriteEventArgs _
)

[C#]
public delegate void InternetServer.OnWriteEventHandler(

 object sender,
 WriteEventArgs e
);

Parameters
sender

The source of the event.

e
An WriteEventArgs that contains the event data.

Remarks
When you create an OnWriteEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnWriteEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.OnWriteEventHandler Delegate

Specifies the error codes returned by the InternetServer class.

[Visual Basic]
Public Enum InternetServer.ErrorCode

[C#]
public enum InternetServer.ErrorCode

Remarks
The InternetServer class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

InternetServer.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidbuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

errorOperationNotSupported The specified operation is not supported.

errorInvalidProtocolVersion Invalid application protocol version specified.

errorNoServerResponse No data returned from server.

errorInvalidServerResponse Invalid data returned from server.

errorUnexpectedServerResponse Unexpected response code returned from server.

errorServerTransactionFailed Server transaction failed.

errorServiceUnavailable The service is currently unavailable.

errorServiceNotReady The service is not ready, try again later.

errorServerResyncFailed Unable to resynchronize with server.

errorInvalidProxyType Invalid proxy server type specified.

errorProxyRequired Resource must be accessed through specified
proxy.

errorInvalidProxyLogin Unable to login to proxy server using specified
credentials.

errorProxyResyncFailed Unable to resynchronize with proxy server.

errorInvalidCommand Invalid command specified.

errorInvalidCommandParameter Invalid command parameter specified.

errorInvalidCommandSequence Invalid command sequence specified.

errorCommandNotImplemented Specified command not implemented on this
server.

errorCommandNotAuthorized Specified command not authorized for the current
user.

errorCommandAborted Specified command was aborted by the remote
host.

errorOptionNotSupported The specified option is not supported on this
server.

errorRequestNotCompleted The current client request has not been
completed.

errorInvalidUserName The specified username is invalid.

errorInvalidPassword The specified password is invalid.

errorInvalidAccount The specified account name is invalid.

errorAccountRequired Account name has not been specified.

errorInvalidAuthenticationType Invalid authentication protocol specified.

errorAuthenticationRequired User authentication is required.

errorProxyAuthenticationRequired Proxy authentication required.

errorAlreadyAuthenticated User has already been authenticated.

errorAuthenticationFailed Unable to authenticate the specified user.

errorNetworkAdapter Unable to determine network adapter
configuration.

errorInvalidRecordType Invalid record type specified.

errorInvalidRecordName Invalid record name specified.

errorInvalidRecordData Invalid record data specified.

errorConnectionOpen Data connection already established.

errorConnectionClosed Server closed data connection.

errorConnectionPassive Data connection is passive.

errorConnectionFailed Unable to open data connection to server.

errorInvalidSecurityLevel Data connection cannot be opened with this
security setting.

errorCachedTLSRequired Data connection requires cached TLS session.

errorDataReadOnly Data connection is read-only.

errorDataWriteOnly Data connection is write-only.

errorEndOfData End of data.

errorRemoteFileUnavailable Remote file is unavailable.

errorInsufficientStorage Insufficient storage on server.

errorStorageallocation File exceeded storage allocation on server.

errorDirectoryExists The specified directory already exists.

errorDirectoryEmpty No files returned by the server for the specified
directory.

errorEndOfDirectory End of directory listing.

errorUnknownDirectoryFormat Unknown directory format.

errorInvalidResource Invalid resource name specified.

errorResourceRedirected The specified resource has been redirected.

errorResourceRestricted Access to this resource has been restricted.

errorResourceNotModified The specified resource has not been modified.

errorResourceNotFound The specified resource cannot be found.

errorResourceConflict Request could not be completed due to the
current state of the resource.

errorResourceRemoved The specified resource has been permanently
removed from this server.

errorContentLengthRequired Request must include the content length.

errorRequestPrecondition Request could not be completed due to server
precondition.

errorUnsupportedMediaType Request specified an unsupported media type.

errorInvalidContentRange Content range specified for this resource is invalid.

errorInvalidMessagePart Message is not multipart or an invalid message
part was specified.

errorInvalidMessageHeader The specified message header is invalid or has not
been defined.

errorInvalidMessageBoundary The multipart message boundary has not been
defined.

errorNoFileAttachment The current message part does not contain a file
attachment.

errorUnknownFileType The specified file type could not be determined.

errorDataNotEncoded The specified data block could not be encoded.

errorDataNotDecoded The specified data block could not be decoded.

errorFileNotEncoded The specified file could not be encoded.

errorFileNotDecoded The specified file could not be decoded.

errorNoMessageText No message text.

errorInvalidCharacterSet Invalid character set specified.

errorInvalidEncodingType Invalid encoding type specified.

errorInvalidMessageNumber Invalid message number specified.

errorNoReturnAddress No valid return address specified.

errorNoValidRecipients No valid recipients specified.

errorInvalidRecipient The specified recipient address is invalid.

errorRelayNotAuthorized The specified domain is invalid or server will not
relay messages.

errorMailboxUnavailable Specified mailbox is currently unavailable.

errorMailboxReadOnly The selected mailbox cannot be modified.

errorMailboxNotSelected No mailbox has been selected.

errorInvalidMailbox Specified mailbox is invalid.

errorInvalidDomain The specified domain name is invalid or not
recognized.

errorInvalidSender The specified sender address is invalid or not
recognized.

errorMessageNotDelivered Message not delivered to any of the specified
recipients.

errorEndOfMessageData No more message data available to be read

errorInvalidmessageSize The specified message size is invalid.

errorMessageNotCreated The message could not be created in the specified
mailbox.

errorNoMoreMailboxes No more mailboxes exist on this server.

errorInvalidEmulationType The specified terminal emulation type is invalid.

errorInvalidFontHandle The specified font handle is invalid.

errorInvalidFontName The specified font name is invalid or unavailable.

errorInvalidPacketSize The specified packet size is invalid.

errorInvalidPacketData The specified packet data is invalid.

errorInvalidPacketId The unique packet identifier is invalid.

errorPacketTTLExpired The specified packet time-to-live period has
expired.

errorInvalidNewsGroup Invalid newsgroup specified.

errorNoNewsgroupSelected No newsgroup selected.

errorEmptyNewsgroup No articles in specified newsgroup.

errorInvalidArticle Invalid article number specified.

errorNoArticleSelected No article selected in the current newsgroup.

errorFirstArticle First article in current newsgroup.

errorLastArticle Last article in current newsgroup.

errorArticleExists Unable to transfer article, article already exists.

errorArticleRejected Unable to transfer article, article rejected.

errorArticleTransferFailed Article transfer failed.

errorArticlePostingDenied Posting is not permitted on this server.

errorArticlePostingFailed Unable to post article on this server.

errorInvalidDateFormat The specified date format is not recognized.

errorFeatureNotSupported The specified feature is not supported on this
server.

errorInvalidFormHandle The specified form handle is invalid or a form has
not been created.

errorInvalidFormAction The specified form action is invalid or has not been
specified.

errorInvalidFormMethod The specified form method is invalid or not
supported.

errorInvalidFormType The specified form type is invalid or not supported.

errorInvalidFormField The specified form field name is invalid or does
not exist.

errorEmptyForm The specified form does not contain any field
values.

errorMaximumConnections The maximum number of client connections
exceeded.

errorThreadCreationFailed Unable to create a new thread for the current
process.

errorInvalidThreadHandle The specified thread handle is no longer valid.

errorThreadTerminated The specified thread has been terminated.

errorThreadDeadlock The operation would result in the current thread
becoming deadlocked.

errorInvalidClientMoniker The specified moniker is not associated with any
client session.

errorClientMonikerExists The specified moniker has been assigned to
another client session.

errorServerInactive The specified server is not listening for client
connections.

errorServerSuspended The specified server is suspended and not
accepting client connections.

errorNoMessageStore No message store has been specified.

errorMessageStoreChanged The message store has changed since it was last
accessed.

errorMessageNotFound No message was found that matches the specified
criteria.

errorMessageDeleted The specified message has been deleted.

errorFileChecksumMismatch The local and remote file checksums do not
match.

errorFileSizeMismatch The local and remote file sizes do not match.

errorInvalidFeedUrl The news feed URL is invalid or specifies an
unsupported protocol.

errorInvalidFeedFormat The internal format of the news feed is invalid.

errorInvalidFeedVersion This version of the news feed is not supported.

errorChannelEmpty There are no valid items found in this news feed.

errorInvalidItemNumber The specified channel item identifier is invalid.

errorItemNotFound The specified channel item could not be found.

errorItemEmpty The specified channel item does not contain any
data.

errorInvalidItemProperty The specified item property name is invalid.

errorItemPropertyNotFound The specified item property has not been defined.

errorInvalidChannelTitle The channel title is invalid or has not been defined.

errorInvalidChannelLink The channel hyperlink is invalid or has not been
defined.

errorInvalidChannelDescription The channel description is invalid or has not been
defined.

errorInvalidItemText The description for an item is invalid or has not
been defined.

errorInvalidItemLink The hyperlink for an item is invalid or has not been
defined.

errorInvalidServiceType The specified service type is invalid.

errorServiceSuspended Access to the specified service has been
suspended.

errorServiceRestricted Access to the specified service has been restricted.

errorInvalidProviderName The specified provider name is invalid or unknown.

errorInvalidPhoneNumber The specified phone number is invalid or not
supported in this region.

errorGatewayNotFound A message gateway cannot be found for the
specified provider.

errorMessageTooLong The message exceeds the maximum number of
characters permitted.

errorInvalidProviderData The request returned invalid or incomplete service
provider data.

errorInvalidGatewayData The request returned invalid or incomplete
message gateway data.

errorMultipleProviders The request has returned multiple service
providers.

errorProviderNotFound The specified service provider could not be found.

errorInvalidMessageService The specified message is not supported with this
service type.

errorInvalidMessageFormat The specified message format is invalid.

errorInvalidConfiguration The specified configuration options are invalid.

errorServerActive The requested action is not permitted while the
server is active.

errorServerPortBound Unable to obtain exclusive use of the specified
local port.

errorInvalidClientSession The specified client identifier is invalid for this
session.

errorClientNotIdentified The specified client has not provided user
credentials.

errorInvalidClientState The requested action cannot be performed at this
time.

errorInvalidResultCode The specified result code is not valid for this
protocol

errorCommandRequired The specified command is required and cannot be
disabled.

errorCommandDisabled The specified command has been disabled.

errorCommandSequence The command cannot be processed at this time.

errorCommandCompleted The previous command has completed.

errorInvalidProgramName The specified program name is invalid or
unrecognized.

errorInvalidRequestHeader The request header contains one or more invalid
values.

errorInvalidVirtualHost The specified virtual host name is invalid.

errorVirtualHostNotFound The specified virtual host does not exist.

errorTooManyVirtualHosts Too many virtual hosts created for this server.

errorInvalidVirtualPath The specified virtual path name is invalid.

errorVirtualPathNotFound The specified virtual path does not exist.

errorTooManyVirtualPaths Too many virtual paths created for this server.

errorInvalidTask The asynchronous task identifier is invalid.

errorTaskActive The asynchronous task has not finished.

errorTaskQueued The asynchronous task has been queued.

errorTaskSuspended The asynchronous task has been suspended.

errorTaskFinished The asynchronous task has finished.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace | LastError Property | LastErrorString Property | OnError Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the security protocols that the InternetServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetServer.SecurityProtocols

[C#]
[Flags]
public enum InternetServer.SecurityProtocols

Remarks
The InternetServer class uses the SecurityProtocols enumeration to specify one or more security
protocols to be used when establishing a connection with a remote host. Multiple protocols may be
specified if necessary and the actual protocol used will be negotiated with the remote host. It is
recommended that most applications use protocolDefault when starting a secure server.

Members

Member Name Description Value

protocolNone No security protocol will be used, a
secure connection will not be
established.

0

protocolSSL2 The SSL 2.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections.

1

protocolSSL3 The SSL 3.0 protocol should be used.
This protocol has been deprecated and
is no longer widely used. It is not
recommended that this protocol be
used when establishing secure
connections. In most cases, this protocol
is only selected if TLS is not supported
by the server.

2

protocolTLS10 The TLS 1.0 protocol should be used.
This version of the protocol is
commonly used by older servers and is
the only version of TLS supported on
Windows platforms prior to Windows 7
SP1 and Windows Server 2008 R2.

4

protocolTLS11 The TLS 1.1 protocol should be used.
This version of TLS is supported on
Windows 7 SP1 and Windows Server
2008 R2 and later versions of the

8

InternetServer.SecurityProtocols Enumeration

operating system.

protocolTLS12 The TLS 1.2 protocol should be used.
This is the default version of the
protocol and is supported on Windows
7 SP1 and Windows Server 2008 R2 and
later versions of Windows. It is
recommended that you use this version
of TLS.

16

protocolTLS13 The TLS 1.3 protocol should be used.
This is the latest version of the protocol
and is only supported on Windows 10,
Windows Server 2019 and later. If this
protocol version is not supported, TLS
1.2 will be used instead.

32

protocolSSL Any version of the Secure Sockets Layer
(SSL) protocol should be used. The
actual protocol version used will be
negotiated with the remote host.

3

protocolTLS Any version of the the Transport Layer
Security (TLS) protocol should be used.
The actual protocol version used will be
negotiated with the remote host, with
with preference for TLS 1.2.

28

protocolTLS1 Version 1.0, 1.1 or 1.2 of the the
Transport Layer Security (TLS) protocol
should be used. The actual protocol
version used will be negotiated with the
remote host, with preference for TLS
1.2.

28

protocolDefault The default selection of security
protocols will be used when establishing
a connection. The TLS 1.2, 1.1 and 1.0
protocols will be negotiated with the
host, in that order of preference. This
option will always request the latest
version of the preferred security
protocols and is the recommended
value.

16

protocolUnknown An unknown or unsupported security
protocol has been specified. This value
indicates an error condition.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the options that the InternetServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetServer.ServerOptions

[C#]
[Flags]
public enum InternetServer.ServerOptions

Remarks
The InternetServer class uses the ServerOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionDontRoute This option specifies default routing
should not be used. This option should
not be specified unless absolutely
necessary.

2

optionKeepAlive This option specifies that packets are to
be sent to the remote system when no
data is being exchanged to keep the
connection active. This option is only
valid for stream sockets.

4

optionReuseAddress This option specifies the local address
can be reused. This option is commonly
used by server applications.

8

optionNoDelay This option disables the Nagle
algorithm, which buffers
unacknowledged data and insures that
a full-size packet can be sent to the
remote host.

16

optionSecure This option specifies that a secure,
encrypted connection will be
established with the remote host.

4096

optionSecureFallback This option specifies the server should
permit the use of less secure cipher
suites for compatibility with legacy
clients. If this option is specified, the
server will permit connections using TLS
1.0 and cipher suites that use RC4, MD5
and SHA1.

32768

InternetServer.ServerOptions Enumeration

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the priorities that the InternetServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetServer.ServerPriority

[C#]
[Flags]
public enum InternetServer.ServerPriority

Members

Member Name Description Value

priorityBackground This priority significantly reduces the
memory, processor and network
resource utilization for the server. It is
typically used with lightweight services
running in the background that are
designed for few client connections.
Each client thread will be assigned a
lower scheduling priority and will be
frequently forced to yield execution to
other threads.

0

priorityLow This priority lowers the overall resource
utilization for the client session and
meters the processor utilization for the
client session. Each client thread will be
assigned a lower scheduling priority and
will occasionally be forced to yield
execution to other threads.

1

priorityNormal The default priority which balances
resource and processor utilization. It is
recommended that most applications
use this priority.

2

priorityHigh This priority increases the overall
resource utilization for each client
session and their threads will be given
higher scheduling priority. It is not
recommended that this priority be used
on a system with a single processor.

3

priorityCritical This priority can significantly increase
processor, memory and network
utilization. Each client thread will be
given higher scheduling priority and will
be more responsive to network events.
It is not recommended that this priority
be used on a system with a single

4

InternetServer.ServerPriority Enumeration

processor.

priorityInvalid An invalid transfer priority which
indicates an error condition.

-1

priorityDefault The default server priority. This is the
same as specifying priorityNormal.

2

priorityLowest The lowest valid server priority. This is
the same as specifying
priorityBackground.

0

priorityHighest The highest valid server priority. This is
the same as specifying priorityCritical.

4

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the status values that may be returned by the InternetServer class.

[Visual Basic]
Public Enum InternetServer.ServerStatus

[C#]
public enum InternetServer.ServerStatus

Remarks
The InternetServer class uses the ServerStatus enumeration to identify the current status of the server.

Members

Member Name Description

serverInactive The server is currently inactive. This status is
returned when no server has been started, or after
a server has been stopped.

serverStarted The server has initialized and is preparing to listen
for client connections. This status is returned after
the server thread has been started, but before the
listening socket has been created.

serverListening The server is actively listening for incoming client
connections. This status is returned after the server
thread has been started and the listening socket
has been created.

serverSuspended The server has been suspended and is no longer
accepting client connections. Any incoming client
connection is queued, and will be accepted when
the server resumes normal operation.

serverShutdown The server has been stopped and is in the process
of terminating all active client sessions.

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

InternetServer.ServerStatus Enumeration

Specifies the logging options that the InternetServer class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum InternetServer.TraceOptions

[C#]
[Flags]
public enum InternetServer.TraceOptions

Remarks
The InternetServer class uses the TraceOptions enumeration to specify what kind of debugging
information is written to the trace logfile. These options are only meaningful when trace logging is
enabled by setting the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.InternetServer (in SocketTools.InternetServer.dll)

See Also
SocketTools Namespace

InternetServer.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

A general purpose TCP/IP networking class for developing client and server applications.

For a list of all members of this type, see SocketWrench Members.

System.Object
 SocketTools.SocketWrench

[Visual Basic]
Public Class SocketWrench
 Implements IDisposable

[C#]
public class SocketWrench : IDisposable

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
At the core of each of the SocketTools networking classes is the Windows Sockets API. This provides a low
level interface for sending and receiving data over the Internet or a local intranet using the Transmission
Control Protocol (TCP) and/or User Datagram Protocol (UDP). The SocketWrench class provides a simpler
interface to the Windows Sockets API, without sacrificing features or functionality. Using SocketWrench,
you can easily create client and server applications while avoiding many of the mundane tasks and
common problems that programmers face when developing Internet applications.

This class supports secure connections using the standard SSL and TLS protocols and can also be used to
create secure, custom server programs. Both implicit and explicit SSL connections are supported, enabling
the class to work with a wide variety of client and server applications without requiring that you use third-
party classes or understand Microsoft's cryptography classes.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Class

SocketWrench overview

Public Instance Constructors

 SocketWrench Constructor Initializes a new instance of the SocketWrench
class.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

HostAlias Returns the aliases for a given host name.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

AddressFamily Gets and sets a value that determines which
version of the Internet Protocol will be used.

AtMark Get a value that indicates if the next receive will
return urgent data.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Backlog Gets and sets a value that indicates the number of
connections that may be queued for a listening
socket.

Blocking Gets and sets a value which indicates if the socket
is in blocking mode.

Broadcast Gets and sets a value which indicates if datagrams
will be broadcast over the local network.

ByteOrder Gets and sets a value which indicates how integer
data is read and written to the socket.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the security certificate.

CertificatePassword Gets and sets the password associated with the
security certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

SocketWrench Members

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.AddressFamily.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.CertificatePassword.html

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the security
certificate.

CipherStrength Gets a value that indicates the length of the key
used by the encryption algorithm for a secure
connection.

CodePage Gets and sets the code page used when reading
and writing text.

ExternalAddress Gets a value that specifies the external Internet
address for the local system.

Handle Gets a value that specifies the socket handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostFile Gets and sets a value that specifies the name of a
host file used to resolve host names and
addresses.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

InLine Gets and sets a value that indicates if urgent data
is received in-line with non-urgent data.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking socket operation.

IsClosed Gets a value which indicates if the connection to
the remote host has been closed.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the socket is
listening for client connections.

IsReadable Gets a value which indicates if there is data
available to be read from the socket.

IsWritable Gets a value which indicates if data can be written
to the socket without blocking.

KeepAlive Gets and sets a value which indicates if keep-alive

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.CertificateUser.html

packets are sent on a connected socket.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Linger Gets and sets a value which specifies the number
of seconds to wait for the socket to disconnect
from the remote host.

LocalAddress Gets and sets the local Internet address that the
socket will be bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets and sets a value which specifies the local port
number the socket will be bound to.

LocalService Gets and sets a value which specifies the local
service the socket will be bound to.

NoDelay Gets and sets a value which specifies if the Nagle
algorithm should be enabled or disabled.

Options Gets and sets a value which specifies one or more
socket options.

PeerAddress Gets a value that specifies the Internet address of
the remote host.

PeerName Gets a value that specifies the name of the remote
host.

PeerPort Gets a value that specifies the port number used
by the remote host.

PhysicalAddress Gets a value which specifies the MAC address for
the local system's network adapter.

Protocol Gets and sets a value which specifies the socket
protocol.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ReservedPort Gets and sets a value which indicates if a reserved
port number was used.

ReuseAddress Gets and sets a value which indicates if a socket
address can be reused.

Route Gets and sets a value which indicates if packets
should be routed.

Secure Gets and sets a value which specifies if a secure
connection is established.

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.LocalService.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.RemoteService.html

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

Status Gets a value which specifies the current status of
the socket.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Urgent Gets and sets a value which specifies if urgent data
will be read or written.

Version Gets a value which returns the current version of
the SocketWrench class library.

Public Instance Methods

Abort Abort the connection with a remote host.

Accept Overloaded. Accepts a client connection on a
listening socket, specifying a timeout period and
one or more socket options.

AttachThread Attach an instance of the class to the current
thread

Bind Overloaded. Bind the socket to the specified local
address and port number.

Cancel Cancel the current blocking socket operation.

Connect Overloaded. Establish a connection with a remote
host.

ConnectUrl Overloaded. Establish a connection with a remote
host using a URL.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
SocketWrench.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
SocketWrench class.

Listen Overloaded. Listen for incoming client
connections, specifying the local network address,
port number and connection backlog.

Peek Overloaded. Read data from the socket and store
it in a byte array, but do not remove the data from
the socket buffers.

Read Overloaded. Read data from the socket and store
it in a byte array.

ReadFrom Overloaded. Read data from the socket and store
it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
socket and return it in a string buffer.

ReadStream Overloaded. Read a data stream from the socket
and store it in the specified byte array.

Reject Rejects a connection request from a remote host.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Resolve Resolves a host name to a host IP address.

Shutdown Overloaded. Disable sending or receiving data on
the socket.

StoreStream Overloaded. Reads a data stream from the socket
and stores it in the specified file.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the socket.

WriteLine Overloaded. Send a line of text to the remote host,
terminated by a carriage-return and linefeed.

WriteStream Overloaded. Write a stream of bytes to the socket.

WriteTo Overloaded. Write one or more bytes of data to
the socket.

Public Instance Events

OnAccept Occurs when a remote host attempts to establish a
connection with the local system.

OnCancel Occurs when a blocking socket operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnProgress Occurs as a data stream is being read or written to
the socket.

OnRead Occurs when data is available to be read from the
socket.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the socket.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the SocketWrench class and
optionally releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Initializes a new instance of the SocketWrench class.

[Visual Basic]
Public Sub New()

[C#]
public SocketWrench();

Example
The following example demonstrates creating an instance of the SocketWrench class object and
resolving a hostname into an Internet address using the Resolve method.

Dim Socket As SocketTools.SocketWrench
Dim strHostName As String
Dim strHostAddress As String

Socket = New SocketTools.SocketWrench
strHostName = TextBox1.Text.Trim()

If Socket.Resolve(strHostName, strHostAddress) Then
 StatusBar1.Text = "The Internet address for " + strHostName + " is " +
strHostAddress
Else
 StatusBar1.Text = "The Internet address for " + strHostName + " could not be
resolved"
End If

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Constructor

The fields of the SocketWrench class are listed below. For a complete list of SocketWrench class
members, see the SocketWrench Members topic.

Public Instance Fields

AdapterAddress Returns the IP address associated with the
specified network adapter.

HostAlias Returns the aliases for a given host name.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Fields

Returns the IP address associated with the specified network adapter.

[Visual Basic]
Public ReadOnly AdapterAddress As AdapterAddressArray

[C#]
public readonly AdapterAddressArray AdapterAddress;

Remarks
The AdapterAddress array returns the IP addresses that are associated with the local network or remote
dial-up network adapters configured on the system. The AdapterCount property can be used to
determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and dial-up
adapters will not be listed in a specific order. An application should not make the assumption that the first
address returned by AdapterAddress always refers to a local network adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
SocketWrench Class | SocketTools Namespace | AdapterAddressArray Class | AdapterCount Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AdapterAddress Field

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.AdapterAddressArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.AdapterAddressArray.html

Returns the aliases for a given host name.

[Visual Basic]
Public ReadOnly HostAlias As HostAliasArray

[C#]
public readonly HostAliasArray HostAlias;

Remarks
The HostAlias array returns the aliases assigned to the host specified by the HostAddress or HostName
properties. If the host address or name can be resolved, the first element in the HostAlias array always
refers to the host's fully qualified domain name.

The end of the alias list is indicated when the property returns an empty string. The array is zero based,
meaning that the first index value is zero.

Example

Dim nIndex As Integer

ListBox1.Items.Clear()
Socket.HostName = strHostName

For nIndex = 0 To Socket.HostAliases - 1
 ListBox1.Items.Add(Socket.HostAlias(nIndex))
Next

See Also
SocketWrench Class | SocketTools Namespace | HostAliasArray Class

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HostAlias Field

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.HostAliasArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.HostAliasArray.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.HostAliasArray.html

The properties of the SocketWrench class are listed below. For a complete list of SocketWrench class
members, see the SocketWrench Members topic.

Public Instance Properties

AdapterCount Get the number of available local and remote
network adapters.

AddressFamily Gets and sets a value that determines which
version of the Internet Protocol will be used.

AtMark Get a value that indicates if the next receive will
return urgent data.

AutoResolve Gets and sets a value that determines if host
names and addresses are automatically resolved.

Backlog Gets and sets a value that indicates the number of
connections that may be queued for a listening
socket.

Blocking Gets and sets a value which indicates if the socket
is in blocking mode.

Broadcast Gets and sets a value which indicates if datagrams
will be broadcast over the local network.

ByteOrder Gets and sets a value which indicates how integer
data is read and written to the socket.

CertificateExpires Get a value that specifies the date that the security
certificate expires.

CertificateIssued Get a value that specifies the date that the security
certificate was issued.

CertificateIssuer Get a value that provides information about the
organization that issued the certificate.

CertificateName Gets and sets a value that specifies the name of
the security certificate.

CertificatePassword Gets and sets the password associated with the
security certificate.

CertificateStatus Gets a value which indicates the status of the
security certificate returned by the remote host.

CertificateStore Gets and sets a value that specifies the name of
the local certificate store.

CertificateSubject Gets a value that provides information about the
organization that the server certificate was issued
to.

CertificateUser Gets and sets the user that owns the security
certificate.

CipherStrength Gets a value that indicates the length of the key

SocketWrench Properties

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.AddressFamily.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.CertificatePassword.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.CertificateUser.html

used by the encryption algorithm for a secure
connection.

CodePage Gets and sets the code page used when reading
and writing text.

ExternalAddress Gets a value that specifies the external Internet
address for the local system.

Handle Gets a value that specifies the socket handle
allocated for the current session.

HashStrength Gets a value which specifies the length of the
message digest that was selected for a secure
connection.

HostAddress Gets and sets a value which specifies the Internet
address used to establish a connection.

HostFile Gets and sets a value that specifies the name of a
host file used to resolve host names and
addresses.

HostName Gets and sets a value which specifies the host
name used to establish a connection.

InLine Gets and sets a value that indicates if urgent data
is received in-line with non-urgent data.

IsBlocked Gets a value which indicates if the current thread is
performing a blocking socket operation.

IsClosed Gets a value which indicates if the connection to
the remote host has been closed.

IsConnected Gets a value which indicates if a connection to the
remote host has been established.

IsInitialized Gets a value which indicates if the current instance
of the class has been initialized successfully.

IsListening Gets a value which indicates if the socket is
listening for client connections.

IsReadable Gets a value which indicates if there is data
available to be read from the socket.

IsWritable Gets a value which indicates if data can be written
to the socket without blocking.

KeepAlive Gets and sets a value which indicates if keep-alive
packets are sent on a connected socket.

LastError Gets and sets a value which specifies the last error
that has occurred.

LastErrorString Gets a value which describes the last error that has
occurred.

Linger Gets and sets a value which specifies the number
of seconds to wait for the socket to disconnect
from the remote host.

LocalAddress Gets and sets the local Internet address that the
socket will be bound to.

LocalName Gets a value which specifies the host name for the
local system.

LocalPort Gets and sets a value which specifies the local port
number the socket will be bound to.

LocalService Gets and sets a value which specifies the local
service the socket will be bound to.

NoDelay Gets and sets a value which specifies if the Nagle
algorithm should be enabled or disabled.

Options Gets and sets a value which specifies one or more
socket options.

PeerAddress Gets a value that specifies the Internet address of
the remote host.

PeerName Gets a value that specifies the name of the remote
host.

PeerPort Gets a value that specifies the port number used
by the remote host.

PhysicalAddress Gets a value which specifies the MAC address for
the local system's network adapter.

Protocol Gets and sets a value which specifies the socket
protocol.

RemotePort Gets and sets a value which specifies the remote
port number.

RemoteService Gets and sets a value which specifies the remote
service.

ReservedPort Gets and sets a value which indicates if a reserved
port number was used.

ReuseAddress Gets and sets a value which indicates if a socket
address can be reused.

Route Gets and sets a value which indicates if packets
should be routed.

Secure Gets and sets a value which specifies if a secure
connection is established.

SecureCipher Gets a value that specifies the encryption
algorithm used for a secure connection.

SecureHash Gets a value that specifies the message digest
algorithm used for a secure connection.

SecureKeyExchange Gets a value that specifies the key exchange
algorithm used for a secure connection.

SecureProtocol Gets and sets a value which specifies the protocol
used for a secure connection.

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.LocalService.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.RemoteService.html

Status Gets a value which specifies the current status of
the socket.

ThreadModel Gets and sets a value which specifies the threading
model for the class instance.

ThrowError Gets and sets a value which specifies if method
calls should throw exceptions when an error
occurs.

Timeout Gets and sets a value which specifies a timeout
period in seconds.

Trace Gets and sets a value which indicates if network
function logging is enabled.

TraceFile Gets and sets a value which specifies the name of
the network function tracing logfile.

TraceFlags Gets and sets a value which specifies the network
function tracing flags.

Urgent Gets and sets a value which specifies if urgent data
will be read or written.

Version Gets a value which returns the current version of
the SocketWrench class library.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Get the number of available local and remote network adapters.

[Visual Basic]
Public ReadOnly Property AdapterCount As Integer

[C#]
public int AdapterCount {get;}

Property Value
Returns the number of available local and remote network adapters.

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress array to
enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress will return an
empty string. This indicates that the system does not have a physical network adapter with an assigned IP
address, and there are no dial-up networking connections currently active. If a dial-up networking
connection is established at some later point, the AdapterCount property will change to 1, and the
AdapterAddress property will return the IP address allocated for that connection.

See Also
SocketWrench Class | SocketTools Namespace | AdapterAddress Field

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AdapterCount Property

Get a value that indicates if the next receive will return urgent data.

[Visual Basic]
Public ReadOnly Property AtMark As Boolean

[C#]
public bool AtMark {get;}

Property Value
Returns true if the next read on the socket will return urgent data.

Remarks
This property can only be used if the Protocol property is set to SocketProtocol.socketStream and the
InLine property has been set to true.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AtMark Property

Gets and sets a value that determines if host names and addresses are automatically resolved.

[Visual Basic]
Public Property AutoResolve As Boolean

[C#]
public bool AutoResolve {get; set;}

Property Value
Returns true if host names are automatically resolved to Internet addresses. The default value is false.

Remarks
Setting the AutoResolve property determines if the class automatically resolves host names and
addresses specified by the HostName and HostAddress properties. If set to true, setting the HostName
property will cause the class to automatically determine the corresponding IP address and update the
HostAddress property accordingly. Likewise, setting the HostAddress property will cause the class to
determine the host name and update the HostName property. Setting this property to false prevents the
class from resolving host names until a connection attempt is made.

It is important to note that setting the HostName or HostAddress property may cause the current thread
to block, sometimes for several seconds, until the name or address is resolved. To prevent this behavior,
set this property value to false.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AutoResolve Property

Gets and sets a value that indicates the number of connections that may be queued for a listening socket.

[Visual Basic]
Public Property Backlog As Integer

[C#]
public int Backlog {get; set;}

Property Value
Returns an integer value that specifies the size of the backlog queue. The default value is 5.

Remarks
The Backlog property specifies the maximum size of the queue used to manage pending connections to
the service. If the property is set to value which exceeds the maximum size for the underlying service
provider, it will be silently adjusted to the nearest legal value. There is no standard way to determine what
the maximum backlog value is.

This property must be set to the desired value before the Listen method is called, if the Listen method is
used with default parameters.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Backlog Property

Gets and sets a value which indicates if the socket is in blocking mode.

[Visual Basic]
Public Property Blocking As Boolean

[C#]
public bool Blocking {get; set;}

Property Value
Returns true if the socket is in blocking mode; otherwise it returns false. The default value is true.

Remarks
Setting the Blocking property determines if socket operations complete synchronously or asynchronously.
If set to true, then each socket operation (such as sending or receiving data) will return when the
operation has completed or timed-out. If set to false, socket operations will return immediately. If the
operation would result in the socket blocking (such as attempting to read data when no data has been
sent by the remote host), an error is generated.

It is important to note that certain events, such as OnDisconnect, OnRead and OnWrite are only fired if
the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Blocking Property

Gets and sets a value which indicates if datagrams will be broadcast over the local network.

[Visual Basic]
Public Property Broadcast As Boolean

[C#]
public bool Broadcast {get; set;}

Property Value
Returns true if datagrams will be broadcast; otherwise returns false. The default value is false.

Remarks
If the Broadcast property is set to a value of true, the datagram written to the socket will be broadcast to
all systems on the network. Use of this property is restricted to the UDP protocol and the value is ignored
for TCP connections.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Broadcast Property

Gets and sets a value which indicates how integer data is read and written to the socket.

[Visual Basic]
Public Property ByteOrder As SocketByteOrder

[C#]
public SocketWrench.SocketByteOrder ByteOrder {get; set;}

Property Value
A SocketByteOrder enumeration value which specifies the byte order. The default is byteOrderNative.

Remarks
The ByteOrder property is used to specify how integer data is written to and read from the socket. The
default value for this property is byteOrderNative, which specifies that integers should be written in the
native byte order for the local machine. A value of byteOrderNetwork indicates that integers should be
written in network byte order.

When applications write integer values on a socket (instead of string representations of those values), they
should typically be converted to network byte order before they are sent. Likewise, when an integer value
is read, it should then be converted from the network byte order back to the byte order used by the local
machine. The native byte order, also called the host byte order, should only be used if it can be assured
that both the sender and the receiver are running on an identical or compatible machine architectures (for
example, if both systems are Intel-based).

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ByteOrder Property

Get a value that specifies the date that the security certificate expires.

[Visual Basic]
Public ReadOnly Property CertificateExpires As String

[C#]
public string CertificateExpires {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateExpires property returns a string that specifies the date and time that the security
certificate expires. This property will return an empty string if a secure connection has not been
established with the remote host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateExpires Property

Get a value that specifies the date that the security certificate was issued.

[Visual Basic]
Public ReadOnly Property CertificateIssued As String

[C#]
public string CertificateIssued {get;}

Property Value
A string which specifies a date using the local date and time format.

Remarks
The CertificateIssued property returns a string that specifies the date and time that the security certificate
was issued. This property will return an empty string if a secure connection has not been established with
the remote host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateIssued Property

Get a value that provides information about the organization that issued the certificate.

[Visual Basic]
Public ReadOnly Property CertificateIssuer As String

[C#]
public string CertificateIssuer {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateIssuer property returns a string that contains information about the organization that
issued the server certificate. The string value is a comma separated list of tagged name and value pairs. In
the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateIssuer Property

Gets and sets a value that specifies the name of the security certificate.

[Visual Basic]
Public Property CertificateName As String

[C#]
public string CertificateName {get; set;}

Property Value
A string which specifies the certificate name.

Remarks
The CertificateName property sets the common name or friendly name of the certificate that should be
used when establishing a secure client connection or accepting a secure connection from a remote host.
This property is used in conjunction with the CertificateStore property to identify the client or server
certificate.

For client applications, it is only required that you set this property value if the server requires a client
certificate for authentication. If this property is not set, a client certificate will not be provided to the server.
The certificate must be designated as a client certificate and have a private key associated with it,
otherwise the connection attempt will fail.

For server applications, it is required that you specify a certificate name if security has been enabled by
setting the Secure property to true. The certificate must be designated as a server certificate and have a
private key associated with it, otherwise incoming client connections cannot be accepted.

When the certificate store is searched for a matching certificate, it will first search for any certificate with a
friendly name that matches the property value. If no valid certificate is found, it will then search for a
certificate with a matching common name.

Certificates may be installed and viewed on the local system using the Certificate Manager that is included
with the Windows operating system. For more information, refer to the documentation for the Microsoft
Management Console.

See Also
SocketWrench Class | SocketTools Namespace | CertificateStore Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateName Property

Gets a value which indicates the status of the security certificate returned by the remote host.

[Visual Basic]
Public ReadOnly Property CertificateStatus As SecurityCertificate

[C#]
public SocketWrench.SecurityCertificate CertificateStatus {get;}

Property Value
A SecurityCertificate enumeration value which specifies the status of the certificate.

Remarks
The CertificateStatus property is used to determine the status of the security certificate returned by the
remote host when a secure connection has been established. This property value should be checked after
the connection to the server has completed, but prior to beginning a transaction.

Note that if the certificate cannot be validated, the secure connection will not be automatically terminated.
It is the responsibility of your application to determine the best course of action to take if the certificate is
invalid. Even if the security certificate cannot be validated, the data exchanged with the remote host will
still be encrypted.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateStatus Property

Gets and sets a value that specifies the name of the local certificate store.

[Visual Basic]
Public Property CertificateStore As String

[C#]
public string CertificateStore {get; set;}

Property Value
A string which specifies the certificate store name. The default value is the current user's personal
certificate store.

Remarks
The CertificateStore property is used to specify the name of the certificate store which contains the
security certificate to use when establishing a secure connection. The certificate may either be stored in
the registry or in a file. If the certificate is stored in the registry, then this property should be set to one of
the following predefined values:

Store Name Description

CA Certification authority certificates. These are
certificates that are issued by entities which are
entrusted to issue certificates to other individuals
or organizations. Companies such as VeriSign and
Thawte act as certification authorities.

MY Personal certificates and their associated private
keys for the current user. This store typically holds
the client certificates used to establish a user's
credentials. If a certificate store is not specified, this
is the default value that is used.

ROOT Certificates that have been self-signed by a
certificate authority. Root certificates for a number
of different certification authorities such as
VeriSign and Thawte are installed as part of the
operating system and periodically updated by
Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and therefore it is
not necessary to set this property value because that is the default location that will be used to search for
the certificate. This property is only used if the CertificateName property is also set to a valid certificate
name.

If you are using a local certificate store, with the certificate and private key stored in the registry, you can
explicitly specify whether the certificate store for the current user or the local machine (all users) should be
used. This is done by prefixing the certificate store name with "HKCU" for the current user, or "HKLM" for
the local machine. For example, a certificate store name of "HKLM:MY" would specify the personal
certificate store for the local machine, rather than the current user. If neither prefix is specified, it will
default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the property
should specify the full path to the file and must contain both the certificate and private key in PKCS #12

SocketWrench.CertificateStore Property

format. If the file is protected by a password, the CertificatePassword property must also be set to
specify the password.

See Also
SocketWrench Class | SocketTools Namespace | CertificatePassword Property | Secure Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.CertificatePassword.html

Gets a value that provides information about the organization that the server certificate was issued to.

[Visual Basic]
Public ReadOnly Property CertificateSubject As String

[C#]
public string CertificateSubject {get;}

Property Value
A string that contains a comma separated list of name value pairs.

Remarks
The CertificateSubject property returns a string that contains information about the organization that the
server certificate was issued to. The string value is a comma separated list of tagged name and value pairs.
In the nomenclature of the X.500 standard, each of these pairs are called a relative distinguished name
(RDN), and when concatenated together, forms the issuer's distinguished name (DN). For example:

 C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application must
parse the string returned by this property. Some of the common tokens used in the distinguished name
are:

Token Description

C The ISO standard two character country code.

S The name of the state or province.

L The name of the city or locality.

O The name of the company or organization.

OU The name of the department or organizational
unit

CN The common name; with X.509 certificates, this is
the domain name of the site the certificate was
issued for.

This property will return an empty string if a secure connection has not been established with the remote
host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CertificateSubject Property

Gets a value that indicates the length of the key used by the encryption algorithm for a secure connection.

[Visual Basic]
Public ReadOnly Property CipherStrength As Integer

[C#]
public int CipherStrength {get;}

Property Value
An integer value which specifies the encryption key length if a secure connection has been established;
otherwise a value of 0 is returned.

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure data
stream. Common values returned by this property are 128 and 256. A key length of 40 or 56 bits is
considered insecure and subject to brute force attacks. 128-bit and 256-bit keys are considered secure. If
this property returns a value of 0, this means that a secure connection has not been established with the
remote host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CipherStrength Property

Gets and sets the code page used when reading and writing text.

[Visual Basic]
Public Property CodePage As Integer

[C#]
public int CodePage {get; set;}

Property Value
An integer value which specifies the current code page. A value of zero specifies the default code page for
the current locale should be used. To preserve the original Unicode text, you can use code page 65001
which specifies UTF-8 character encoding.

Remarks
All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to as
"octets" in networking terminology. However, strings in .NET are Unicode where each character is
represented by 16 bits. To send and receive data using strings, these Unicode strings are converted to a
stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale, mapping
the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into a string buffer,
the stream of bytes received from the remote host are converted to Unicode before they are returned to
your application.

If you are exchanging text with another system and it appears to corrupted or characters are being
replaced with question marks or other symbols, it is likely the system is sending text which is using a
different character encoding. Most services use UTF-8 encoding to represent non-ASCII characters and
selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a string data type is not
recommended when reading or writing binary data to a socket. If possible, you should always use a byte
array as the buffer parameter for the Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, this class defaults to using the code page for the current locale. This property
value directly corresponds to Windows code page identifiers, and will accept any valid code page
supported by the .NET Framework. Setting this property to an invalid code page will generate an
exception.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.CodePage Property

Gets a value that specifies the external Internet address for the local system.

[Visual Basic]
Public ReadOnly Property ExternalAddress As String

[C#]
public string ExternalAddress {get;}

Property Value
A string which specifies an Internet address using dotted notation.

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the local host
to the Internet. This is typically used by an application executing on a system in a local network that uses a
router which performs Network Address Translation (NAT). In that network configuration, the
LocalAddress property will only return the IP address for the local system on the LAN side of the network
unless a connection has already been established to a remote host. The ExternalAddress property can be
used to determine the IP address assigned to the router on the Internet side of the connection and can be
particularly useful for servers running on a system behind a NAT router.

Using this property requires that you have an active connection to the Internet; checking the value of this
property on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. The class may be unable to determine the external IP address for
the local host for a number of reasons, particularly if the system is behind a firewall or uses a proxy server
that restricts access to external sites on the Internet. If the external address for the local host cannot be
determined, the property will return an empty string.

If the class is able to obtain a valid external address for the local host, that address will be cached for sixty
minutes. Because dial-up connections typically have different IP addresses assigned to them each time the
system is connected to the Internet, it is recommended that this property only be used in conjunction with
broadband connections using a NAT router.

It is important to note that checking this property value may cause the current thread to block until the
external IP address can be resolved and should never be used in conjunction with non-blocking
(asynchronous) socket connections. If you need to check this property value in an application which uses
asynchronous sockets, it is recommended that you create a new thread and access the property from
within that thread.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ExternalAddress Property

Gets a value that specifies the socket handle allocated for the current session.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer which represents a socket handle. If there is no active connection, a value of -1 is returned.

Remarks
The Handle property specifies the socket descriptor of the listening socket. To accept the connection, a
new instance of the SocketWrench class should be created, passing this value to the Accept method in
the new class instance.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Handle Property

Gets a value which specifies the length of the message digest that was selected for a secure connection.

[Visual Basic]
Public ReadOnly Property HashStrength As Integer

[C#]
public int HashStrength {get;}

Property Value
An integer value which specifies the length of the message digest if a secure connection has been
established; otherwise a value of 0 is returned.

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that was
selected. Common values returned by this property are 128 and 160. If this property returns a value of 0,
this means that a secure connection has not been established with the remote host.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HashStrength Property

Gets and sets a value which specifies the Internet address used to establish a connection.

[Visual Basic]
Public Property HostAddress As String

[C#]
public string HostAddress {get; set;}

Property Value
A string which specifies an Internet address using dotted notation.

Remarks
The HostAddress property can be used to set the Internet address for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the address is assigned to a valid host
name, the HostName property will be updated with that value.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HostAddress Property

Gets and sets a value that specifies the name of a host file used to resolve host names and addresses.

[Visual Basic]
Public Property HostFile As String

[C#]
public string HostFile {get; set;}

Property Value
A string which specifies a file name.

Remarks
The HostFile property is used to specify the name of an alternate file for resolving hostnames and IP
addresses. The host file is used as a database that maps an IP address to one or more hostnames, and is
used when setting the HostName or HostAddress properties and establishing a connection with a
remote host. The file is a plain text file, with each line in the file specifying a record, and each field
separated by spaces or tabs. The format of the file must be as follows:

 ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This would be
entered as:

 127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are ignored
up to the end of the line. Blank lines are ignored, as are any lines which do not follow the required format.

Setting this property loads the file into memory allocated for the current thread. If the contents of the file
have changed after the function has been called, those changes will not be reflected when resolving
hostnames or addresses. To reload the host file from disk, set the property again with the same file name.
To remove the alternate host file from memory, specify an empty string as the file name.

If a host file has been specified, it is processed before the default host file when resolving a hostname into
an IP address, or an IP address into a hostname. If the host name or address is not found, or no host file
has been specified, a nameserver lookup is performed.

Because the alternate host file is cached for the current thread, setting this property will affect all instances
of the class in the same thread. For example, if a project has created three instances of the class, setting
the HostFile property will affect all three instances, not just the instance that set the property. To
determine if an alternate host file has been cached, check the property value. If the property returns an
empty string, no alternate host file has been cached.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HostFile Property

Gets and sets a value which specifies the host name used to establish a connection.

[Visual Basic]
Public Property HostName As String

[C#]
public string HostName {get; set;}

Property Value
A string which specifies a host name.

Remarks
The HostName property can be used to set the host name for a remote system that you wish to
communicate with. If the AutoResolve property is set to true and the name can be resolved to a valid
Internet address, the HostAddress property will be updated with that value.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.HostName Property

Gets and sets a value that indicates if urgent data is received in-line with non-urgent data.

[Visual Basic]
Public Property InLine As Boolean

[C#]
public bool InLine {get; set;}

Property Value
Returns true if urgent data will be received in-line; otherwise returns false. The default value is false.

Remarks
The InLine property controls how urgent (out-of-band) data is handled when reading data from the
socket. If set to a value of true, urgent data is placed in the data stream along with non-urgent data. To
determine if the data that is being read is urgent, the AtMark property can be read.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.InLine Property

Gets a value which indicates if the current thread is performing a blocking socket operation.

[Visual Basic]
Public ReadOnly Property IsBlocked As Boolean

[C#]
public bool IsBlocked {get;}

Property Value
Returns true if the current thread is blocking, otherwise returns false.

Remarks
The IsBlocked property returns true if the current thread is blocked performing an operation. Because
the Windows Sockets API only permits one blocking operation per thread of execution, this property
should be checked before starting any blocking operation in response to an event.

If the IsBlocked property returns false, this means there are no blocking operations on the current thread
at that time. However, this does not guarantee that the next socket operation will not fail. An application
should always check the return value from a socket operation and check the value of the LastError
property if an error occurs.

Note that this property will return true if there is any blocking operation being performed by the current
thread, regardless of whether this specific instance of the class is responsible for the blocking operation or
not.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsBlocked Property

Gets a value which indicates if the connection to the remote host has been closed.

[Visual Basic]
Public ReadOnly Property IsClosed As Boolean

[C#]
public bool IsClosed {get;}

Property Value
Returns true if the connection has been closed; otherwise returns false.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsClosed Property

Gets a value which indicates if a connection to the remote host has been established.

[Visual Basic]
Public ReadOnly Property IsConnected As Boolean

[C#]
public bool IsConnected {get;}

Property Value
Returns true if the connection has been established; otherwise returns false.

Remarks
The IsConnected property can only be used to indicate if there is still a logical connection to the remote
host. It cannot be used to detect abnormal conditions such as the remote host aborting the connection,
the physical network connection being lost or other critical errors.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsConnected Property

Gets a value which indicates if the current instance of the class has been initialized successfully.

[Visual Basic]
Public ReadOnly Property IsInitialized As Boolean

[C#]
public bool IsInitialized {get;}

Property Value
Returns true if the class instance has been initialized; otherwise returns false.

Remarks
The IsInitialized property is used to determine if the current instance of the class has been initialized
properly. Normally this is done automatically by the class constructor, however there are circumstances
where the class may not be able to initialize itself.

The most common reasons that a class instance may not initialize correctly is that no runtime license key
has been defined in the assembly or the license key provided is invalid. It may also indicate a problem with
the system configuration or user access rights, such as not being able to load the required networking
libraries or not being able to access the system registry.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsInitialized Property

Gets a value which indicates if the socket is listening for client connections.

[Visual Basic]
Public ReadOnly Property IsListening As Boolean

[C#]
public bool IsListening {get;}

Property Value
Returns true if the socket is listening for client connections; otherwise returns false.

Remarks
The IsListening property will return true if the socket was created using the Listen method and it is
currently accepting incoming client connections. In all other situations, this property will return false.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsListening Property

Gets a value which indicates if there is data available to be read from the socket.

[Visual Basic]
Public ReadOnly Property IsReadable As Boolean

[C#]
public bool IsReadable {get;}

Property Value
Returns true if there is data available to be read; otherwise returns false.

Remarks
The IsReadable property returns true if data can be read from the socket without blocking. For non-
blocking sockets, this property can be checked before the application attempts to read the socket. Note
that even if this property does return true indicating that there is data available to be read, applications
should always check the return value from the Read method.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsReadable Property

Gets a value which indicates if data can be written to the socket without blocking.

[Visual Basic]
Public ReadOnly Property IsWritable As Boolean

[C#]
public bool IsWritable {get;}

Property Value
Returns true if data can be written to the socket; otherwise returns false.

Remarks
The IsWritable property returns true if data can be written to the socket without blocking. For non-
blocking sockets, this property can be checked before the application attempts to write data to the socket.
Note that even if this property does return true indicating that data can be written to the socket,
applications should always check the return value from the Write method.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.IsWritable Property

Gets and sets a value which indicates if keep-alive packets are sent on a connected socket.

[Visual Basic]
Public Property KeepAlive As Boolean

[C#]
public bool KeepAlive {get; set;}

Property Value
Returns true if keep-alive packets are sent when the connection is idle, otherwise returns false. The
default value is false.

Remarks
Setting the KeepAlive property to a value of true specifies that special packets are to be sent to the
remote system when no data is being exchanged to ensure the connection remains active. This property
can only be set for sockets that were created with the Protocol property set to a value of
SocketProtocol.protocolStream.

If this property is set to true, keep-alive packets will start being generated five seconds after the socket
has become idle with no data being sent or received. Enabling this option can be used by applications to
detect when a physical network connection has been lost. However, it is recommended that most
applications query the remote host directly to determine if the connection is still active. This is typically
accomplished by sending specific commands to the server to query its status, or checking the elapsed
time since the last response from the server.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.KeepAlive Property

Gets and sets a value which specifies the last error that has occurred.

[Visual Basic]
Public Property LastError As ErrorCode

[C#]
public SocketWrench.ErrorCode LastError {get; set;}

Property Value
Returns an ErrorCode enumeration value which specifies the last error code.

Remarks
The LastError property returns the error code associated with the last error that occurred for the current
instance of the class. It is important to note that this value only has meaning if the previous method
indicates that an error has actually occurred.

It is possible to explicitly clear the last error code by assigning the property to the value
ErrorCode.errorNone.

The error code value can be cast to an integer value for display purposes if required. For a description of
the error that can be displayed using a message box or some other similar mechanism, get the value of
the LastErrorString property.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LastError Property

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property LastErrorString As String

[C#]
public string LastErrorString {get;}

Property Value
A string which describes the last error that has occurred.

Remarks
The LastErrorString property can be used to obtain a description of the last error that occurred for the
current instance of the class. It is important to note that this value only has meaning if the previous
method indicates that an error has actually occurred.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LastErrorString Property

Gets and sets a value which specifies the number of seconds to wait for the socket to disconnect from the
remote host.

[Visual Basic]
Public Property Linger As Integer

[C#]
public int Linger {get; set;}

Property Value
An integer value which specifies a number of seconds. The default value is 0.

Remarks
Setting the Linger property to a value greater than zero indicates that the Disconnect method should
wait up to the specified number of seconds for any data on the socket to be written before it is closed. A
value of zero indicates that the socket should be closed immediately (but gracefully, without data loss).

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Linger Property

Gets and sets the local Internet address that the socket will be bound to.

[Visual Basic]
Public Property LocalAddress As String

[C#]
public string LocalAddress {get; set;}

Property Value
A string which specifies an Internet address in dotted notation.

Remarks
The LocalAddress property is used to specify the local Internet address that the socket will be bound to
when a connection is established with a remote host. By default this property is not assigned a value,
which specifies that the socket should be bound to any appropriate network interface on the local system.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LocalAddress Property

Gets a value which specifies the host name for the local system.

[Visual Basic]
Public ReadOnly Property LocalName As String

[C#]
public string LocalName {get;}

Property Value
A string which specifies the local host name.

Remarks
The LocalName property returns the fully-qualified host name assigned to the local system. If the system
has not been configured with an Internet domain name, then this property will return the NetBIOS name
assigned to the local system.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LocalName Property

Gets and sets a value which specifies the local port number the socket will be bound to.

[Visual Basic]
Public Property LocalPort As Integer

[C#]
public int LocalPort {get; set;}

Property Value
An integer value which specifies a port number. The default value is 0.

Remarks
The LocalPort property is used to specify the local port number that the socket will be bound to when a
connection is established with a remote host. By default this property value is 0, which specifies that the
socket should be bound to any appropriate port number that is available on the local system. After a
connection has been established, this property will return the actual port number that was allocated for
the socket.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.LocalPort Property

Gets and sets a value which specifies if the Nagle algorithm should be enabled or disabled.

[Visual Basic]
Public Property NoDelay As Boolean

[C#]
public bool NoDelay {get; set;}

Property Value
Returns true if the Nagle algorithm has been disabled; otherwise it returns false. The default value is
false.

Remarks
The NoDelay property is used to enable or disable the Nagle algorithm, which buffers unacknowledged
data and insures that a full-size packet can be sent to the remote host. By default this property value is set
to false, which enables the Nagle algorithm (in other words, the data being written may not actually be
sent until it is optimal to do so). Setting this property to true disables the Nagle algorithm, maintaining the
time delays between the data packets being sent.

This property should be set to true only if it is absolutely required and the implications of doing so are
understood. Disabling the Nagle algorithm can have a significant negative impact on the performance of
your application.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.NoDelay Property

Gets and sets a value which specifies one or more socket options.

[Visual Basic]
Public Property Options As SocketOptions

[C#]
public SocketWrench.SocketOptions Options {get; set;}

Property Value
Returns one or more SocketOptions enumeration flags which specify the options for the socket. The
default value for this property is socketOptionNone.

Remarks
The Options property specifies one or more default socket options which are used when creating a socket
using either the Accept or Connect methods.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Options Property

Gets a value that specifies the Internet address of the remote host.

[Visual Basic]
Public ReadOnly Property PeerAddress As String

[C#]
public string PeerAddress {get;}

Property Value
A string which specifies an Internet address in dotted notation.

Remarks
The PeerAddress property returns the Internet address of the remote system that the local host is
connected to. If a datagram socket is being used, this property will return the address of the system which
sent the last datagram that was read. If no connection has been established, this property will return an
empty string.

If this property is accessed inside an OnAccept event handler, it will return the address of the client that is
requesting the connection. The application may use this information to determine if it wishes to accept or
reject the client connection. If the address is not available to the client at that time, this property will return
the address 0.0.0.0.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.PeerAddress Property

Gets a value that specifies the name of the remote host.

[Visual Basic]
Public ReadOnly Property PeerName As String

[C#]
public string PeerName {get;}

Property Value
A string which specifies the peer host name.

Remarks
The PeerName property returns the name of the remote system that the local host is connected to. If a
datagram socket is being used, this property will return the name of the system which sent the last
datagram that was read.

Accessing this property may cause the thread to block until the peer address can be resolved to a host
name.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.PeerName Property

Gets a value that specifies the port number used by the remote host.

[Visual Basic]
Public ReadOnly Property PeerPort As Integer

[C#]
public int PeerPort {get;}

Property Value
An integer value which specifies the peer port number.

Remarks
The PeerName property returns the port number of the remote system that the local host is connected
to. If a datagram socket is being used, this property will return the port number of the remote host which
sent the last datagram that was read.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.PeerPort Property

Gets a value which specifies the MAC address for the local system's network adapter.

[Visual Basic]
Public ReadOnly Property PhysicalAddress As String

[C#]
public string PhysicalAddress {get;}

Property Value
A string which specifies the network adapter MAC address.

Remarks
The PhysicalAddress property returns the Media Access Control (MAC) address for an Ethernet or Token
Ring network adapter installed and configured on the local system. Since it is guaranteed that every
adapter is assigned a unique address throughout the world, this value can be safely used for identification
purposes. It is possible that this property will return an empty string, which indicates that it could not find a
network adapter.

If more than one physical network adapter is installed on the system, this property will return the MAC
address of the first adapter that it finds.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.PhysicalAddress Property

Gets and sets a value which specifies the socket protocol.

[Visual Basic]
Public Property Protocol As SocketProtocol

[C#]
public SocketWrench.SocketProtocol Protocol {get; set;}

Property Value
Returns a SocketProtocol enumeration value which specifies the socket protocol. The default value is
socketStream.

Remarks
The Protocol property specifies the type of socket that will be created. This property may only be set
before the Connect method is called; attempting to change this property value after a connection has
been established will generate an error.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Protocol Property

Gets and sets a value which specifies the remote port number.

[Visual Basic]
Public Property RemotePort As Integer

[C#]
public int RemotePort {get; set;}

Property Value
An integer value which specifies a port number.

Remarks
The RemotePort property is used to set the port number that will be used to establish a connection with
a remote host. If the port number specifies a well-known port, the RemoteService property will be
updated with that name.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.RemotePort Property

Gets and sets a value which indicates if a reserved port number was used.

[Visual Basic]
Public Property ReservedPort As Boolean

[C#]
public bool ReservedPort {get; set;}

Property Value
Returns true if a reserved port number was used; otherwise returns false. The default value is false.

Remarks
The ReservedPort property determines if a reserved local port number is use when the socket is created
(reserved port numbers are in the range of 513 through 1023, inclusive). Some application protocols
require that the client bind to a local port number in this range. By setting the LocalPort property to 0
and the ReservedPort property to true, a reserved port number will be used when the socket is created.
The default value for this property is false, which specifies that a standard port number with a value of
1024 or higher will be bound to the socket unless the LocalPort property is explicitly set to a non-zero
value. Reserved ports should only be used by those applications that need them to implement a specific
protocol.

It is possible that the error errorAddressInUse will be returned when attempting to connect using a
reserved port number. The value of the LocalPort property will specify the reserved port number that
could not be used.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReservedPort Property

Gets and sets a value which indicates if a socket address can be reused.

[Visual Basic]
Public Property ReuseAddress As Boolean

[C#]
public bool ReuseAddress {get; set;}

Property Value
Returns true if an address can be reused; otherwise returns false. The default value is true.

Remarks
The ReuseAddress property determines if a socket can be bound to an address and port number that
were recently used. If this property is true, then addresses can be reused as needed. If the property is
false, then addresses cannot be reused and an error will be generated if the address was was recently
used by another socket.

This property is typically used by server applications. By setting the property to true, a server can be
stopped and immediately restarted using the same port number; otherwise, the server must wait
approximately two minutes before the port can be reused.

If you wish to determine if a local port number is already in use by another application, set this property to
false and attempt to create a socket using that port number. If another application is already using that
port number, an error will be generated indicating that the address is in use and the socket could not be
created.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReuseAddress Property

Gets and sets a value which indicates if packets should be routed.

[Visual Basic]
Public Property Route As Boolean

[C#]
public bool Route {get; set;}

Property Value
Returns true if packets should be routed; otherwise returns false. The default value is true.

Remarks
The Route property determines if routing tables should be used when sending data. If the property is set
to false, then packets will be sent directly to the network interface; if there is a router between the local
and remote hosts, the data will be lost. It is not recommended that you change this property value unless
it is required by your application and you fully understand the implications of doing so.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Route Property

Gets and sets a value which specifies if a secure connection is established.

[Visual Basic]
Public Property Secure As Boolean

[C#]
public bool Secure {get; set;}

Property Value
Returns true if a secure connection is established; otherwise returns false. The default value is false.

Remarks
The Secure property determines if a secure connection is established with the remote host. The default
value for this property is false, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to true prior to calling the
Accept or Connect methods. Once the connection has been established, the client may exchange data
with the server as with standard connections.

It is possible for an application to establish a non-secure connection, and then switch to a secure
connection at some later point during the session. Initially set the Secure property to false, then connect
to the server normally. Once the connection has been established, setting the Secure property to true will
cause the application to negotiate a secure connection with the remote host. If the socket was created
using the Accept method, the class will block and wait for the client to begin the negotiation. If the socket
was created using the Connect method, it will immediately begin the negotiation with the server. Note
that if a non-blocking (asynchronous) socket is being used, the application must wait to set the Secure
property to true after the OnConnect event has fired.

Setting the Secure property to false during a connection will cause the class to send a shutdown message
to the remote host. This may cause the remote host to terminate the connection, however it will not close
the socket. It is recommended that applications do not set the Secure property to false after a secure
connection has been established, and instead use the Disconnect method to close the connection.

It is strongly recommended that any application that sets this property true use error handling to trap an
errors that may occur. If the class is unable to initialize the security libraries, or otherwise cannot create a
secure session for the client, an error will be generated when this property value is set.

Example

Socket.ThrowError = True

Try
 Socket.Secure = True
 Socket.Connect(strHostName, nHostPort, defTimeout)

 Socket.WriteLine("GET " + strFileName + " HTTP/1.0")
 Socket.WriteLine("Host: " + strHostName)
 Socket.WriteLine("Accept: text/*")
 Socket.WriteLine()

 Do
 Socket.ReadLine(strBuffer)
 Loop Until strBuffer.Length = 0

 Socket.ReadStream(strBuffer, True)

SocketWrench.Secure Property

Catch ex As SocketTools.SocketWrenchException
 MsgBox(ex.Message)
End Try

Socket.Disconnect()

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Gets a value that specifies the encryption algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureCipher As SecureCipherAlgorithm

[C#]
public SocketWrench.SecureCipherAlgorithm SecureCipher {get;}

Property Value
A SecureCipherAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureCipher property returns a value which identifies the algorithm used to encrypt the data
stream. If a secure connection has not been established, this property will return a value of cipherNone.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureCipher Property

Gets a value that specifies the message digest algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureHash As SecureHashAlgorithm

[C#]
public SocketWrench.SecureHashAlgorithm SecureHash {get;}

Property Value
A SecureHashAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureHash property returns a value which identifies the message digest (hash) algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of hashNone.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureHash Property

Gets a value that specifies the key exchange algorithm used for a secure connection.

[Visual Basic]
Public ReadOnly Property SecureKeyExchange As SecureKeyAlgorithm

[C#]
public SocketWrench.SecureKeyAlgorithm SecureKeyExchange {get;}

Property Value
A SecureKeyAlgorithm enumeration value which identifies the algorithm.

Remarks
The SecureKeyExchange property returns a value which identifies the key exchange algorithm that was
selected when a secure connection was established. If a secure connection has not been established, this
property will return a value of keyExchangeNone.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureKeyExchange Property

Gets and sets a value which specifies the protocol used for a secure connection.

[Visual Basic]
Public Property SecureProtocol As SecurityProtocols

[C#]
public SocketWrench.SecurityProtocols SecureProtocol {get; set;}

Property Value
A SecurityProtocols enumeration value which identifies the protocol to be used when establishing a secure
connection.

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when establishing a
secure connection with a server or accepting a secure connection from a client. By default, the class will
attempt to use either SSL v3 or TLS v1 to establish the connection, with the appropriate protocol
automatically selected based on the capabilities of the remote host. It is recommended that you only
change this property value if you fully understand the implications of doing so. Assigning a value to this
property will override the default protocol and force the class to attempt to use only the protocol
specified.

Multiple security protocols may be specified by combining them using a bitwise or operator. After a
connection has been established, this property will identify the protocol that was selected. Attempting to
set this property after a connection has been established will result in an exception being thrown. This
property should only be set after setting the Secure property to true and before calling the Accept or
Connect methods.

In some cases, a server may only accept a secure connection if the TLS v1 protocol is specified. If the
security protocol is not compatible with the server, then the connection will fail with an error indicating
that the class is unable to establish a security context for the session. In this case, try assigning the
property to protocolTLS1 and attempt the connection again.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureProtocol Property

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.SecurityProtocols.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.SecurityProtocols.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.SecurityProtocols.html

Gets a value which specifies the current status of the socket.

[Visual Basic]
Public ReadOnly Property Status As SocketStatus

[C#]
public SocketWrench.SocketStatus Status {get;}

Property Value
A SocketStatus enumeration value which specifies the current socket status.

Remarks
The Status property returns the current status of the socket. This property should be checked on blocking
sockets to determine if the socket is in use before taking some action.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Status Property

Gets and sets a value which specifies the threading model for the class instance.

[Visual Basic]
Public Property ThreadModel As ThreadingModel

[C#]
public SocketWrench.ThreadingModel ThreadModel {get; set;}

Property Value
Returns one or more ThreadingModel enumeration value which specifies the threading model for the
client. The default value for this property is modelSingleThread.

Remarks
The ThreadModel property specifies the threading model that is used by the class instance when a
connection is established. The default value for this property is modelSingleThread, which specifies that
only the thread that established the connection should be permitted to invoke methods. It is important to
note that this threading model does not limit the application to a single thread of execution. When a
session is established using the Connect method, that session is attached to the thread that created it.
From that point on, until the session is terminated, only the owner may invoke methods in that instance of
the class. The ownership of the class instance may be transferred from one thread to another using the
AttachThread method.

Setting this property to modelFreeThread disables certain internal safety checks that are performed by
the class and may result in unexpected behavior unless you ensure that access to the class instance is
synchronized across multiple threads. The application must ensure that no two threads will attempt to
invoke a blocking method at the same time. In other words, if one thread invokes a method, the
application must ensure that another thread will not attempt to invoke any other method at the same time
using the same instance of the class.

Changing the value of this property will not affect an active client session. The threading model must be
specified prior to invoking the Connect method.

See Also
SocketWrench Class | SocketTools Namespace | AttachThread Method | ThreadingModel Enumeration |
ThreadModel Attribute

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ThreadModel Property

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.ThreadingModel.html
file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.ThreadModelAttribute.html

Gets and sets a value which specifies if method calls should throw exceptions when an error occurs.

[Visual Basic]
Public Property ThrowError As Boolean

[C#]
public bool ThrowError {get; set;}

Property Value
Returns true if method calls will generate exceptions when an error occurs; otherwise returns false. The
default value is false.

Remarks
Error handling for when calling class methods can be done in either of two different styles, according to
the value of this property.

If the ThrowError property is set to false, the application should check the return value of any method
that is used, and report errors based upon the documented value of the return code. It is the responsibility
of the application to interpret the error code, if it is desired to explain the error in addition to reporting it.
This is the default behavior.

If the ThrowError property is set to true, then exceptions will be generated whenever a method call fails.
The program must be written to catch these exceptions and take the appropriate action when an error
occurs. Failure to handle an exception will cause the program to terminate abnormally.

Note that if an error occurs while a property is being read or modified, an exception will be raised
regardless of the value of the ThrowError property.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ThrowError Property

Gets and sets a value which specifies a timeout period in seconds.

[Visual Basic]
Public Property Timeout As Integer

[C#]
public int Timeout {get; set;}

Property Value
An integer value which specifies a timeout period in seconds.

Remarks
Setting the Timeout property specifies the number of seconds until a blocking socket operation fails and
returns an error.

The timeout period is only used when the socket is in blocking mode. Although this property can be
changed when the socket is in non-blocking mode, the value will be ignored until the socket is returned to
blocking mode.

For most applications it is recommended the timeout period be set between 10 and 20 seconds.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Timeout Property

Gets and sets a value which indicates if network function logging is enabled.

[Visual Basic]
Public Property Trace As Boolean

[C#]
public bool Trace {get; set;}

Property Value
Returns true if network function tracing is enabled; otherwise returns false. The default value is false.

Remarks
The Trace property is used to enable (or disable) the tracing of network function calls. When enabled,
each function call is logged to a file, including the function parameters, return value and error code if
applicable. This facility can be enabled and disabled at run time, and the trace log file can be specified by
setting the TraceFile property. All function calls that are being logged are appended to the trace file, if it
exists. If no trace file exists when tracing is enabled, the trace file is created.

The tracing facility is available in all of the SocketTools networking classes and is enabled or disabled for
an entire process. This means that once trace logging is enabled for a given component, all of the
function calls made by the process using any of the SocketTools classes will be logged. For example, if you
have an application using both the File Transfer Protocol and Post Office Protocol classes, and you set the
Trace property to true, function calls made by both classes will be logged. Additionally, enabling a trace is
cumulative, and tracing is not stopped until it is disabled for all classes used by the process.

If trace logging is not enabled, there is no negative impact on performance or throughput. Once enabled,
application performance can degrade, especially in those situations in which multiple processes are being
traced or the logfile is fairly large. Since logfiles can grow very quickly, even with modest applications, it is
recommended that you delete the file when it is no longer needed.

When redistributing your application, make sure that you include the SocketTools11.TraceLog.dll
module with your installation. If this library is not present, then no trace output will be generated and the
value of the Trace property will be ignored. Only those function calls made by the SocketTools networking
classes will be logged. Calls made directly to the Windows Sockets API, or calls made by other classes, will
not be logged.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Trace Property

Gets and sets a value which specifies the name of the network function tracing logfile.

[Visual Basic]
Public Property TraceFile As String

[C#]
public string TraceFile {get; set;}

Property Value
A string which specifies the name of the file.

Remarks
The TraceFile property is used to specify the name of the trace file that is created when network function
tracing is enabled. If this property is set to an empty string (the default value), then a file named
SocketTools.log is created in the system's temporary directory. If no temporary directory exists, then the
file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since network
function tracing is enabled per-process, the trace file is shared by all instances of the class being used. If
multiple class instances have tracing enabled, the TraceFile property should be set to the same value for
each instance. Since trace files can grow very quickly, even with modest applications, it is recommended
that you delete the file when it is no longer needed.

The trace file has the following format:

 MyApp INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0 MyApp WRN:
connect(46, 192.0.0.1:1234, 16) returned -1 [10035] MyApp ERR: accept(46,
NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced. The second column identifies if the
trace record is reporting information, a warning, or an error. What follows is the name of the function
being called, the arguments passed to the function and the function's return value. If a warning or error is
reported, the error code is appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or return value
is a pointer (a memory address), it is recorded as a hexadecimal value preceded with "0x". A special type
of pointer, called a null pointer, is recorded as NULL. Those functions which expect socket addresses are
displayed in the following format:

 aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following the colon
represents the port number in host byte order. Note that in the second line of the above example, the
class is attempting to connect to a system with the IP address 192.0.0.1 on port 1234.

Note that if the specified file cannot be created, or the user does not have permission to modify an
existing file, the error is silently ignored and no trace output will be generated.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.TraceFile Property

Gets and sets a value which specifies the network function tracing flags.

[Visual Basic]
Public Property TraceFlags As TraceOptions

[C#]
public SocketWrench.TraceOptions TraceFlags {get; set;}

Property Value
A TraceOptions enumeration which specifies the amount of detail written to the trace logfile.

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when network
function tracing is enabled.

Because network function tracing is enabled per-process, the trace flags are shared by all instances of the
class being used. If multiple class instances have tracing enabled, the TraceFlags property should be set
to the same value for each instance. Changing the trace flags for any one instance of the class will affect
the logging performed for all SocketTools classes used by the application.

Warnings are generated when a non-fatal error is returned by a network function. For example, if data is
being written and the error errorOperationWouldBlock occurs, a warning is generated because the
application simply needs to attempt to write the data at a later time.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.TraceFlags Property

Gets and sets a value which specifies if urgent data will be read or written.

[Visual Basic]
Public Property Urgent As Boolean

[C#]
public bool Urgent {get; set;}

Property Value
Returns true if urgent data will be read or written; otherwise returns false. The default value is false.

Remarks
The Urgent property affects how the Read and Write methods receive and transmit data to the remote
host. If set to a value of true, urgent (out-of-band) data will be read or written. The property value will
automatically be reset to a value of false after the data has been read or written.

It is important to note that all systems may support more than one byte of urgent data if the data is not
being received in-line. Refer to the InLine property for additional information. This property should only
be set to true if required by the application and the implications of doing so are understood.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Urgent Property

Gets a value which returns the current version of the SocketWrench class library.

[Visual Basic]
Public ReadOnly Property Version As String

[C#]
public string Version {get;}

Property Value
A string which specifies the version of the class library.

Remarks
The Version property returns a string which identifies the current version and build of the SocketWrench
class library. This value can be used by an application for validation and debugging purposes.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Version Property

The methods of the SocketWrench class are listed below. For a complete list of SocketWrench class
members, see the SocketWrench Members topic.

Public Instance Methods

Abort Abort the connection with a remote host.

Accept Overloaded. Accepts a client connection on a
listening socket, specifying a timeout period and
one or more socket options.

AttachThread Attach an instance of the class to the current
thread

Bind Overloaded. Bind the socket to the specified local
address and port number.

Cancel Cancel the current blocking socket operation.

Connect Overloaded. Establish a connection with a remote
host.

ConnectUrl Overloaded. Establish a connection with a remote
host using a URL.

Disconnect Terminate the connection with a remote host.

Dispose Overloaded. Releases all resources used by
SocketWrench.

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

Initialize Overloaded. Initialize an instance of the
SocketWrench class.

Listen Overloaded. Listen for incoming client
connections, specifying the local network address,
port number and connection backlog.

Peek Overloaded. Read data from the socket and store
it in a byte array, but do not remove the data from
the socket buffers.

Read Overloaded. Read data from the socket and store
it in a byte array.

ReadFrom Overloaded. Read data from the socket and store
it in a byte array.

ReadLine Overloaded. Read up to a line of data from the
socket and return it in a string buffer.

SocketWrench Methods

ReadStream Overloaded. Read a data stream from the socket
and store it in the specified byte array.

Reject Rejects a connection request from a remote host.

Reset Reset the internal state of the object, resetting all
properties to their default values.

Resolve Resolves a host name to a host IP address.

Shutdown Overloaded. Disable sending or receiving data on
the socket.

StoreStream Overloaded. Reads a data stream from the socket
and stores it in the specified file.

ToString (inherited from Object) Returns a String that represents the current Object.

Uninitialize Uninitialize the class library and release any
resources allocated for the current thread.

Write Overloaded. Write one or more bytes of data to
the socket.

WriteLine Overloaded. Send a line of text to the remote host,
terminated by a carriage-return and linefeed.

WriteStream Overloaded. Write a stream of bytes to the socket.

WriteTo Overloaded. Write one or more bytes of data to
the socket.

Protected Instance Methods

Dispose Overloaded. Releases the unmanaged resources
allocated by the SocketWrench class and
optionally releases the managed resources.

Finalize Destroys an instance of the class, releasing the
resources allocated for the session and unloading
the networking library.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Abort the connection with a remote host.

[Visual Basic]
Public Sub Abort()

[C#]
public void Abort();

Remarks
The Abort method immediately closes the socket, without waiting for any remaining data to be written
out. This method should only be used when the connection must be closed immediately. If this method is
used, the remote host will see the connection as being terminated abnormally.

It is recommended that applications using the Disconnect method unless it is absolutely necessary to
terminate the connection and immediately release the socket handle.

See Also
SocketWrench Class | SocketTools Namespace | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Abort Method

Accepts a client connection on a listening socket.

Overload List
Accepts a client connection on a listening socket.

public bool Accept(int);

Accepts a client connection on a listening socket, specifying one or more socket options.

public bool Accept(int,SocketOptions);

Accepts a client connection on a listening socket, specifying a timeout period and one or more socket
options.

public bool Accept(int,int,SocketOptions);

See Also
SocketWrench Class | SocketTools Namespace | Listen Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Accept Method

Accepts a client connection on a listening socket.

[Visual Basic]
Overloads Public Function Accept(_
 ByVal handle As Integer _
) As Boolean

[C#]
public bool Accept(
 int handle
);

Parameters
handle

The socket identifier of a listening socket. If the object that invokes this method is not the listening
socket, then the listening socket may continue to listen for incoming connections. If the object of a
listening socket invokes this method with its own handle, then it ceases to listen, and no other host can
establish a connection with the application.

Return Value
A boolean value which specifies if the client connection has been accepted. If the method returns true, the
connection has been accepted and the application may send and receive data with the remote host. If this
method returns false, the connection could not be accepted and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Accept Overload List | Listen Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Accept Method (Int32)

Accepts a client connection on a listening socket, specifying a timeout period and one or more socket
options.

[Visual Basic]
Overloads Public Function Accept(_
 ByVal handle As Integer, _
 ByVal timeout As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Accept(
 int handle,
 int timeout,
 SocketOptions options
);

Parameters
handle

The socket identifier of a listening socket. If the object that invokes this method is not the listening
socket, then the listening socket may continue to listen for incoming connections. If the object of a
listening socket invokes this method with its own handle, then it ceases to listen, and no other host can
establish a connection with the application.

timeout
Specifies the number of seconds that the method will wait for a client connection to be established on
the listening socket. This value only has meaning for a blocking socket.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the client connection has been accepted. If the method returns true, the
connection has been accepted and the application may send and receive data with the remote host. If this
method returns false, the connection could not be accepted and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Accept Overload List | Listen Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Accept Method (Int32, Int32, SocketOptions)

Accepts a client connection on a listening socket, specifying one or more socket options.

[Visual Basic]
Overloads Public Function Accept(_
 ByVal handle As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Accept(
 int handle,
 SocketOptions options
);

Parameters
handle

The socket identifier of a listening socket. If the object that invokes this method is not the listening
socket, then the listening socket may continue to listen for incoming connections. If the object of a
listening socket invokes this method with its own handle, then it ceases to listen, and no other host can
establish a connection with the application.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the client connection has been accepted. If the method returns true, the
connection has been accepted and the application may send and receive data with the remote host. If this
method returns false, the connection could not be accepted and the application should check the value
of the LastError property to determine the cause of the failure.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Accept Overload List | Listen Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Accept Method (Int32, SocketOptions)

Attach an instance of the class to the current thread

[Visual Basic]
Public Function AttachThread() As Boolean

[C#]
public bool AttachThread();

Return Value
A boolean value which specifies if the socket could be attached to the current thread. If this method
returns false, the socket could not be attached to the thread and the application should check the value
of the LastError property to determine the cause of the failure.

Remarks
When an instance of the class is created it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that instance, an error is returned. This is used to
ensure that other threads cannot interfere with an operation being performed by the owner thread. In
some cases, it may be desirable for one thread in an application to create an instance of the class,
establish a connection and then pass that instance to another worker thread. The AttachThread method
can be used to change the ownership of the class instance to the new worker thread.

This method should be called by the new thread immediately after it has been created, and if the new
thread does not release the handle itself, the ownership of the handle should be restored by the original
thread. Under no circumstances should AttachThread be used to forcibly destroy an instance of a class
allocated by another thread while a blocking operation is in progress. To cancel a blocking operation, use
the Cancel method and then delete the class instance after the blocking function exits and control is
returned to the current thread.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AttachThread Method

Bind the socket to the specified local address and port number.

Overload List
Bind the socket to the specified local address and port number.

public bool Bind(string,int);

Bind the socket to the specified local address and port number.

public bool Bind(string,int,SocketOptions);

Bind the socket to the specified local address and port number.

public bool Bind(string,int,SocketProtocol);

Bind the socket to the specified local address and port number.

public bool Bind(string,int,SocketProtocol,SocketOptions);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Bind Method

Bind the socket to the specified local address and port number.

[Visual Basic]
Overloads Public Function Bind(_
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Bind(
 string localAddress,
 int localPort
);

Parameters
localAddress

A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

Return Value
A boolean value which specifies if the socket could be bound to the specified address. If this method
returns false, the socket could not be bound to the address and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The Bind method is used to specify the local address and port number that a socket will be bound to
when it is created. When this method is called with socketDatagram as the specified protocol, it will
immediately create the datagram socket and bind it to the given address.

When this method is called with socketStream as the specified protocol, creation of the socket is deferred
until the Connect method is called. For stream sockets, this method will set the local address, port number
and default options used when the socket is actually created.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Bind Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Bind Method (String, Int32)

Bind the socket to the specified local address and port number.

[Visual Basic]
Overloads Public Function Bind(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Bind(
 string localAddress,
 int localPort,
 SocketOptions options
);

Parameters
localAddress

A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the socket could be bound to the specified address. If this method
returns false, the socket could not be bound to the address and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The Bind method is used to specify the local address and port number that a socket will be bound to
when it is created. When this method is called with socketDatagram as the specified protocol, it will
immediately create the datagram socket and bind it to the given address.

When this method is called with socketStream as the specified protocol, creation of the socket is deferred
until the Connect method is called. For stream sockets, this method will set the local address, port number
and default options used when the socket is actually created.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Bind Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Bind Method (String, Int32, SocketOptions)

Bind the socket to the specified local address and port number.

[Visual Basic]
Overloads Public Function Bind(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal protocol As SocketProtocol _
) As Boolean

[C#]
public bool Bind(
 string localAddress,
 int localPort,
 SocketProtocol protocol
);

Parameters
localAddress

A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

Return Value
A boolean value which specifies if the socket could be bound to the specified address. If this method
returns false, the socket could not be bound to the address and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The Bind method is used to specify the local address and port number that a socket will be bound to
when it is created. When this method is called with socketDatagram as the specified protocol, it will
immediately create the datagram socket and bind it to the given address.

When this method is called with socketStream as the specified protocol, creation of the socket is deferred
until the Connect method is called. For stream sockets, this method will set the local address, port number
and default options used when the socket is actually created.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Bind Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Bind Method (String, Int32, SocketProtocol)

Bind the socket to the specified local address and port number.

[Visual Basic]
Overloads Public Function Bind(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal protocol As SocketProtocol, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Bind(
 string localAddress,
 int localPort,
 SocketProtocol protocol,
 SocketOptions options
);

Parameters
localAddress

A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the socket could be bound to the specified address. If this method
returns false, the socket could not be bound to the address and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The Bind method is used to specify the local address and port number that a socket will be bound to
when it is created. When this method is called with socketDatagram as the specified protocol, it will
immediately create the datagram socket and bind it to the given address.

When this method is called with socketStream as the specified protocol, creation of the socket is deferred
until the Connect method is called. For stream sockets, this method will set the local address, port number
and default options used when the socket is actually created.

See Also

SocketWrench.Bind Method (String, Int32, SocketProtocol,
SocketOptions)

SocketWrench Class | SocketTools Namespace | SocketWrench.Bind Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Cancel the current blocking socket operation.

[Visual Basic]
Public Sub Cancel()

[C#]
public void Cancel();

Remarks
When the Cancel method is called, the blocking socket operation will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application cannot
cancel an operation and immediately perform some other blocking function. Instead it must allow the
calling stack to unwind, returning back to the blocking operation before making any further function calls.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Cancel Method

Establish a connection with a remote host.

Overload List
Establish a connection with a remote host.

public bool Connect();

Establish a connection with a remote host.

public bool Connect(string,int);

Establish a connection with a remote host.

public bool Connect(string,int,SocketOptions,int);

Establish a connection with a remote host.

public bool Connect(string,int,SocketProtocol,int);

Establish a connection with a remote host.

public bool Connect(string,int,SocketProtocol,int,SocketOptions);

Establish a connection with a remote host.

public bool Connect(string,int,SocketProtocol,int,SocketOptions,string,int);

Establish a connection with a remote host.

public bool Connect(string,int,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Connect Method

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.Connect_overload_7.html

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress. When the connection has
completed, the OnConnect event will be fired. If this method returns false, the connection could not be
established and the application should check the value of the LastError property to determine the cause of
the failure.

Remarks
This method will use the value of the Protocol property to determine which protocol is used to establish
the connection. By default, the socketStream protocol will be used.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Connect Method (String, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method will use the value of the Protocol property to determine which protocol is used to establish
the connection. By default, the socketStream protocol will be used.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Connect Method (String, Int32, Int32)

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal options As SocketOptions, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 SocketOptions options,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

options
One or more of the SocketOptions enumeration flags.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
This method will use the value of the Protocol property to determine which protocol is used to establish
the connection. By default, the socketStream protocol will be used.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

SocketWrench.Connect Method (String, Int32, SocketOptions, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal protocol As SocketProtocol, _
 ByVal timeout As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 SocketProtocol protocol,
 int timeout
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
When this method is called with socketDatagram as the specified protocol, it does not actually establish
a connection. Instead, it simply establishes a default destination address and port that is used with
subsequent calls to the Read and Write methods.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

SocketWrench.Connect Method (String, Int32, SocketProtocol, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal protocol As SocketProtocol, _
 ByVal timeout As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 SocketProtocol protocol,
 int timeout,
 SocketOptions options
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
When this method is called with socketDatagram as the specified protocol, it does not actually establish
a connection. Instead, it simply establishes a default destination address and port that is used with

SocketWrench.Connect Method (String, Int32, SocketProtocol, Int32,
SocketOptions)

subsequent calls to the Read and Write methods.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host.

[Visual Basic]
Overloads Public Function Connect(_
 ByVal hostName As String, _
 ByVal hostPort As Integer, _
 ByVal protocol As SocketProtocol, _
 ByVal timeout As Integer, _
 ByVal options As SocketOptions, _
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Connect(
 string hostName,
 int hostPort,
 SocketProtocol protocol,
 int timeout,
 SocketOptions options,
 string localAddress,
 int localPort
);

Parameters
hostName

A string which specifies the remote host to establish a connection with. This may specify a host name
or an Internet address in dot-notation.

hostPort
An integer which specifies the port number for the connection. This value must be greater than zero
and the maximum valid port number is 65535.

protocol
One of the SocketProtocol enumeration values which specify the type of socket to be created.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

options
One or more of the SocketOptions enumeration flags.

localAddress
A string which specifies the local Internet address that the socket should be bound to. To bind to any
valid network interface on the local system, specify the address 0.0.0.0. Applications should only
specify a particular address if it is absolutely necessary. In most cases a local address is not required
when establishing a client connection.

localPort
An integer value which specifies a local port number that the socket should be bound to. To bind to
any available port number, specify a port number of 0. Applications should only specify a particular
port number if it is absolutely necessary. The maximum valid port number is 65535.

SocketWrench.Connect Method (String, Int32, SocketProtocol, Int32,
SocketOptions, String, Int32)

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
When this method is called with socketDatagram as the specified protocol, it does not actually establish
a connection. Instead, it simply establishes a default destination address and port that is used with
subsequent calls to the Read and Write methods.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Connect Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host using a URL.

Overload List
Establish a connection with a remote host using a URL.

public bool ConnectUrl(string);

Establish a connection with a remote host using a URL.

public bool ConnectUrl(string,int,SocketOptions);

See Also
SocketWrench Class | SocketTools Namespace | Connect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ConnectUrl Method

Establish a connection with a remote host using a URL.

[Visual Basic]
Overloads Public Function ConnectUrl(_
 ByVal hostUrl As String _
) As Boolean

[C#]
public bool ConnectUrl(
 string hostUrl
);

Parameters
hostUrl

A string which specifies the URL used to establish a connection. This parameter cannot be null or an
empty string.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ConnectUrl method provides a simplified interface which can be used to establish a connection using
a URL. This method can only be used to establish connections using TCP and does not currently support
the use of URLs to connect with a service which uses UDP. The general format of the URL should look like
this:

[scheme]:// [[username : password] @] hostname [:port] /
[path;paramters ...]

This method recognizes most standard URI schemes which use this format. The host name and port
number specified in the URL will be used to establish a connection and the remaining information will be
discarded. If the URL does not explicitly specify a port number, the default port number associated with
the scheme will be used as the default value. For example, consider the following:

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https:// scheme would
be used, which is port 443. The host name www.example.com would be resolved into an IP address and
the connection established on port 443. This method will also recognize a simpler format which only
includes the host name and port number without a URI scheme, such as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an explicit
port number, the method cannot determine what port number should be used when establishing the

SocketWrench.ConnectUrl Method (String)

connection. The same also applies if a custom, non-standard URI scheme is provided which is not
recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this function will automatically
enable the Secure option. For example, providing a URL which uses the https:// scheme will automatically
enable a secure connection. If a URI scheme is used in conjunction with a port number associated with a
secure service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since port
443 is the standard port designated for a secure HTTP connection, a secure connection will be enabled by
default, even if not been specified by the caller. Alternatively, if a custom port number is specified in the
URL or the scheme is not recognized as one which requires implicit TLS, security options will not be
automatically enabled by default for the connection.

The host name portion of the URL can be specified as either a domain name or an IP address. Because an
IPv6 address can contain colon characters, you must enclose the entire address in bracket [] characters. If
this is not done, this method will return an error indicating the port number is invalid. For example, the
URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address and this would be considered valid.
Without the brackets, this URL would not be accepted.

Important: The URL provided to this method will only be used to establish a connection with a server.
This is a general purpose method which does not enable support for any particular application protocol
and all implementation details are the responsibility of your application. If you require higher-level support
for a specific Internet protocol, the SocketTools .NET Edition provides comprehensive collection of higher-
level classes which can be used to access those services.

To prevent this method from blocking the main user interface thread, the application should create a
background worker thread and establish a connection by calling ConnectUrl in that thread. If the
application requires multiple simultaneous connections, it is recommended you create a worker thread for
each client session.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ConnectUrl Overload List | Connect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Establish a connection with a remote host using a URL.

[Visual Basic]
Overloads Public Function ConnectUrl(_
 ByVal hostUrl As String, _
 ByVal timeout As Integer, _
 ByVal options As SocketOptions _
) As Boolean

[C#]
public bool ConnectUrl(
 string hostUrl,
 int timeout,
 SocketOptions options
);

Parameters
hostUrl

A string which specifies the URL used to establish a connection. This parameter cannot be null or an
empty string.

timeout
An integer value that specifies the number of seconds that the method will wait for the connection to
complete before failing the operation and returning to the caller. This value is only meaningful for
blocking sockets.

options
One or more of the SocketOptions enumeration flags.

Return Value
A boolean value which specifies if the connection has been established. If the socket is in blocking mode, a
return value of true indicates that the connection has completed and the application may send and
receive data from the remote host. If the socket is in non-blocking mode, a return value of true indicates
that the socket has been successfully created and the connection is in progress.

When a non-blocking connection has completed, the OnConnect event will be fired. If this method returns
false, the connection could not be established and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ConnectUrl method provides a simplified interface which can be used to establish a connection using
a URL. This method can only be used to establish connections using TCP and does not currently support
the use of URLs to connect with a service which uses UDP. The general format of the URL should look like
this:

[scheme]:// [[username : password] @] hostname [:port] /
[path;paramters ...]

This method recognizes most standard URI schemes which use this format. The host name and port
number specified in the URL will be used to establish a connection and the remaining information will be
discarded. If the URL does not explicitly specify a port number, the default port number associated with
the scheme will be used as the default value. For example, consider the following:

SocketWrench.ConnectUrl Method (String, Int32, SocketOptions)

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https:// scheme would
be used, which is port 443. The host name www.example.com would be resolved into an IP address and
the connection established on port 443. This method will also recognize a simpler format which only
includes the host name and port number without a URI scheme, such as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an explicit
port number, the method cannot determine what port number should be used when establishing the
connection. The same also applies if a custom, non-standard URI scheme is provided which is not
recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this function will automatically
enable the Secure option. For example, providing a URL which uses the https:// scheme will automatically
enable a secure connection. If a URI scheme is used in conjunction with a port number associated with a
secure service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since port
443 is the standard port designated for a secure HTTP connection, a secure connection will be enabled by
default, even if not been specified by the caller. Alternatively, if a custom port number is specified in the
URL or the scheme is not recognized as one which requires implicit TLS, security options will not be
automatically enabled by default for the connection.

The host name portion of the URL can be specified as either a domain name or an IP address. Because an
IPv6 address can contain colon characters, you must enclose the entire address in bracket [] characters. If
this is not done, this method will return an error indicating the port number is invalid. For example, the
URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address and this would be considered valid.
Without the brackets, this URL would not be accepted.

Important: The URL provided to this method will only be used to establish a connection with a server.
This is a general purpose method which does not enable support for any particular application protocol
and all implementation details are the responsibility of your application. If you require higher-level support
for a specific Internet protocol, the SocketTools .NET Edition provides comprehensive collection of higher-
level classes which can be used to access those services.

To prevent this method from blocking the main user interface thread, the application should create a
background worker thread and establish a connection by calling ConnectUrl in that thread. If the
application requires multiple simultaneous connections, it is recommended you create a worker thread for
each client session.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ConnectUrl Overload List | Connect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Terminate the connection with a remote host.

[Visual Basic]
Public Sub Disconnect()

[C#]
public void Disconnect();

Remarks
The Disconnect method terminates the connection with the remote host and closes the socket handle
allocated by the class. Note that the socket is not immediately released when the connection is terminated
and will enter a wait state for two minutes. After the time wait period has elapsed, the socket will be
released by the operating system. This is a normal safety mechanism to handle any packets that may
arrive after the connection has been closed.

To immediately terminate the connection and release the socket, use the Abort method.

See Also
SocketWrench Class | SocketTools Namespace | Abort Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Disconnect Method

Releases all resources used by SocketWrench.

Overload List
Releases all resources used by SocketWrench.

public void Dispose();

Releases the unmanaged resources allocated by the SocketWrench class and optionally releases the
managed resources.

protected virtual void Dispose(bool);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Dispose Method

Releases all resources used by SocketWrench.

[Visual Basic]
NotOverridable Overloads Public Sub Dispose() _
 Implements IDisposable.Dispose

[C#]
public void Dispose();

Implements
IDisposable.Dispose

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Dispose Method ()

Releases the unmanaged resources allocated by the SocketWrench class and optionally releases the
managed resources.

[Visual Basic]
Overridable Overloads Protected Sub Dispose(_
 ByVal disposing As Boolean _
)

[C#]
protected virtual void Dispose(
 bool disposing
);

Parameters
disposing

A boolean value which should be specified as true to release both managed and unmanaged
resources; false to release only unmanaged resources.

Remarks
The Dispose method terminates any active connection and explicitly releases the resources allocated for
this instance of the class. In some cases, better performance can be achieved if the programmer explicitly
releases resources when they are no longer being used. The Dispose method provides explicit control
over these resources.

Unlike the Uninitialize method, once the Dispose method has been called, that instance of the class
cannot be re-initialized and you should not attempt to access class properties or invoke any methods.
Note that this method can be called even if other references to the object are active.

You should call Dispose in your derived class when you are finished using the derived class. The Dispose
method leaves the derived class in an unusable state. After calling Dispose, you must release all
references to the derived class and the SocketWrench class so the memory they were occupying can be
reclaimed by garbage collection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Dispose Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Dispose Method (Boolean)

Destroys an instance of the class, releasing the resources allocated for the session and unloading the
networking library.

[Visual Basic]
Overrides Protected Sub Finalize()

[C#]
protected override void Finalize();

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Finalize Method

Initialize an instance of the SocketWrench class.

Overload List
Initialize an instance of the SocketWrench class.

public bool Initialize();

Initialize an instance of the SocketWrench class.

public bool Initialize(string);

See Also
SocketWrench Class | SocketTools Namespace | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Initialize Method

Initialize an instance of the SocketWrench class.

[Visual Basic]
Overloads Public Function Initialize() As Boolean

[C#]
public bool Initialize();

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the SocketWrench class, loading the
networking library and allocating resources for the current thread. Typically it is not necessary to explicitly
call this method because the instance of the class is initialized by the class constructor. However, if the
Uninitialize method is called, the class must be re-initialized before any other methods are called.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Initialize Overload List | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Initialize Method ()

Initialize an instance of the SocketWrench class.

[Visual Basic]
Overloads Public Function Initialize(_
 ByVal licenseKey As String _
) As Boolean

[C#]
public bool Initialize(
 string licenseKey
);

Return Value
A boolean value which specifies if the class was initialized successfully.

Remarks
The Initialize method can be used to explicitly initialize an instance of the SocketWrench class, loading the
networking library and allocating resources for the current thread. Typically an application would define
the license key as a custom attribute, however this method can be used to initialize the class directly.

The runtime license key for your copy of SocketWrench can be generated using the License Manager
utility that is included with the product. Note that if you have installed an evaluation license, you will not
have a runtime license key and cannot redistribute any applications which use the SocketWrench class.

Example
The following example shows how to use the Initialize method to initialize an instance of the class. This
example assumes that the license key string has been defined in code.

SocketTools.SocketWrench socket = new SocketTools.SocketWrench();

if (socket.Initialize(strLicenseKey) == false)
{
 MessageBox.Show(socket.LastErrorString, "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 return;
}

Dim Socket As New SocketTools.SocketWrench

If Socket.Initialize(strLicenseKey) = False Then
 MsgBox(Socket.LastErrorString, vbIconExclamation)
 Exit Sub
End If

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Initialize Overload List |
RuntimeLicenseAttribute Class | Uninitialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Initialize Method (String)

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.RuntimeLicenseAttribute.html

Listen for incoming client connections.

Overload List
Listen for incoming client connections.

public bool Listen();

Listen for incoming client connections, specifying the local port number.

public bool Listen(int);

Listen for incoming client connections, specifying the local network address and port number.

public bool Listen(string,int);

Listen for incoming client connections, specifying the local network address, port number and connection
backlog.

public bool Listen(string,int,int);

See Also
SocketWrench Class | SocketTools Namespace | Blocking Property | LocalAddress Property | LocalPort
Property | Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method

Listen for incoming client connections.

[Visual Basic]
Overloads Public Function Listen() As Boolean

[C#]
public bool Listen();

Return Value
A boolean value which specifies if the listening socket could be created successfully. A value of true
indicates that a listening socket has been created. A value of false indicates that a listening socket could
not be created using the specified address or port number and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The value of the LocalAddress property is used to specify the network address that will be used to listen
for client connections. If the property has not been set, or is set to the address 0.0.0.0 then connections
will be listened for on any valid network adapter configured on the system.

The value of the LocalPort property is used to specify the port number to listen for connections on.

After the listening socket has been created, the application should then call the Accept method to wait for
a client to establish a connection. If the Blocking property is set to false, then the OnAccept event will
fire when a client attempts to establish a connection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Listen Overload List | Blocking Property |
LocalAddress Property | LocalPort Property | Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method ()

Listen for incoming client connections, specifying the local port number.

[Visual Basic]
Overloads Public Function Listen(_
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Listen(
 int localPort
);

Parameters
localPort

An integer argument which specifies the port number to listen for connections on. The minimum port
value is 1, the maximum port value is 65535.

Return Value
A boolean value which specifies if the listening socket could be created successfully. A value of true
indicates that a listening socket has been created. A value of false indicates that a listening socket could
not be created using the specified address or port number and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
The value of the LocalAddress property is used to specify the network address that will be used to listen
for client connections. If the property has not been set, or is set to the address 0.0.0.0 then connections
will be listened for on any valid network adapter configured on the system.

After the listening socket has been created, the application should then call the Accept method to wait for
a client to establish a connection. If the Blocking property is set to false, then the OnAccept event will
fire when a client attempts to establish a connection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Listen Overload List | Blocking Property |
LocalAddress Property | Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method (Int32)

Listen for incoming client connections, specifying the local network address and port number.

[Visual Basic]
Overloads Public Function Listen(_
 ByVal localAddress As String, _
 ByVal localPort As Integer _
) As Boolean

[C#]
public bool Listen(
 string localAddress,
 int localPort
);

Parameters
localAddress

A string argument which specifies the IP address of the network adapter that the class should use
when listening for connection requests. If this argument is not specified, the class will bind to any
suitable adapter on the local system. An address of 0.0.0.0 specifies that it should listen for
connections on any network adapter configured on the system.

localPort
An integer argument which specifies the port number to listen for connections on. The minimum port
value is 1, the maximum port value is 65535.

Return Value
A boolean value which specifies if the listening socket could be created successfully. A value of true
indicates that a listening socket has been created. A value of false indicates that a listening socket could
not be created using the specified address or port number and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
After the listening socket has been created, the application should then call the Accept method to wait for
a client to establish a connection. If the Blocking property is set to false, then the OnAccept event will
fire when a client attempts to establish a connection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Listen Overload List | Blocking Property |
Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method (String, Int32)

Listen for incoming client connections, specifying the local network address, port number and connection
backlog.

[Visual Basic]
Overloads Public Function Listen(_
 ByVal localAddress As String, _
 ByVal localPort As Integer, _
 ByVal backlog As Integer _
) As Boolean

[C#]
public bool Listen(
 string localAddress,
 int localPort,
 int backlog
);

Parameters
localAddress

A string argument which specifies the IP address of the network adapter that the class should use
when listening for connection requests. If this argument is not specified, the class will bind to any
suitable adapter on the local system. An address of 0.0.0.0 specifies that it should listen for
connections on any network adapter configured on the system.

localPort
An integer argument which specifies the port number to listen for connections on. The minimum port
value is 1, the maximum port value is 65535.

backlog

An integer argument which specifies the maximum size of the queue used to manage pending
connections to the service. If the argument is set to value which exceeds the maximum size for the
underlying service provider, it will be silently adjusted to the nearest legal value.

Return Value
A boolean value which specifies if the listening socket could be created successfully. A value of true
indicates that a listening socket has been created. A value of false indicates that a listening socket could
not be created using the specified address or port number and the application should check the value of
the LastError property to determine the cause of the failure.

Remarks
After the listening socket has been created, the application should then call the Accept method to wait for
a client to establish a connection. If the Blocking property is set to false, then the OnAccept event will
fire when a client attempts to establish a connection.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Listen Overload List | Blocking Property |
Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Listen Method (String, Int32, Int32)

Return the number of bytes available to be read from the socket.

Overload List
Return the number of bytes available to be read from the socket.

public int Peek();

Read data from the socket and store it in a byte array, but do not remove the data from the socket
buffers.

public int Peek(byte[]);

Read data from the socket and store it in a byte array, but do not remove the data from the socket
buffers.

public int Peek(byte[],int);

Read data from the socket and store it in a string, but do not remove the data from the socket buffers.

public int Peek(ref string);

Read data from the socket and store it in a string, but do not remove the data from the socket buffers.

public int Peek(ref string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Peek Method

file:///C|/Projects/cstools11/pdf/winsock/dotnet/SocketTools.SocketWrench.Peek_overload_5.html

Read data from the socket and store it in a byte array, but do not remove the data from the socket
buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Peek(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a loop to
poll a non-blocking socket can cause the application to become non-responsive. To determine if there is
data available to be read, use the IsReadable property.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Peek Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Peek Method (Byte[])

Read data from the socket and store it in a byte array, but do not remove the data from the socket
buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a loop to
poll a non-blocking socket can cause the application to become non-responsive. To determine if there is
data available to be read, use the IsReadable property.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Peek Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Peek Method (Byte[], Int32)

Read data from the socket and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByRef buffer As String _
) As Integer

[C#]
public int Peek(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to a maximum of 8192 bytes.
The data returned by this method is not removed from the socket buffers. It must be consumed by a
subsequent call to the Read method. The return value indicates the number of bytes that can be read in a
single operation. However, it is important to note that it may not indicate the total amount of data
available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a loop to
poll a non-blocking socket can cause the application to become non-responsive. To determine if there is
data available to be read, use the IsReadable property.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Peek Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Peek Method (String)

Read data from the socket and store it in a string, but do not remove the data from the socket buffers.

[Visual Basic]
Overloads Public Function Peek(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Peek(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that there is no data available to be read. If an error occurs, a value of -1 is returned and the
application should check the value of the LastError property to determine the cause of the failure.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be consumed
by a subsequent call to the Read method. The return value indicates the number of bytes that can be
read in a single operation. However, it is important to note that it may not indicate the total amount of
data available to be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a loop to
poll a non-blocking socket can cause the application to become non-responsive. To determine if there is
data available to be read, use the IsReadable property.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Peek Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Peek Method (String, Int32)

Read data from the socket and store it in a byte array.

Overload List
Read data from the socket and store it in a byte array.

public int Read(byte[]);

Read data from the socket and store it in a byte array.

public int Read(byte[],int);

Read data from the socket and store it in a string.

public int Read(ref string);

Read data from the socket and store it in a string.

public int Read(ref string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method

Read data from the socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Read(
 byte[] buffer
);

Parameters
buffer

A byte array that the data will be stored in.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the size of the byte array
passed to the method. If no data is available to be read, an error will be generated if the socket is in non-
blocking mode. If the socket is in blocking mode, the program will stop until data is received from the
server or the connection is closed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method (Byte[])

Read data from the socket and store it in a byte array.

[Visual Basic]
Overloads Public Function Read(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the socket is in non-blocking mode. If the
socket is in blocking mode, the program will stop until data is received from the server or the connection
is closed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method (Byte[], Int32)

Read data from the socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String _
) As Integer

[C#]
public int Read(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the socket.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to a maximum of 8192 bytes. If no
data is available to be read, an error will be generated if the socket is in non-blocking mode. If the socket
is in blocking mode, the program will stop until data is received from the server or the connection is
closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method (String)

Read data from the socket and store it in a string.

[Visual Basic]
Overloads Public Function Read(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Read(
 ref string buffer,
 int length
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes specified. If
no data is available to be read, an error will be generated if the socket is in non-blocking mode. If the
socket is in blocking mode, the program will stop until data is received from the server or the connection
is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Read Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Read Method (String, Int32)

Read data from the socket and store it in a byte array.

Overload List
Read data from the socket and store it in a byte array.

public int ReadFrom(byte[],int,ref string,ref int);

Read data from the socket and store it in a byte array.

public int ReadFrom(byte[],ref string,ref int);

Read data from the socket and store it in a string.

public int ReadFrom(ref string,int,ref string,ref int);

Read data from the socket and store it in a string.

public int ReadFrom(ref string,ref string,ref int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadFrom Method

Read data from the socket and store it in a byte array.

[Visual Basic]
Overloads Public Function ReadFrom(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByRef hostAddress As String, _
 ByRef hostPort As Integer _
) As Integer

[C#]
public int ReadFrom(
 byte[] buffer,
 int length,
 ref string hostAddress,
 ref int hostPort
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value which specifies the maximum number of bytes of data to read. This value cannot be
larger than the size of the buffer specified by the caller.

hostAddress
A string passed by reference that will contain the remote host Internet address when the method
returns. For stream sockets, this will be the same as the address used to establish the connection. For
datagram sockets, this will specify the address of host that sent the datagram.

hostPort
An integer passed by reference that will contain the remote host port number when the method
returns. For stream sockets, this will be the same as the port number used to establish the connection.
For datagram sockets, this will specify the port number used by the host that sent the datagram.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ReadFrom method returns data that has been read from the socket, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the socket is in non-blocking
mode. If the socket is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

This method is typically used when reading binary data from a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadFrom Overload List

SocketWrench.ReadFrom Method (Byte[], Int32, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read data from the socket and store it in a byte array.

[Visual Basic]
Overloads Public Function ReadFrom(_
 ByVal buffer As Byte(), _
 ByRef hostAddress As String, _
 ByRef hostPort As Integer _
) As Integer

[C#]
public int ReadFrom(
 byte[] buffer,
 ref string hostAddress,
 ref int hostPort
);

Parameters
buffer

A byte array that the data will be stored in.

hostAddress
A string passed by reference that will contain the remote host Internet address when the method
returns. For stream sockets, this will be the same as the address used to establish the connection. For
datagram sockets, this will specify the address of host that sent the datagram.

hostPort
An integer passed by reference that will contain the remote host port number when the method
returns. For stream sockets, this will be the same as the port number used to establish the connection.
For datagram sockets, this will specify the port number used by the host that sent the datagram.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ReadFrom method returns data that has been read from the socket, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the socket is in non-blocking
mode. If the socket is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

This method is typically used when reading binary data from a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadFrom Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadFrom Method (Byte[], String, Int32)

Read data from the socket and store it in a string.

[Visual Basic]
Overloads Public Function ReadFrom(_
 ByRef buffer As String, _
 ByVal length As Integer, _
 ByRef hostAddress As String, _
 ByRef hostPort As Integer _
) As Integer

[C#]
public int ReadFrom(
 ref string buffer,
 int length,
 ref string hostAddress,
 ref int hostPort
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

hostAddress
A string passed by reference that will contain the remote host Internet address when the method
returns. For stream sockets, this will be the same as the address used to establish the connection. For
datagram sockets, this will specify the address of host that sent the datagram.

hostPort
An integer passed by reference that will contain the remote host port number when the method
returns. For stream sockets, this will be the same as the port number used to establish the connection.
For datagram sockets, this will specify the port number used by the host that sent the datagram.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ReadFrom method returns data that has been read from the socket, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the socket is in non-blocking
mode. If the socket is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This method is typically used when reading text data from a datagram socket.

See Also

SocketWrench.ReadFrom Method (String, Int32, String, Int32)

SocketWrench Class | SocketTools Namespace | SocketWrench.ReadFrom Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read data from the socket and store it in a string.

[Visual Basic]
Overloads Public Function ReadFrom(_
 ByRef buffer As String, _
 ByRef hostAddress As String, _
 ByRef hostPort As Integer _
) As Integer

[C#]
public int ReadFrom(
 ref string buffer,
 ref string hostAddress,
 ref int hostPort
);

Parameters
buffer

A string that will contain the data read from the socket.

hostAddress
A string passed by reference that will contain the remote host Internet address when the method
returns. For stream sockets, this will be the same as the address used to establish the connection. For
datagram sockets, this will specify the address of host that sent the datagram.

hostPort
An integer passed by reference that will contain the remote host port number when the method
returns. For stream sockets, this will be the same as the port number used to establish the connection.
For datagram sockets, this will specify the port number used by the host that sent the datagram.

Return Value
An integer value which specifies the number of bytes actually read from the socket. A return value of zero
specifies that the remote host has closed the connection and there is no more data available to be read. If
an error occurs, a value of -1 is returned and the application should check the value of the LastError
property to determine the cause of the failure.

Remarks
The ReadFrom method returns data that has been read from the socket, up to the maximum size of a
datagram. If no data is available to be read, an error will be generated if the socket is in non-blocking
mode. If the socket is in blocking mode, the program will stop until data is received from the server or the
connection is closed.

This method should only be used if the remote host is sending data that consists of printable characters.
Binary data should be read using the method that accepts a byte array as the buffer parameter.

This method is typically used when reading text data from a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadFrom Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadFrom Method (String, String, Int32)

Read up to a line of data from the socket and return it in a string buffer.

Overload List
Read up to a line of data from the socket and return it in a string buffer.

public bool ReadLine(ref string);

Read up to a line of data from the socket and return it in a string buffer.

public bool ReadLine(ref string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadLine Method

Read up to a line of data from the socket and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer
);

Parameters
buffer

A string which will contain the data read from the socket.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the socket up to 8192 bytes in length or until an end-of-line
character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the current thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If the Blocking
property is set to false, calling this method will automatically switch the socket into a blocking mode, read
the data and then restore the socket to non-blocking mode. If another socket operation is attempted
while ReadLine is blocked waiting for data from the remote host, an error will occur. It is recommended
that this method only be used with blocking socket connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadLine Method (String)

Read up to a line of data from the socket and return it in a string buffer.

[Visual Basic]
Overloads Public Function ReadLine(_
 ByRef buffer As String, _
 ByVal length As Integer _
) As Boolean

[C#]
public bool ReadLine(
 ref string buffer,
 int length
);

Parameters
buffer

A string which will contain the data read from the socket.

length
An integer value which specifies the maximum number of bytes of data to read.

Return Value
This method returns a Boolean value which specifies if a line of data has been read. A value of true
indicates a line of data has been read. If an error occurs or there is no more data available to read, then
the method will return false. It is possible for data to be returned in the string buffer even if the return
value is false. Applications should check the length of the string after the method returns to determine if
any data was copied into the buffer. For example, if a timeout occurs while the method is waiting for more
data to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that data,
regardless of the method return value.

Remarks
The ReadLine method reads data from the socket up to the specified number of bytes or until an end-of-
line character sequence is encountered. Unlike the Read method which reads arbitrary bytes of data, this
method is specifically designed to return a single line of text data in a string variable. When an end-of-line
character sequence is encountered, the method will stop and return the data up to that point; the string
will not contain the carriage-return or linefeed characters.

There are some limitations when using the ReadLine method. The method should only be used to read
text, never binary data. In particular, it will discard nulls, linefeed and carriage return control characters.
This method will force the current thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If the Blocking
property is set to false, calling this method will automatically switch the socket into a blocking mode, read
the data and then restore the socket to non-blocking mode. If another socket operation is attempted
while ReadLine is blocked waiting for data from the remote host, an error will occur. It is recommended
that this method only be used with blocking socket connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

SocketWrench.ReadLine Method (String, Int32)

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified byte array.

Overload List
Read a data stream from the socket and store it in the specified byte array.

public bool ReadStream(byte[],ref int);

Read a data stream from the socket and store it in the specified byte array.

public bool ReadStream(byte[],ref int,byte[]);

Read a data stream from the socket and store it in the specified byte array.

public bool ReadStream(byte[],ref int,byte[],SocketStream);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string,bool);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string,ref int);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string,ref int,bool);

Read a data stream from the socket and store it in the specified string.

public bool ReadStream(ref string,ref int,string,bool);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadStream Method

Read a data stream from the socket and store it in the specified byte array.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool ReadStream(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadStream Method (Byte[], Int32)

Read a data stream from the socket and store it in the specified byte array.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByVal buffer As Byte(), _
 ByRef length As Integer, _
 ByVal marker As Byte() _
) As Boolean

[C#]
public bool ReadStream(
 byte[] buffer,
 ref int length,
 byte[] marker
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

marker
An array of bytes which is used to designate the logical end of the data stream. When this byte
sequence is encountered by the method, it will stop reading and return to the caller. The buffer will
contain all of the data read from the socket up to and including the end-of-stream marker.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never

SocketWrench.ReadStream Method (Byte[], Int32, Byte[])

perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified byte array.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByVal buffer As Byte(), _
 ByRef length As Integer, _
 ByVal marker As Byte(), _
 ByVal options As SocketStream _
) As Boolean

[C#]
public bool ReadStream(
 byte[] buffer,
 ref int length,
 byte[] marker,
 SocketStream options
);

Parameters
buffer

A byte array that the data will be stored in.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

marker
An array of bytes which is used to designate the logical end of the data stream. When this byte
sequence is encountered by the method, it will stop reading and return to the caller. The buffer will
contain all of the data read from the socket up to and including the end-of-stream marker.

options
One of the SocketStream enumeration values which specifies how the data is processed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will

SocketWrench.ReadStream Method (Byte[], Int32, Byte[],
SocketStream)

return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer
);

Parameters
buffer

A string that will contain the data read from the socket.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the length of the string to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return zero;
however, data may have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadStream Method (String)

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer,
 bool convertText
);

Parameters
buffer

A string that will contain the data read from the socket.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line of text with a single linefeed, this option will
have the effect of inserting a carriage-return character before each linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the length of the string to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return zero;
however, data may have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also

SocketWrench.ReadStream Method (String, Boolean)

SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer,
 ref int length
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ReadStream Method (String, Int32)

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String, _
 ByRef length As Integer, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer,
 ref int length,
 bool convertText
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line of text with a single linefeed, this option will
have the effect of inserting a carriage-return character before each linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

SocketWrench.ReadStream Method (String, Int32, Boolean)

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Read a data stream from the socket and store it in the specified string.

[Visual Basic]
Overloads Public Function ReadStream(_
 ByRef buffer As String, _
 ByRef length As Integer, _
 ByVal marker As String, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool ReadStream(
 ref string buffer,
 ref int length,
 string marker,
 bool convertText
);

Parameters
buffer

A string that will contain the data read from the socket.

length
An integer value passed by reference which specifies the maximum number of bytes of data to read.
This value cannot be larger than the size of the buffer specified by the caller. When the method
returns, this value will be updated with the actual number of bytes read from the socket.

marker
A string which is used to designate the logical end of the data stream. When this character sequence is
encountered by the method, it will stop reading and return to the caller. The string buffer will contain
all of the data read from the socket up to and including the end-of-stream marker.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line of text with a single linefeed, this option will
have the effect of inserting a carriage-return character before each linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
and the Blocking property is set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while ReadStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to

SocketWrench.ReadStream Method (String, Int32, String, Boolean)

manage each connection.

It is possible for data to be returned in the buffer even if the method returns false. Applications should
also check the value of the length parameter to determine if any data was copied into the buffer. For
example, if a timeout occurs while the method is waiting for more data to arrive on the socket, it will
return zero; however, data may have already been copied into the buffer prior to the error condition. It is
the responsibility of the application to process that data, regardless of the method return value.

Because ReadStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.ReadStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Rejects a connection request from a remote host.

[Visual Basic]
Public Function Reject() As Boolean

[C#]
public bool Reject();

Return Value
This method returns a Boolean value. If the method succeeds, the return value is true. If the method fails,
the return value is false. To get extended error information, check the value of the LastError property.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the connection
being aborted. If there are no pending client connections at the time, this method will immediately return
with an error indicating that the operation would cause the thread to block.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Reject Method

Reset the internal state of the object, resetting all properties to their default values.

[Visual Basic]
Public Sub Reset()

[C#]
public void Reset();

Remarks
The Reset method returns the object to its default state. If a socket has been allocated, it will be released
and any active connections will be terminated. All properties will be reset to their default values.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Reset Method

Resolves a host name to a host IP address.

[Visual Basic]
Public Function Resolve(_
 ByVal hostName As String, _
 ByRef hostAddress As String _
) As Boolean

[C#]
public bool Resolve(
 string hostName,
 ref string hostAddress
);

Parameters
hostName

A string which specifies the host name to be resolved.

hostAddress
A string which will contain the Internet address for the specified host.

Return Value
This method returns a Boolean value. If the host name can be resolved, the return value is true. If the host
name cannot be resolved, the return value is false. To get extended error information, check the value of
the LastError property.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Resolve Method

Disable sending data on the socket.

Overload List
Disable sending data on the socket.

public bool Shutdown();

Disable sending or receiving data on the socket.

public bool Shutdown(ShutdownOptions);

See Also
SocketWrench Class | SocketTools Namespace | Disconnect Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Shutdown Method

Disable sending data on the socket.

[Visual Basic]
Overloads Public Function Shutdown() As Boolean

[C#]
public bool Shutdown();

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
In some asynchronous applications, it may be desirable for a client to inform the server that no further
communication is wanted, while allowing the client to read any residual data that may reside in internal
buffers on the client side. Shutdown accomplishes this because the socket handle is still valid after it has
been called, although some or all communication with the remote host has ceased. Note that most
applications do not typically need to use this method. To close a socket connection gracefully, you should
use the Disconnect method.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Shutdown Overload List | Disconnect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Shutdown Method ()

Disable sending or receiving data on the socket.

[Visual Basic]
Overloads Public Function Shutdown(_
 ByVal options As ShutdownOptions _
) As Boolean

[C#]
public bool Shutdown(
 ShutdownOptions options
);

Parameters
options

One of the ShutdownOptions enumeration values which specifies the operation that will no longer be
allowed.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
In some asynchronous applications, it may be desirable for a client to inform the server that no further
communication is wanted, while allowing the client to read any residual data that may reside in internal
buffers on the client side. Shutdown accomplishes this because the socket handle is still valid after it has
been called, although some or all communication with the remote host has ceased.

Note that most applications do not typically need to use this method. To close a socket connection
gracefully, you should use the Disconnect method.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Shutdown Overload List | Disconnect
Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Shutdown Method (ShutdownOptions)

Reads a data stream from the socket and stores it in the specified file.

Overload List
Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string);

Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string,ref int);

Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string,ref int,bool);

Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string,ref int,int,SocketStream);

Reads a data stream from the socket and stores it in the specified file.

public bool StoreStream(string,ref int,int,bool);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.StoreStream Method

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String _
) As Boolean

[C#]
public bool StoreStream(
 string fileName
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

Because StoreStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class instance will periodically generate OnProgress events. An application
can use this event to update the user interface as the data is being read. Note that an application should
never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.StoreStream Method (String)

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool StoreStream(
 string fileName,
 ref int length
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

length
An integer value which specifies the maximum amount of data to be read from the socket. When the
method returns, this variable will be updated with the actual number of bytes read. Note that because
this argument is passed by reference and modified by the method, you must provide a variable, not a
numeric constant. If the value is initialized to zero, this method will read data from the socket until the
remote host disconnects or an error occurs.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

Because StoreStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class instance will periodically generate OnProgress events. An application
can use this event to update the user interface as the data is being read. Note that an application should
never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.StoreStream Method (String, Int32)

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String, _
 ByRef length As Integer, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool StoreStream(
 string fileName,
 ref int length,
 bool convertText
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

length
An integer value which specifies the maximum amount of data to be read from the socket. When the
method returns, this variable will be updated with the actual number of bytes read. Note that because
this argument is passed by reference and modified by the method, you must provide a variable, not a
numeric constant. If the value is initialized to zero, this method will read data from the socket until the
remote host disconnects or an error occurs.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data stored in the file to be larger than the source data.
For example, if the source data only terminates a line of text with a single linefeed, this option will have
the effect of inserting a carriage-return character before each linefeed.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

Because StoreStream can potentially cause the current thread to block for long periods of time as the

SocketWrench.StoreStream Method (String, Int32, Boolean)

data stream is being read, the class instance will periodically generate OnProgress events. An application
can use this event to update the user interface as the data is being read. Note that an application should
never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String, _
 ByRef length As Integer, _
 ByVal offset As Integer, _
 ByVal convertText As Boolean _
) As Boolean

[C#]
public bool StoreStream(
 string fileName,
 ref int length,
 int offset,
 bool convertText
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

length
An integer value which specifies the maximum amount of data to be read from the socket. When the
method returns, this variable will be updated with the actual number of bytes read. Note that because
this argument is passed by reference and modified by the method, you must provide a variable, not a
numeric constant. If the value is initialized to zero, this method will read data from the socket until the
remote host disconnects or an error occurs.

offset
A numeric value which specifies the byte offset into the file where the method will start storing data
read from the socket. Note that all data after this offset will be truncated. If a value of zero is specified,
the file will be completely overwritten if it already exists.

convertText
A boolean flag which specifies if the data data stream is considered to be textual and should be
modified so that end-of-line character sequences are converted to follow standard Windows
conventions. This will ensure that all lines of text are terminated with a carriage-return and linefeed
sequence. Because this option modifies the data stream, it should never be used with binary data.
Using this option may result in the amount of data stored in the file to be larger than the source data.
For example, if the source data only terminates a line of text with a single linefeed, this option will have
the effect of inserting a carriage-return character before each linefeed.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket

SocketWrench.StoreStream Method (String, Int32, Int32, Boolean)

operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

Because StoreStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class instance will periodically generate OnProgress events. An application
can use this event to update the user interface as the data is being read. Note that an application should
never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Reads a data stream from the socket and stores it in the specified file.

[Visual Basic]
Overloads Public Function StoreStream(_
 ByVal fileName As String, _
 ByRef length As Integer, _
 ByVal offset As Integer, _
 ByVal options As SocketStream _
) As Boolean

[C#]
public bool StoreStream(
 string fileName,
 ref int length,
 int offset,
 SocketStream options
);

Parameters
fileName

A string variable that specifies the name of the file that will contain the data read from the socket. If
the file does not exist, it will be created. If the file does exist, the contents will be overwritten.

length
An integer value which specifies the maximum amount of data to be read from the socket. When the
method returns, this variable will be updated with the actual number of bytes read. Note that because
this argument is passed by reference and modified by the method, you must provide a variable, not a
numeric constant. If the value is initialized to zero, this method will read data from the socket until the
remote host disconnects or an error occurs.

offset
A numeric value which specifies the byte offset into the file where the method will start storing data
read from the socket. Note that all data after this offset will be truncated. If a value of zero is specified,
the file will be completely overwritten if it already exists.

options
One of the SocketStream enumeration values which specifies how the data is processed.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, read
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while StoreStream is blocked waiting for data from the remote host, an error will
occur. It is recommended that this method only be used with blocking (synchronous) socket connections;
if the application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

SocketWrench.StoreStream Method (String, Int32, Int32,
SocketStream)

Because StoreStream can potentially cause the current thread to block for long periods of time as the
data stream is being read, the class will periodically generate OnProgress events. An application can use
this event to update the user interface as the data is being read. Note that an application should never
perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.StoreStream Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Uninitialize the class library and release any resources allocated for the current thread.

[Visual Basic]
Public Sub Uninitialize()

[C#]
public void Uninitialize();

Remarks
The Uninitialize method terminates any active connection, releases resources allocated for the current
thread and unloads the networking library. After this method has been called, no further socket operations
may be performed until the class instance has been re-initialized.

If the Initialize method is explicitly called by the application, it should be matched by a call to the
Uninitialize method when that instance of the class is no longer needed.

See Also
SocketWrench Class | SocketTools Namespace | Initialize Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Uninitialize Method

Write one or more bytes of data to the socket.

Overload List
Write one or more bytes of data to the socket.

public int Write(byte[]);

Write one or more bytes of data to the socket.

public int Write(byte[],int);

Write a string of characters to the socket.

public int Write(string);

Write a string of characters to the socket.

public int Write(string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method

Write one or more bytes of data to the socket.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte() _
) As Integer

[C#]
public int Write(
 byte[] buffer
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method (Byte[])

Write one or more bytes of data to the socket.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As Byte(), _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 byte[] buffer,
 int length
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The Write method sends one or more bytes of data to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method (Byte[], Int32)

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String _
) As Integer

[C#]
public int Write(
 string buffer
);

Parameters
buffer

A string which contains the data to be written to the socket.

Return Value
An integer value which specifies the number of characters actually written to the socket. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the remote host. If there is enough room in the socket's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method (String)

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function Write(_
 ByVal buffer As String, _
 ByVal length As Integer _
) As Integer

[C#]
public int Write(
 string buffer,
 int length
);

Parameters
buffer

A string which contains the data to be written to the socket.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
An integer value which specifies the number of characters actually written to the socket. If an error occurs,
a value of -1 is returned and the application should check the value of the LastError property to
determine the cause of the failure.

Remarks
The Write method sends a string of characters to the remote host. If there is enough room in the socket's
internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

The string will be converted to an array of bytes before being written to the socket. By default, the
character encoding used will be for the current locale. Depending on the contents of the string, the
number of bytes written may be different than the string length specified. This is because the conversion
from Unicode to a byte array may result in a multi-byte character sequence.

You should never use strings to read and write binary data. Always use byte arrays to ensure that no
character conversion is performed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.Write Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.Write Method (String, Int32)

Send an empty line of text to the remote host, terminated by a carriage-return and linefeed.

Overload List
Send an empty line of text to the remote host, terminated by a carriage-return and linefeed.

public bool WriteLine();

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

public bool WriteLine(string);

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

public bool WriteLine(string,ref int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteLine Method

Send an empty line of text to the remote host, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine() As Boolean

[C#]
public bool WriteLine();

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method will send an empty line of text, terminated by a carriage-return and linefeed.
Calling this method will force the application to block until the complete line of text has been written, the
write operation times out or the remote host aborts the connection. If this method is called with the
Blocking property set to false, it will automatically switch the socket into a blocking mode, send the data
and then restore the socket to non-blocking mode. If another socket operation is attempted while the
WriteLine method is blocked sending data to the remote host, an error will occur. It is recommended that
this method only be used with blocking socket connections.

The Write and WriteLine methods can be safely intermixed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteLine Method ()

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String _
) As Boolean

[C#]
public bool WriteLine(
 string buffer
);

Parameters
buffer

A string which contains the data that will be sent to the remote host. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection. If this
method is called with the Blocking property set to false, it will automatically switch the socket into a
blocking mode, send the data and then restore the socket to non-blocking mode. If another socket
operation is attempted while the WriteLine method is blocked sending data to the remote host, an error
will occur. It is recommended that this method only be used with blocking socket connections.

The Write and WriteLine methods can be safely intermixed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteLine Method (String)

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

[Visual Basic]
Overloads Public Function WriteLine(_
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteLine(
 string buffer,
 ref int length
);

Parameters
buffer

A string which contains the data that will be sent to the remote host. The data will always be
terminated with a carriage-return and linefeed control character sequence. If the string is empty, then
a only a carriage-return and linefeed are written to the socket. Note that if the string contains a null
character, any data that follows the null character will be discarded.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteLine method should only be used to send text, never binary data. In particular, this method will
discard any data that follows a null character and will append linefeed and carriage return control
characters to the data stream. Calling this method will force the current thread to block until the complete
line of text has been written, the write operation times out or the remote host aborts the connection. If this
method is called with the Blocking property set to false, it will automatically switch the socket into a
blocking mode, send the data and then restore the socket to non-blocking mode. If another socket
operation is attempted while the WriteLine method is blocked sending data to the remote host, an error
will occur. It is recommended that this method only be used with blocking socket connections.

The Write and WriteLine methods can be safely intermixed.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteLine Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteLine Method (String, Int32)

Write a stream of bytes to the socket.

Overload List
Write a stream of bytes to the socket.

public bool WriteStream(byte[],ref int);

Write a string of characters to the socket.

public bool WriteStream(string,ref int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteStream Method

Write a stream of bytes to the socket.

[Visual Basic]
Overloads Public Function WriteStream(_
 ByVal buffer As Byte(), _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteStream(
 byte[] buffer,
 ref int length
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

length
An integer value passed by reference which specifies the maximum number of bytes to write. This
value cannot be larger than the size of the buffer specified by the caller. When the method returns,
this value will be updated with the actual number of bytes written to the socket.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of data from a byte
array to the socket. Unlike the Write method, which may not write all of the data in a single call, the
WriteStream method will only return when all of the data has been written or an error occurs.

This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, write
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while WriteStream is blocked sending data to the remote host, an error will occur.
It is recommended that this method only be used with blocking (synchronous) socket connections; if the
application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible that some data will have been written to the socket even if the method returns false.
Applications should also check the value of the length argument to determine if any data was sent. For
example, if a timeout occurs while the function is waiting to write more data, it will return zero; however,
some data may have already been written to the socket prior to the error condition.

Because WriteStream can potentially cause the current thread to block for long periods of time as the
data stream is being written, the class instance will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being written. Note that an
application should never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteStream Overload List

SocketWrench.WriteStream Method (Byte[], Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function WriteStream(_
 ByVal buffer As String, _
 ByRef length As Integer _
) As Boolean

[C#]
public bool WriteStream(
 string buffer,
 ref int length
);

Parameters
buffer

A string that contains the data to be written to the socket.

length
An integer value passed by reference which specifies the maximum number of characters to write. This
value cannot be larger than the length of the string specified by the caller. When the method returns,
this value will be updated with the actual number of bytes written to the socket.

Return Value
A boolean value which specifies if the operation completed successfully. A return value of false indicates
an error has occurred. To get extended error information, check the value of the LastError property.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of data from a string
to the socket. Unlike the Write method, which may not write all of the data in a single call, the
WriteStream method will only return when all of the data has been written or an error occurs.

This method will force the current thread to block until the operation completes. If this method is called
with the Blocking property set to false, it will automatically switch the socket into a blocking mode, write
the data stream and then restore the socket to non-blocking mode when it has finished. If another socket
operation is attempted while WriteStream is blocked sending data to the remote host, an error will occur.
It is recommended that this method only be used with blocking (synchronous) socket connections; if the
application needs to establish multiple simultaneous connections, it should create worker threads to
manage each connection.

It is possible that some data will have been written to the socket even if the method returns false.
Applications should also check the value of the length argument to determine if any data was sent. For
example, if a timeout occurs while the function is waiting to write more data, it will return zero; however,
some data may have already been written to the socket prior to the error condition.

Because WriteStream can potentially cause the current thread to block for long periods of time as the
data stream is being written, the class instance will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being written. Note that an
application should never perform a blocking operation inside the event handler.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteStream Overload List

SocketWrench.WriteStream Method (String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Write one or more bytes of data to the socket.

Overload List
Write one or more bytes of data to the socket.

public int WriteTo(byte[],int,string,int);

Write one or more bytes of data to the socket.

public int WriteTo(byte[],string,int);

Write a string of characters to the socket.

public int WriteTo(string,int,string,int);

Write a string of characters to the socket.

public int WriteTo(string,string,int);

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteTo Method

Write one or more bytes of data to the socket.

[Visual Basic]
Overloads Public Function WriteTo(_
 ByVal buffer As Byte(), _
 ByVal length As Integer, _
 ByVal hostAddress As String, _
 ByVal hostPort As Integer _
) As Integer

[C#]
public int WriteTo(
 byte[] buffer,
 int length,
 string hostAddress,
 int hostPort
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

length
An integer value which specifies the maximum number of bytes of data to write. This value cannot be
larger than the size of the buffer specified by the caller.

hostAddress
A string value which specifies the address of the remote host that the data will be sent to. For
datagram sockets, this may be any valid Internet address. For stream sockets, this must be the same
address that was used to establish the connection.

hostPort
An integer value which specifies the port number of the remote host that the data will be sent to. For
datagram sockets, this may be any valid port number. For stream sockets, this must be the same port
number that was used to establish the connection.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The WriteTo method sends one or more bytes of data to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

This method is typically used when writing binary data to a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteTo Overload List

SocketWrench.WriteTo Method (Byte[], Int32, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Write one or more bytes of data to the socket.

[Visual Basic]
Overloads Public Function WriteTo(_
 ByVal buffer As Byte(), _
 ByVal hostAddress As String, _
 ByVal hostPort As Integer _
) As Integer

[C#]
public int WriteTo(
 byte[] buffer,
 string hostAddress,
 int hostPort
);

Parameters
buffer

A byte array that contains the data to be written to the socket.

hostAddress
A string value which specifies the address of the remote host that the data will be sent to. For
datagram sockets, this may be any valid Internet address. For stream sockets, this must be the same
address that was used to establish the connection.

hostPort
An integer value which specifies the port number of the remote host that the data will be sent to. For
datagram sockets, this may be any valid port number. For stream sockets, this must be the same port
number that was used to establish the connection.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The WriteTo method sends one or more bytes of data to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

This method is typically used when writing binary data to a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteTo Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteTo Method (Byte[], String, Int32)

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function WriteTo(_
 ByVal buffer As String, _
 ByVal length As Integer, _
 ByVal hostAddress As String, _
 ByVal hostPort As Integer _
) As Integer

[C#]
public int WriteTo(
 string buffer,
 int length,
 string hostAddress,
 int hostPort
);

Parameters
buffer

A string that contains the data to be written to the socket.

length
An integer value which specifies the maximum number of characters to write. This value cannot be
larger than the length of the string specified by the caller.

hostAddress
A string value which specifies the address of the remote host that the data will be sent to. For
datagram sockets, this may be any valid Internet address. For stream sockets, this must be the same
address that was used to establish the connection.

hostPort
An integer value which specifies the port number of the remote host that the data will be sent to. For
datagram sockets, this may be any valid port number. For stream sockets, this must be the same port
number that was used to establish the connection.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The WriteTo method sends a string of characters to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

This method is typically used when writing text data to a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteTo Overload List

SocketWrench.WriteTo Method (String, Int32, String, Int32)

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Write a string of characters to the socket.

[Visual Basic]
Overloads Public Function WriteTo(_
 ByVal buffer As String, _
 ByVal hostAddress As String, _
 ByVal hostPort As Integer _
) As Integer

[C#]
public int WriteTo(
 string buffer,
 string hostAddress,
 int hostPort
);

Parameters
buffer

A string that contains the data to be written to the socket.

hostAddress
A string value which specifies the address of the remote host that the data will be sent to. For
datagram sockets, this may be any valid Internet address. For stream sockets, this must be the same
address that was used to establish the connection.

hostPort
An integer value which specifies the port number of the remote host that the data will be sent to. For
datagram sockets, this may be any valid port number. For stream sockets, this must be the same port
number that was used to establish the connection.

Return Value
An integer value which specifies the number of bytes actually written to the socket. If an error occurs, a
value of -1 is returned and the application should check the value of the LastError property to determine
the cause of the failure.

Remarks
The WriteTo method sends a string of characters to the remote host. If there is enough room in the
socket's internal send buffer to accommodate all of the data, it is copied to the send buffer and control
immediately returns to the caller. If amount of data exceeds the available buffer space and the socket is in
blocking mode, then the method will block until the data can be sent. If the socket is in non-blocking
mode and the send buffer is full, an error will occur.

This method is typically used when writing text data to a datagram socket.

See Also
SocketWrench Class | SocketTools Namespace | SocketWrench.WriteTo Overload List

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.WriteTo Method (String, String, Int32)

The events of the SocketWrench class are listed below. For a complete list of SocketWrench class
members, see the SocketWrench Members topic.

Public Instance Events

OnAccept Occurs when a remote host attempts to establish a
connection with the local system.

OnCancel Occurs when a blocking socket operation is
canceled.

OnConnect Occurs when a connection is established with the
remote host.

OnDisconnect Occurs when the remote host disconnects from
the local system.

OnError Occurs when an socket operation fails.

OnProgress Occurs as a data stream is being read or written to
the socket.

OnRead Occurs when data is available to be read from the
socket.

OnTimeout Occurs when a blocking operation fails to
complete before the timeout period elapses.

OnWrite Occurs when data can be written to the socket.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Events

Occurs when a remote host attempts to establish a connection with the local system.

[Visual Basic]
Public Event OnAccept As OnAcceptEventHandler

[C#]
public event OnAcceptEventHandler OnAccept;

Event Data
The event handler receives an argument of type SocketWrench.AcceptEventArgs containing data related
to this event. The following SocketWrench.AcceptEventArgs property provides information specific to
this event.

Property Description

Handle Gets a value that specifies the socket handle for
the listening server.

Remarks
The OnAccept event occurs when a remote host attempts to connect to the local system. A connection is
not actually established until it has been accepted by the listening server. To accept the connection, the
application must call the Accept method.

The PeerAddress or PeerName properties may be used to determine the Internet address and host
name of the remote host that is establishing the connection. Note that this information may not be
available until after the Accept method is called to accept the connection.

This event is only generated if the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnAccept Event

Provides data for the OnAccept event.

For a list of all members of this type, see SocketWrench.AcceptEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SocketWrench.AcceptEventArgs

[Visual Basic]
Public Class SocketWrench.AcceptEventArgs
 Inherits EventArgs

[C#]
public class SocketWrench.AcceptEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
AcceptEventArgs specifies the socket handle for the server that should accept the incoming client
connection.

The OnAccept event occurs when a remote host attempts to establish a connection with the local system.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench.AcceptEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs Class

SocketWrench.AcceptEventArgs overview

Public Instance Constructors

 SocketWrench.AcceptEventArgs Constructor Initializes a new instance of the
SocketWrench.AcceptEventArgs class.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the listening server.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs Members

Initializes a new instance of the SocketWrench.AcceptEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SocketWrench.AcceptEventArgs();

See Also
SocketWrench.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs Constructor

The properties of the SocketWrench.AcceptEventArgs class are listed below. For a complete list of
SocketWrench.AcceptEventArgs class members, see the SocketWrench.AcceptEventArgs Members
topic.

Public Instance Properties

Handle Gets a value that specifies the socket handle for
the listening server.

See Also
SocketWrench.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs Properties

Gets a value that specifies the socket handle for the listening server.

[Visual Basic]
Public ReadOnly Property Handle As Integer

[C#]
public int Handle {get;}

Property Value
An integer value which specifies the server socket handle.

See Also
SocketWrench.AcceptEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.AcceptEventArgs.Handle Property

Occurs when a blocking socket operation is canceled.

[Visual Basic]
Public Event OnCancel As EventHandler

[C#]
public event EventHandler OnCancel;

Remarks
The OnCancel event is generated when a blocking socket operation, such as sending or receiving data, is
canceled with the Cancel method. To assist in determining which operation was canceled, check the value
of the Status property.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnCancel Event

Occurs when a connection is established with the remote host.

[Visual Basic]
Public Event OnConnect As EventHandler

[C#]
public event EventHandler OnConnect;

Remarks
The OnConnect event occurs when a connection is made with a remote host as a result of a Connect
method call. When the Connect method is called and the Blocking property is set to false, a socket is
created but the connection is not actually established until after this event occurs. Between the time
connection process is started and this event fires, no operation may be performed on the socket other
than calling the Disconnect method.

This event is only generated if the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnConnect Event

Occurs when the remote host disconnects from the local system.

[Visual Basic]
Public Event OnDisconnect As EventHandler

[C#]
public event EventHandler OnDisconnect;

Remarks
The OnDisconnect event occurs when the remote host closes its socket, terminating its connection with
the application. Because there may still be data in the socket receive buffers, you should continue to read
data from the socket until the Read method returns a value of 0. Once all of the data has been read, you
should call the Disconnect method to close the local socket and terminate the session.

This event is only generated if the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnDisconnect Event

Occurs when an socket operation fails.

[Visual Basic]
Public Event OnError As OnErrorEventHandler

[C#]
public event OnErrorEventHandler OnError;

Event Data
The event handler receives an argument of type SocketWrench.ErrorEventArgs containing data related to
this event. The following SocketWrench.ErrorEventArgs properties provide information specific to this
event.

Property Description

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Remarks
The OnError event occurs when a socket operation fails.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnError Event

Provides data for the OnError event.

For a list of all members of this type, see SocketWrench.ErrorEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SocketWrench.ErrorEventArgs

[Visual Basic]
Public Class SocketWrench.ErrorEventArgs
 Inherits EventArgs

[C#]
public class SocketWrench.ErrorEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ErrorEventArgs specifies the numeric error code and a description of the error that has occurred.

An OnError event occurs when a method fails.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench.ErrorEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs Class

SocketWrench.ErrorEventArgs overview

Public Instance Constructors

 SocketWrench.ErrorEventArgs Constructor Initializes a new instance of the
SocketWrench.ErrorEventArgs class.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs Members

Initializes a new instance of the SocketWrench.ErrorEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SocketWrench.ErrorEventArgs();

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs Constructor

The properties of the SocketWrench.ErrorEventArgs class are listed below. For a complete list of
SocketWrench.ErrorEventArgs class members, see the SocketWrench.ErrorEventArgs Members topic.

Public Instance Properties

Description Gets a value which describes the last error that has
occurred.

Error Gets a value which specifies the last error that has
occurred.

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs Properties

Gets a value which describes the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Description As String

[C#]
public string Description {get;}

Property Value
A string which describes the last error that has occurred.

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace | Error Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs.Description Property

Gets a value which specifies the last error that has occurred.

[Visual Basic]
Public ReadOnly Property Error As ErrorCode

[C#]
public SocketWrench.ErrorCode Error {get;}

Property Value
ErrorCode enumeration which specifies the error.

See Also
SocketWrench.ErrorEventArgs Class | SocketTools Namespace | Description Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ErrorEventArgs.Error Property

Occurs as a data stream is being read or written to the socket.

[Visual Basic]
Public Event OnProgress As OnProgressEventHandler

[C#]
public event OnProgressEventHandler OnProgress;

Event Data
The event handler receives an argument of type SocketWrench.ProgressEventArgs containing data related
to this event. The following SocketWrench.ProgressEventArgs properties provide information specific to
this event.

Property Description

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Remarks
The OnProgress event occurs as a data stream is being read or written to the socket. If large amounts of
data are being read or written, this event can be used to update a progress bar or other user-interface
component to provide the user with some visual feedback on the progress of the operation.

This event is only generated when the ReadStream, WriteStream or StoreStream methods are called.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnProgress Event

Provides data for the OnProgress event.

For a list of all members of this type, see SocketWrench.ProgressEventArgs Members.

System.Object
 System.EventArgs
 SocketTools.SocketWrench.ProgressEventArgs

[Visual Basic]
Public Class SocketWrench.ProgressEventArgs
 Inherits EventArgs

[C#]
public class SocketWrench.ProgressEventArgs : EventArgs

Thread Safety
Public static (Shared in Visual Basic) members of this type are safe for multithreaded operations. Instance
members are not guaranteed to be thread-safe.

Remarks
ProgressEventArgs specifies the number of bytes copied from the data stream, the total number of bytes
in the data stream and a completion percentage.

The OnProgress event occurs as a data stream is being read or written to the socket. This event only
occurs when the ReadStream, WriteStream or StoreStream methods are called.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketWrench.ProgressEventArgs Members | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs Class

SocketWrench.ProgressEventArgs overview

Public Instance Constructors

 SocketWrench.ProgressEventArgs Constructor Initializes a new instance of the
SocketWrench.ProgressEventArgs class.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

Public Instance Methods

Equals (inherited from Object) Determines whether the specified Object is equal
to the current Object.

GetHashCode (inherited from Object) Serves as a hash function for a particular type,
suitable for use in hashing algorithms and data
structures like a hash table.

GetType (inherited from Object) Gets the Type of the current instance.

ToString (inherited from Object) Returns a String that represents the current Object.

Protected Instance Methods

Finalize (inherited from Object) Allows an Object to attempt to free resources and
perform other cleanup operations before the
Object is reclaimed by garbage collection.

MemberwiseClone (inherited from Object) Creates a shallow copy of the current Object.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs Members

Initializes a new instance of the SocketWrench.ProgressEventArgs class.

[Visual Basic]
Public Sub New()

[C#]
public SocketWrench.ProgressEventArgs();

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs Constructor

The properties of the SocketWrench.ProgressEventArgs class are listed below. For a complete list of
SocketWrench.ProgressEventArgs class members, see the SocketWrench.ProgressEventArgs Members
topic.

Public Instance Properties

BytesCopied Gets a value which specifies the number of bytes
of data that has been read or written.

BytesTotal Gets a value which specifies the total number of
bytes in the data stream.

Percent Gets a value which specifies the percentage of
data that has been read or written.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs Properties

Gets a value which specifies the number of bytes of data that has been read or written.

[Visual Basic]
Public ReadOnly Property BytesCopied As Integer

[C#]
public int BytesCopied {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesCopied property specifies the number of bytes that have been read from the socket and stored
in the local stream buffer, or written from the stream buffer to the socket.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace | BytesTotal Property | Percent Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs.BytesCopied Property

Gets a value which specifies the total number of bytes in the data stream.

[Visual Basic]
Public ReadOnly Property BytesTotal As Integer

[C#]
public int BytesTotal {get;}

Property Value
An integer value which specifies the number of bytes of data.

Remarks
The BytesTotal property specifies the total amount of data being read from the socket and stored in the
data stream, or written from the data stream to the socket. If the amount of data was unknown or
unspecified at the time the method call was made, then this value will always be the same as the
BytesCopied property.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | Percent
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs.BytesTotal Property

Gets a value which specifies the percentage of data that has been read or written.

[Visual Basic]
Public ReadOnly Property Percent As Integer

[C#]
public int Percent {get;}

Property Value
An integer value which specifies a percentage.

Remarks
The Percent property specifies the percentage of data that has been transmitted, expressed as an integer
value between 0 and 100, inclusive. If the maximum size of the data stream was not specified by the caller,
this value will always be 100.

See Also
SocketWrench.ProgressEventArgs Class | SocketTools Namespace | BytesCopied Property | BytesTotal
Property

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ProgressEventArgs.Percent Property

Occurs when data is available to be read from the socket.

[Visual Basic]
Public Event OnRead As EventHandler

[C#]
public event EventHandler OnRead;

Remarks
The OnRead event occurs when data is available to be read from the socket. This event is level-triggered,
which means that once this event fires, it will not occur again until some data has been read from the
socket. This design prevents an application from being flooded with event notifications. It is recommended
that your application read all of the available data from the socket and store it in a local buffer for
processing. See the example below.

This event is only generated if the socket is in non-blocking mode.

Example

Private Sub Socket_OnRead(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Socket.OnRead
 Dim strBuffer As String
 Dim nRead As Integer

 Do
 ' Read up to m_nBufferSize bytes of data from the socket
 nRead = Socket.Read(strBuffer, m_nBufferSize)

 If nRead > 0 Then
 ' Append the data to an internal buffer for processing
 m_dataBuffer = m_dataBuffer + strBuffer
 End If
 Loop Until nRead < 1

 ProcessData()
End Sub

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnRead Event

Occurs when a blocking operation fails to complete before the timeout period elapses.

[Visual Basic]
Public Event OnTimeout As EventHandler

[C#]
public event EventHandler OnTimeout;

Remarks
The OnTimeout event occurs when a blocking operation, such as sending or receiving data on the
socket, fails to complete before the specified timeout period elapses. The timeout period for a blocking
operation can be adjusted by setting the Timeout property.

This event is only generated if the socket is in blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnTimeout Event

Occurs when data can be written to the socket.

[Visual Basic]
Public Event OnWrite As EventHandler

[C#]
public event EventHandler OnWrite;

Remarks
The OnWrite event occurs when the application can write data to the socket. This event will typically
occur when a connection is first established with the remote host, and after the Write method has failed
because there was insufficient memory available in the socket send buffers. In the second case, when
some of the buffered data has been successfully sent to the remote host and there is space available in
the send buffers, this event is used to signal the application that it may attempt to send more data.

This event is only generated if the socket is in non-blocking mode.

See Also
SocketWrench Class | SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnWrite Event

Represents the method that will handle the OnAccept event.

[Visual Basic]
Public Delegate Sub SocketWrench.OnAcceptEventHandler(_
 ByVal sender As Object, _
 ByVal e As AcceptEventArgs _
)

[C#]
public delegate void SocketWrench.OnAcceptEventHandler(

 object sender,
 AcceptEventArgs e
);

Parameters
sender

The source of the event.

e
An AcceptEventArgs that contains the event data.

Remarks
When you create an OnAcceptEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnAcceptEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace | Accept Method | OnAccept Event

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnAcceptEventHandler Delegate

Represents the method that will handle the OnError event.

[Visual Basic]
Public Delegate Sub SocketWrench.OnErrorEventHandler(_
 ByVal sender As Object, _
 ByVal e As ErrorEventArgs _
)

[C#]
public delegate void SocketWrench.OnErrorEventHandler(

 object sender,
 ErrorEventArgs e
);

Parameters
sender

The source of the event.

e
An ErrorEventArgs that contains the event data.

Remarks
When you create an OnErrorEventHandler delegate, you identify the method that will handle the event.
To associate the event with your event handler, add an instance of the delegate to the event. The event
handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnErrorEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnErrorEventHandler Delegate

Represents the method that will handle the OnProgress event.

[Visual Basic]
Public Delegate Sub SocketWrench.OnProgressEventHandler(_
 ByVal sender As Object, _
 ByVal e As ProgressEventArgs _
)

[C#]
public delegate void SocketWrench.OnProgressEventHandler(

 object sender,
 ProgressEventArgs e
);

Parameters
sender

The source of the event.

e
A ProgressEventArgs that contains the event data.

Remarks
When you create an OnProgressEventHandler delegate, you identify the method that will handle the
event. To associate the event with your event handler, add an instance of the delegate to the event. The
event handler is called whenever the event occurs, until you remove the delegate.

Note that the declaration of your event handler must have the same parameters as the
OnProgressEventHandler delegate declaration.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.OnProgressEventHandler Delegate

Specifies the error codes returned by the SocketWrench class.

[Visual Basic]
Public Enum SocketWrench.ErrorCode

[C#]
public enum SocketWrench.ErrorCode

Remarks
The SocketWrench class uses the ErrorCode enumeration to specify what error has occurred when a
method fails. The current error code may be determined by checking the value of the LastError property.

Note that the last error code is only meaningful if the previous operation has failed.

Members

Member Name Description

errorNone No error.

errorNotHandleOwner Handle not owned by the current thread.

errorFileNotFound The specified file or directory does not exist.

errorFileNotCreated The specified file could not be created.

errorOperationCanceled The blocking operation has been canceled.

errorInvalidFileType The specified file is a block or character device, not
a regular file.

errorInvalidDevice The specified file type is invalid or not a regular
file.

errorTooManyParameters The maximum number of function parameters has
been exceeded.

errorInvalidFileName The specified file name contains invalid characters
or is too long.

errorInvalidFileHandle Invalid file handle passed to function.

errorFileReadFailed Unable to read data from the specified file.

errorFileWriteFailed Unable to write data to the specified file.

errorOutOfMemory Out of memory.

errorAccessDenied Access denied.

errorInvalidParameter Invalid argument passed to function.

errorClipboardUnavailable The system clipboard is currently unavailable.

errorClipboardEmpty The system clipboard is empty or does not contain
any text data.

errorFileEmpty The specified file does not contain any data.

errorFileExists The specified file already exists.

SocketWrench.ErrorCode Enumeration

errorEndOfFile End of file.

errorDeviceNotFound The specified device could not be found.

errorDirectoryNotFound The specified directory could not be found.

errorInvalidBuffer Invalid memory address passed to function.

errorBufferTooSmall The specified buffer is not large enough to contain
the data.

errorNoHandles No more handles are available to this process.

errorOperationWouldBlock The specified operation would block the current
thread.

errorOperationInProgress A blocking operation is currently in progress.

errorAlreadyInProgress The specified operation is already in progress.

errorInvalidHandle Invalid handle passed to function.

errorInvalidAddress Invalid network address specified.

errorInvalidSize Datagram is too large to fit in specified buffer.

errorInvalidProtocol Invalid network protocol specified.

errorProtocolNotAvailable The specified network protocol is not available.

errorProtocolNotSupported The specified protocol is not supported.

errorSocketNotSupported The specified socket type is not supported.

errorInvalidOption The specified option is invalid.

errorProtocolFamily Specified protocol family is not supported.

errorProtocolAddress The specified address is invalid for this protocol
family.

errorAddressInUse The specified address is in use by another process.

errorAddressUnavailable The specified address cannot be assigned.

errorNetworkUnavailable The networking subsystem is unavailable.

errorNetworkUnreachable The specified network is unreachable.

errorNetworkReset Network dropped connection on remote reset.

errorConnectionAborted Connection was aborted due to timeout or other
failure.

errorConnectionReset Connection was reset by remote network.

errorOutOfBuffers No buffer space is available.

errorAlreadyConnected Connection already established with remote host.

errorNotConnected No connection established with remote host.

errorConnectionShutdown Unable to send or receive data after connection
shutdown.

errorOperationTimeout The specified operation has timed out.

errorConnectionRefused The connection has been refused by the remote
host.

errorHostUnavailable The specified host is unavailable.

errorHostUnreachable Remote host is unreachable.

errorTooManyProcesses Too many processes are using the networking
subsystem.

errorTooManyThreads Too many threads have been created by the
current process.

errorTooManySessions Too many client sessions have been created by the
current process.

errorInternalFailure An unexpected internal error has occurred.

errorNetworkNotReady Network subsystem is not ready for
communication.

errorInvalidVersion This version of the operating system is not
supported.

errorNetworkNotInitialized The networking subsystem has not been initialized.

errorRemoteShutdown The remote host has initiated a graceful shutdown
sequence.

errorInvalidHostName The specified hostname is invalid or could not be
resolved.

errorHostNameNotFound The specified hostname could not be found.

errorHostNameRefused Unable to resolve hostname, request refused.

errorHostNameNotResolved Unable to resolve hostname, no address for
specified host.

errorInvalidLicense The license for this product is invalid.

errorProductNotLicensed This product is not licensed to perform this
operation.

errorNotImplemented This function has not been implemented on this
platform.

errorUnknownLocalhost Unable to determine local host name.

errorInvalidHostAddress Invalid host address specified.

errorInvalidServicePort Invalid service port number specified.

errorInvalidServiceName Invalid or unknown service name specified.

errorInvalidEventId Invalid event identifier specified.

errorOperationNotBlocking No blocking operation in progress on this socket.

errorSecurityNotInitialized Unable to initialize security interface for this
process.

errorSecurityContext Unable to establish security context for this
session.

errorSecurityCredentials Unable to open certificate store or establish
security credentials.

errorSecurityCertificate Unable to validate the certificate chain for this

session.

errorSecurityDecryption Unable to decrypt data stream.

errorSecurityEncryption Unable to encrypt data stream.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the encryption algorithms that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SecureCipherAlgorithm

[C#]
[Flags]
public enum SocketWrench.SecureCipherAlgorithm

Remarks
The SocketWrench class uses the SecureCipherAlgorithm enumeration to identify which encryption
algorithm was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

cipherNone No cipher has been selected. A secure
connection has not been established
with the remote host.

0

cipherRC2 The RC2 block cipher was selected. This
is a variable key length cipher which
supports keys between 40- and 128-bits
in length, in 8-bit increments.

1

cipherRC4 The RC4 stream cipher was selected.
This is a variable key length cipher
which supports keys between 40- and
128-bits in length, in 8-bit increments.

2

cipherRC5 The RC5 block cipher was selected. This
is a variable key length cipher which
supports keys up to 2040 bits, in 8-bit
increments.

4

cipherDES The DES (Data Encryption Standard)
block cipher was selected. This is a fixed
key length cipher using 56-bit keys.

8

cipherDES3 The Triple DES block cipher was
selected. This cipher encrypts the data
three times using different keys,
effectively using a 168-bit key length.

16

cipherDESX A variant of the DES block cipher which
XORs an extra 64-bits of the key before
and after the plaintext has been
encrypted, increasing the key size to
184 bits.

32

cipherAES The Advanced Encryption Standard 64

SocketWrench.SecureCipherAlgorithm Enumeration

cipher (also known as the Rijndael
cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits.
This cipher is supported on Windows XP
SP3 SP3 and later versions of the
operating system.

cipherSkipjack The Skipjack block cipher was selected.
This is a fixed key length cipher, using
80-bit keys.

128

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the hash algorithms that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SecureHashAlgorithm

[C#]
[Flags]
public enum SocketWrench.SecureHashAlgorithm

Remarks
The SocketWrench class uses the SecureHashAlgorithm enumeration to identify the message digest
(hash) algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

hashNone No hash algorithm has been selected.
This is not a secure connection with the
server.

0

hashMD5 The MD5 algorithm was selected. This
algorithm produces a 128-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

1

hashSHA The SHA-1 algorithm was selected. This
algorithm produces a 160-bit message
digest. This algorithm is no longer
considered to be cryptographically
secure.

2

hashSHA256 The SHA-256 algorithm was selected.
This algorithm produces a 256-bit
message digest.

4

hashSHA384 The SHA-384 algorithm was selected.
This algorithm produces a 384-bit
message digest.

8

hashSHA512 The SHA-512 algorithm was selected.
This algorithm produces a 512-bit
message digest.

16

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also

SocketWrench.SecureHashAlgorithm Enumeration

SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the key exchange algorithms that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SecureKeyAlgorithm

[C#]
[Flags]
public enum SocketWrench.SecureKeyAlgorithm

Remarks
The SocketWrench class uses the SecureKeyAlgorithm enumeration to identify the key exchange
algorithm that was selected when a secure connection was established with the remote host.

Members

Member Name Description Value

keyExchangeNone No key exchange algorithm has been
selected. This is not a secure connection
with the server.

0

keyExchangeRSA The RSA public key exchange algorithm
has been selected.

1

keyExchangeKEA The KEA public key exchange algorithm
has been selected. This is an improved
version of the Diffie-Hellman public key
algorithm.

2

keyExchangeDH The Diffie-Hellman public key exchange
algorithm has been selected.

4

keyExchangeECDH The Elliptic Curve Diffie-Hellman key
exchange algorithm was selected. This is
a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography.
This key exchange algorithm is only
supported on Windows XP SP3 SP3 and
later versions of the operating system.

8

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SecureKeyAlgorithm Enumeration

Specifies the security certificate status values that may be returned by the SocketWrench class.

[Visual Basic]
Public Enum SocketWrench.SecurityCertificate

[C#]
public enum SocketWrench.SecurityCertificate

Remarks
The SocketWrench class uses the SecurityCertificate enumeration to identify the current status of the
certificate that was provided by the remote host when a secure connection was established.

Members

Member Name Description

certificateNone No certificate information is available. A secure
connection was not established with the server.

certificateValid The certificate is valid.

certificateNoMatch The certificate is valid, however the domain name
specified in the certificate does not match the
domain name of the remote host. The application
can examine the CertificateSubject property to
determine the site the certificate was issued to.

certificateExpired The certificate has expired and is no longer valid.
The application can examine the
CertificateExpires property to determine when
the certificate expired.

certificateRevoked The certificate has been revoked and is no longer
valid. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateUntrusted The certificate has not been issued by a trusted
authority, or the certificate is not trusted on the
local host. It is recommended that the application
immediately terminate the connection if this status
is returned.

certificateInvalid The certificate is invalid. This typically indicates that
the internal structure of the certificate is damaged.
It is recommended that the application
immediately terminate the connection if this status
is returned.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

SocketWrench.SecurityCertificate Enumeration

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the shutdown options that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.ShutdownOptions

[C#]
[Flags]
public enum SocketWrench.ShutdownOptions

Remarks
The SocketWrench class uses the ShutdownOptions enumeration to specify how reading and writing on
the socket should be handled when the Shutdown method is called.

Members

Member Name Description Value

shutdownRead Disable any further reading of data. The
application will be able to continue to
send data. The remote host will see this
as the connection being closed.

0

shutdownWrite Disable any further sending of data. The
application will be able to continue to
read data until the remote host closes
the connection.

1

shutdownReadWrite Disable any further reading or writing to
the socket. The remote host will see this
as the connection being closed.

2

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.ShutdownOptions Enumeration

Specifies the byte-order in which integer data may exchanged with a remote host.

[Visual Basic]
Public Enum SocketWrench.SocketByteOrder

[C#]
public enum SocketWrench.SocketByteOrder

Remarks
The byte-order is used to specify how 16-bit (short) integer and 32-bit (long) integer data is written to and
read from the socket.

Members

Member Name Description

byteOrderNative Integer data will be sent and received using the
native byte order.

byteOrderNetwork Integer data will be sent and received using
network byte order.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SocketByteOrder Enumeration

Specifies the options that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.SocketOptions

[C#]
[Flags]
public enum SocketWrench.SocketOptions

Remarks
The SocketWrench class uses the SocketOptions enumeration to specify one or more options to be used
when establishing a connection with a remote host. Multiple options may be specified if necessary.

Members

Member Name Description Value

optionNone No option specified. 0

optionBroadcast This option specifies that broadcasting
should be enabled for datagrams. This
option is invalid for stream sockets.

1

optionDontRoute This option specifies default routing
should not be used. This option should
not be specified unless absolutely
necessary.

2

optionKeepAlive This option specifies that packets are to
be sent to the remote system when no
data is being exchanged to keep the
connection active. This option is only
valid for stream sockets.

4

optionReuseAddress This option specifies the local address
can be reused. This option is commonly
used by server applications.

8

optionNoDelay This option disables the Nagle
algorithm, which buffers
unacknowledged data and insures that
a full-size packet can be sent to the
remote host.

16

optionInLine This option specifies that out-of-band
data should be received inline with the
standard data stream. This option is
only valid for stream sockets.

32

optionTrustedSite This option specifies the sever should be
trusted. The server certificate will not be
validated and the connection will always

2048

SocketWrench.SocketOptions Enumeration

be permitted. This option only affects
secure client connections.

optionSecure This option specifies that a secure,
encrypted connection will be
established with the remote host.

4096

optionSecureFallback This option specifies the class should
permit the use of less secure cipher
suites for compatibility with legacy
clients and servers. If this option is
specified, it will enable connections
using TLS 1.0 and cipher suites that use
RC4, MD5 and SHA1.

32768

optionPreferIPv6 This option specifies the client should
prefer the use of IPv6 if the remote
hostname can be resolved to both an
IPv6 and IPv4 address. This option is
ignored if the local system does not
have IPv6 enabled, or when the
hostname can only be resolved to an
IPv4 address. If the server hostname can
only be resolved to an IPv6 address, the
client will attempt to establish a
connection using IPv6 regardless if this
option has been specified.

262144

optionFreeThread This option specifies that class methods
may be called from any thread, and not
only the thread that established the
connection. Using this option disables
certain internal safety checks that are
made by the class and may result in
unexpected behavior unless you ensure
that access to the class instance is
synchronized across multiple threads.

524288

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Specifies the protocols that the SocketWrench class supports.

[Visual Basic]
Public Enum SocketWrench.SocketProtocol

[C#]
public enum SocketWrench.SocketProtocol

Remarks
The SocketWrench class uses the SocketProtocol enumeration to specify which network protocol will be
used when a socket is created. The default protocol used by the class is socketStream.

Members

Member Name Description

socketStream Transmission Control Protocol (TCP). This protocol
should be used with stream sockets, where data is
sent and received as an arbitrary stream of bytes.

socketDatagram User Datagram Protocol (UDP). This protocol
should be used with datagram sockets, where data
is sent and received in discrete packets.

socketRaw Raw sockets. This socket type is for special purpose
applications which need access to the IP
datagram.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SocketProtocol Enumeration

Specifies the status values that may be returned by the SocketWrench class.

[Visual Basic]
Public Enum SocketWrench.SocketStatus

[C#]
public enum SocketWrench.SocketStatus

Remarks
The SocketWrench class uses the SocketStatus enumeration to identify the current status of the socket.

Members

Member Name Description

statusUnused A socket has not been created. Attempts to
perform any network operations, such as sending
or receiving data, will generate an error.

statusIdle A socket has been created, but is not currently in
use. A blocking socket operation can be executed
at this point.

statusListen The socket is listening for connections from
remote hosts.

statusConnect The socket is in the process of establishing a
connection with a remote host.

statusAccept The socket is in the process of accepting a
connection from a remote client.

statusRead The socket is in the process of receiving data from
a remote host.

statusWrite The socket is in the process of sending data to a
remote host.

statusFlush The control buffers are in the process of being
flushed. Any data in the socket receive buffers will
be discarded.

statusDisconnect The socket is being closed and subsequent
attempts to access the socket will result in an error.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SocketStatus Enumeration

Specifies the data stream options that the SocketWrench class supports.

[Visual Basic]
Public Enum SocketWrench.SocketStream

[C#]
public enum SocketWrench.SocketStream

Remarks
The SocketWrench class uses the SocketStream enumeration to specify how data should be processed
when read from a socket using either the ReadStream or StoreStream methods.

Members

Member Name Description

streamDefault The data stream will be returned to the caller
unmodified. This option should always be used
with binary data or data being stored in a byte
array. If no options are specified, this is the default
option used by this method.

streamConvert The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data returned in the buffer to be larger
than the source data. For example, if the source
data only terminates a line of text with a single
linefeed, this option will have the effect of inserting
a carriage-return character before each linefeed.

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace | ReadStream Method | StoreStream Method

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench.SocketStream Enumeration

Specifies the logging options that the SocketWrench class supports.

This enumeration has a FlagsAttribute attribute that allows a bitwise combination of its member values.

[Visual Basic]
<Flags>
Public Enum SocketWrench.TraceOptions

[C#]
[Flags]
public enum SocketWrench.TraceOptions

Remarks
The SocketWrench class uses the TraceOptions enumeration to specify what kind of debugging
information is written to the trace logfile. These options are only meaningful when trace logging is
enabled by setting the Trace property to true.

Members

Member Name Description Value

traceDefault The default trace logging option. This is
the same as specifying the traceInfo
option.

0

traceInfo All network function calls are written to
the trace file. This is the default value.

0

traceError Only those network function calls which
fail are recorded in the trace file.

1

traceWarning Only those network function calls which
fail, or return values which indicate a
warning, are recorded in the trace file.

2

traceHexDump All network function calls are written to
the trace file, plus all the data that is
sent or received is displayed, in both
ASCII and hexadecimal format.

4

traceProcess All function calls in the current process
are logged, rather than only those
functions in the current thread. This
option is useful for multithreaded
applications that are using worker
threads.

4096

Requirements
Namespace: SocketTools

Assembly: SocketTools.SocketWrench (in SocketTools.SocketWrench.dll)

See Also
SocketTools Namespace

SocketWrench.TraceOptions Enumeration

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench 11 Control Overview

The SocketWrench software development kit includes an ActiveX control which can be used in a variety of programming languages such as Visual Basic, Visual C++, and Delphi. The control implements the same general set of features and functions that are available in the library. However, the control provides a simpler
programming interface.

To include the SocketWrench control in your project in Visual Basic, simply select the Project|Components menu option and select the SocketWrench Control. In other languages, follow the normal steps that are taken to include an ActiveX control in your development project.

Commonly Used Properties
Although SocketWrench has a large number of properties, only a subset of them will be used with any frequency in your applications. Here are the properties that you should become familiar with first:

Property Description

Blocking Gets and sets the blocking mode for the socket. By default, sockets are blocking, and no socket events will be generated by the control.

HostAddress Specifies the IP address of the remote host that the socket will be sending data to or receiving data from. Setting this property will automatically update the HostName property.

HostName Specifies the name of the remote host. Setting this property will automatically update the HostAddress property.

Protocol Specifies the protocol to use for this socket. Typical values are swProtocolTcp and swProtocolUdp.

RemotePort Specifies the port number that a server is listening. Setting this value causes the RemoteService property to be updated.

Commonly Used Methods
SocketWrench has a number of methods which are used to perform some function, such as establishing a connection or sending and receiving data. In many cases, there are optional arguments that can be passed to these methods. If an argument is omitted, the value of a previously set property may be used. If no value has
been specified, then a reasonable default value is typically used.

Methods Description

Connect This method is used to establish a connection with a server. This method returns 0 if the connection attempt was successful, or an error code which indicates the cause of the failure.

Disconnect This method is used to terminate a connection with a server. This method returns 0 if the connection attempt was successful, or an error code which indicates the cause of the failure.

Listen This method causes the control to listen on a socket for incoming connections on the port specified by the LocalPort property. If a socket has not already been created, this method will create it. This method returns 0 if the connection attempt was successful, or an error code which indicates the cause of the failure.

Read This method reads the specified number of bytes into a string buffer. The number of bytes actually read is returned. A return value of 0 indicates that the remote host has closed the socket connection, and a return value of -1 indicates that an error has occurred.

Write This method writes the specified number of bytes from a string buffer to the socket. The number of bytes actually written is returned. A return value of -1 indicates that an error has occurred.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Control Initialization

When you begin developing your application using the SocketWrench control, the first thing that must
happen is the control must be initialized. In some development environments, such as Visual Basic, this is
done automatically when the control is inserted into a form. In other languages, this must be done explicitly
by calling the Initialize method for each instance of the control.

The initialization method serves two purposes. It loads the Windows networking libraries required to
establish a connection and it validates the runtime license key that you provide. The runtime license key is a
string of characters which identifies your license to use and redistribute the SocketWrench controls. It is
unique to your product serial number and must be used when redistributing your application to an end-
user. Many languages will handle the licensing issue transparently, however some languages may require
that you explicitly provide your runtime licensing key.

Developers who are evaluating SocketWrench will not have a runtime license key and must pass an empty
string to the Initialize method. This will enable the control to load on the development system during the
evaluation period, but will prevent the control from being redistributed to an end-user until a license has
been purchased.

If you install the product with a serial number, the runtime license key will be automatically created for you
during the installation process. If you have installed an evaluation copy of SocketWrench and then
purchased a license, the license key can be created using the License Manager utility that was included with
SocketWrench. Simply select the License | Header File menu option and select the programming language
that you are using. If your language is not listed, select Text File, which will create a simple text file with your
license key.

The runtime license key is normally stored in the Include folder where you installed SocketWrench and is
defined in a file named "cswskey8" which can be included with your application. For example, C/C++
programmers would use the cswskey11.h header file while Visual Basic programmers would use the
cswskey11.bas module. The Visual Basic module would define the runtime license key as:

'
' SocketWrench 11.0
' Copyright 2024 Catalyst Development Corporation
' All rights reserved
'
' This file is licensed to you pursuant to the terms of the
' product license agreement included with the original software
' and is protected by copyright law and international treaties.
'
Public Const CSWSOCK11_LICENSE_KEY As String = ""

This could either be included with your Visual Basic application or you could simply copy the string into
your application. The control could then be initialized like this:

'
' Initialize the control using the specified runtime
' license key; if the key is not specified, the
' development license will be used
'
nError = ctlSocket.Initialize(CSWSOCK11_LICENSE_KEY)
If nError > 0 Then
 MsgBox "Unable to initialize SocketWrench component"
 End
End If

If the Initialize method fails, it will return an error code value that indicates the reason for the failure. A
return value of zero indicates that the control was initialized successfully.

An application is only required to call a control's initialization method once, but it must be called for each
instance of the control that is used. It is safe to call the initialization method more than once, but for each
time that it is called, you must call the Uninitialize method for that control before your program terminates.
In other words, if you called Initialize at the beginning of your program, you must call Uninitialize before
your program ends. The Uninitialize method performs any necessary housekeeping operations, such as
returning memory allocated for the control back to the operating system. If there are any open
connections at the time that the Uninitialize method is called, they will be aborted. After the control has
been uninitialized, you must call the Initialize method again in order to use any of the control's other
methods.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Internet Dialer Control

Create and monitor dial-up networking connections to an Internet service provider.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name RasDialerCtl.Dialer

File Name CSRASX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.Dialer.11

ClassID CF645AD7-3F40-4C1A-8E8A-ABCA925A4BF7

Threading Model Apartment

Help File CSW11HLP.CHM

Dependencies None

Standards RFC 1055, RFC 1661

Overview
This control provides a way for client applications to connect to a server using Microsoft Windows
Remote Access Services (RAS). To use this control, the dial-up networking software must be
installed on the local system. For access to the Internet, the TCP/IP protocol must be installed and
configured. The control may configured to use either the SLIP or PPP protocols, depending on the
requirements of the service provider. Refer to your system documentation for information about
installing and configuring dial-up networking on your system.

For those applications which may be used in a mobile environment, or otherwise require remote
network access, the Dialer control provides a convenient interface to this service. Connections can
be established and discontinued under the direct control of the program, rather than requiring
that the user execute another program before starting your application.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is
recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires

the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Dialer Control Properties

Property Description

AreaCode Gets and sets the area code for the current phonebook entry

AutoConnect Automatically detect connections established by another process

AutoDial Determine if autodialing has been enabled on the local system

AutoDisconnect Automatically disconnect from the server when the control is unloaded

Available Determine if the Remote Access Service is available

Blocking Gets and sets the blocking state of the control

BytesIn Returns the number of bytes that have been received by the dial-up networking device

BytesOut Returns the number of bytes that have been transmitted by the dial-up networking device

Callback Specifies that the server should call the system back

CallbackNumber Specifies the telephone number for the server to call back on

Connection Return the handle for the specified dial-up networking session

Connections Return the number of active dial-up networking sessions

ConnectSpeed Returns the line speed for the current dial-up networking connection

CountryCode Gets and sets the country code for the current phonebook entry

CountryName Gets and sets the country name for the current phonebook entry

DefaultGateway Set the default route for IP packets through the dial-up adapter

DeviceCount Returns the number of dial-up networking devices available

DeviceEntry Return the name of the specified device entry

DeviceName Gets and sets the device name for the current dial-up networking connection

DeviceType Gets and sets the device type for the current dial-up networking connection

DynamicAddress Configure the current phonebook entry to use a dynamic IP address

DynamicNameServers Configure the current phonebook entry to use dynamic nameservers

FramingProtocol Gets and sets the framing protocol for the current phonebook entry

InternetAddress Return the IP address assigned to the current dial-up networking session

Interval Gets and sets the interval at which the connection is monitored

IpHeaderCompression Configure the current phonebook entry to enable IP header compression

IsConnected Determine if the control is connected to a service provider

IsInitialized Determine if the control has been initialized

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error that occurred

LcpExtensions Configure the current phonebook entry to use PPP LCP extensions

LocalNumber Gets and sets the local phone number specified in the phonebook entry

ModemLights Enable or disable the dial-up networking system tray icon

ModemSpeaker Enable or disable the modem speaker

NameServer Gets and sets the IP addresses of the nameservers assigned to the current phonebook entry

NetworkLogon Configure the current phonebook entry to logon to the network

NetworkProtocol Gets and sets the network protocol for the current phonebook entry

Password The password required to establish a connection with the server

PhoneBook Sets the file name of the Remote Access phone book to use

PhoneBookEntries Return the number of entries in the current phone book

PhoneBookEntry Return the name for the specified phone book entry

PhoneEntry Specify the phone book entry to use to establish a connection with a server

PhoneNumber Specifies the telephone number of the server

RequireEncryption Configure the current phonebook entry to require secure authentication

ScriptFile Gets and sets the name of the script file for the current phonebook entry

ServerAddress Return the IP address of the dial-up networking server

SoftwareCompression Configure the current phonebook entry to negotiate software compression

Status Return the current status of the control

Terminal Determine if a terminal window is displayed during the connection process

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the number of seconds until a connection attempt fails

UserDomain Specifies the NT domain on which user authentication is to occur

UserName Set the user name that is required to establish a connection with the server

UserPhoneBook Returns the name of the default user phonebook

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AreaCode Property

Gets and sets the area code for the current phonebook entry.

Syntax
[form].object.AreaCode [= areacode]

Remarks
The AreaCode property is used to set or return the current phonebook entry's area code. If no
area code has been specified, then this property will return an empty string. The value of this
property is ignored unless the CountryCode property is also set to a valid country code.

Data Type
String

See Also
CountryCode Property, CountryName Property, LoadEntry Method, SaveEntry Method

 AutoConnect Property

Automatically detect connections established by another process.

Syntax
object.AutoConnect = { True | False }

Remarks
The AutoConnect property determines if the control automatically detects if a connection has
been established by another process. When enabled, the control will periodically check for any
connections that have been established. The Interval property controls the frequency in which the
control performs this check.

If the control detects that a connection has been made, it will immediately fire the OnConnect
event, followed by the OnStatus event, to indicate that a connection has been established. The
control then begins to monitor that connection as usual, until that connection is dropped or the
control is unloaded.

To periodically check to see if a connection has been established by another process without using
the AutoConnect property, read the value of the Connections property, which returns the
number of active dial-up networking connections. A value greater than zero indicates that a dial-
up networking connection has been established.

If there are multiple dial-up networking devices on the system, it may be possible for more than
one connection to be active at a time. If this is the case, setting the AutoConnect property to
True will cause the control to inherit the first active connection. To manage multiple dial-up
connections, use the Connection property array to enumerate the available connections and set
the Handle property to take control of a specific session.

Data Type
Boolean

See Also
AutoDisconnect Property, Connection Property, Connections Property, IsConnected Property,
Connect Method, Disconnect Method, Interval Property, OnConnect Event, OnDisconnect Event,
OnStatus Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AutoDial Property

Determine if autodialing has been enabled on the local system.

Syntax
[form].object.AutoDial [= { True | False }]

Remarks
The AutoDial property can be used to determine if autodialing is enabled or disabled on the
current system. When autodialing is enabled and an application attempts to establish a connection
over the Internet, a dialog box will be displayed asking the user if they want to connect to their
default service provider. This property will return True if autodialing is currently enabled, or False if
it has been disabled.

Setting the AutoDial property allows an application to change the autodial settings for the current
user. Setting the property value to True specifies that you wish to enable autodialing, and the
system will prompt the user to establish a dial-up connection when necessary. Setting the property
to False disables autodialing, and prevents the system from prompting the user. This can be
beneficial if your application needs to run in an unattended mode. If you change the autodial
settings for the user, it is recommended that you restore them to their original value before the
application terminates.

This property can only be changed by applications running under Windows 98, Windows NT 4.0
and later versions. If the autodial settings cannot be changed by the current user, an error will be
generated.

Data Type
Boolean

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AutoDisconnect Property

Automatically disconnect from the server when the control is unloaded.

Syntax
object.AutoDisconnect = { True | False }

Remarks
The AutoDisconnect property determines if the control should automatically disconnect from a
server when the control is unloaded, typically when the application terminates. The default value
for this property is True.

If a dial-up connection was already established at the time the control was loaded, this property
will be reset to False, preventing it from automatically disconnecting from the host when it is
unloaded. Therefore, to always force the control to automatically terminate a connection when it is
unloaded, you must explicitly set the property value to True in your application.

Data Type
Boolean

See Also
AutoConnect Property, IsConnected Property, Connect Method, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Available Property

Determine if the Remote Access Service is available.

Syntax
object.Available

Remarks
This read-only property returns True if the Remote Access Service (RAS) software has been
installed on the system. Note that this property does not indicate that the required hardware is
available or that a specific protocol has been configured.

Data Type
Boolean

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Blocking Property

Gets and sets the blocking state of the control.

Syntax
[form].object.Blocking [= { True | False }]

Remarks
The Blocking property determines how the control establishes a dial-up connection. If set to True,
the control will wait until a connection has been established or the connection attempt fails before
returning control to the application. If set to False, the control will begin the connection process
and return control immediately to the application. For a non-blocking connection, the application
should monitor the OnStatus event to determine the progress of the connection attempt. The
default value for this property is False.

Data Type
Boolean

See Also
IsConnected Property, Status Property, Connect Method, OnStatus Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 BytesIn Property

Returns the number of bytes that have been received by the dial-up networking device.

Syntax
[form].object.BytesIn

Remarks
The BytesIn property returns the number of bytes that have been received by the dial-up
networking device. If the control is unable to determine the number of bytes received, it will return
a value of zero.

This property is only supported with applications running under Windows 98 and Windows 2000.
A general purpose application designed to run on all of the common Windows platforms should
expect that this property may return zero as a value.

Data Type
Integer (Int32)

See Also
BytesOut Property, ConnectSpeed Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 BytesOut Property

Returns the number of bytes that have been transmitted by the dial-up networking device.

Syntax
[form].object.BytesOut

Remarks
The BytesOut property returns the number of bytes that have been transmitted by the dial-up
networking device. If the control is unable to determine the number of bytes transmitted, it will
return a value of zero.

This property is only supported with applications running under Windows 98 and Windows 2000.
A general purpose application designed to run on all of the common Windows platforms should
expect that this property may return zero as a value.

Data Type
Integer (Int32)

See Also
BytesIn Property, ConnectSpeed Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Callback Property

Specifies that the server should call the system back.

Syntax
[form.]object.Callback [= { True | False }]

Remarks
Setting the Callback property specifies that the server should call the user back at the telephone
number specified by the CallbackNumber property. This property is ignored unless the user has
"Set By Caller" callback permission on the server.

Data Type
Boolean

See Also
CallbackNumber Property, PhoneEntry Property, PhoneNumber Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CallbackNumber Property

Specifies the telephone number for the server to call back on.

Syntax
[form.]object.CallbackNumber [= number]

Remarks
Setting the CallbackNumber property specifies that the server should call the user back at the
given telephone number. This property is ignored unless the user has "Set By Caller" callback
permission on the server. Assigning an asterisk to this property causes the number stored in the
phone book entry to be used for callback.

Data Type
String

See Also
Callback Property, PhoneEntry Property, PhoneNumber Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Connection Property

Return the handle for the specified dial-up networking session.

Syntax
[form.]object.Connection(Index)

Remarks
The Connection property array can be used to enumerate the active dial-up networking sessions
on the local system. The index is zero-based, and the number of connections is returned by the
Connections property. The property returns a long integer value which represents the handle to
the session. Setting the Handle property to this value will cause the control to inherit the session
and the control's properties will be updated with information about the connection.

Specifying an index greater than the number of available connections will generate an error.

Data Type
Integer (Int32)

See Also
AutoConnect Property, Connections Property, IsConnected Property

 Connections Property

Return the number of active dial-up networking sessions.

Syntax
[form.]object.Connections

Remarks
The Connections property returns the number of active dial-up networking connections on the
local system. A value of zero indicates that there is no dial-up networking connection. This
property is used in conjunction with the Connection property array to enumerate the connections
on the current system.

Data Type
Integer (Int32)

See Also
AutoConnect Property, Connection Property, IsConnected Property

 ConnectSpeed Property

Returns the line speed for the current dial-up networking connection.

Syntax
[form].object.ConnectSpeed

Remarks
The ConnectSpeed property returns the speed, in bytes per second, at which the current dial-up
networking device has established a connection. If the control is unable to determine the
connection speed, it will return a value of zero.

This property is only supported with applications running under Windows 98, Windows NT 4.0 and
later versions. A general purpose application designed to run on all of the common Windows
platforms should expect that this property may return zero as a value.

Data Type
Integer (Int32)

See Also
BytesIn Property, BytesOut Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CountryCode Property

Gets and sets the country code for the current phonebook entry.

Syntax
[form].object.CountryCode [= code]

Remarks
The CountryCode property specifies the numeric country code for the current phonebook entry.
If this value is zero, then the country and area code information is not used when dialing the
phone number. The country code for the United States is 1.

Data Type
Integer (Int32)

See Also
AreaCode Property, CountryName Property, LoadEntry Method, SaveEntry Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CountryName Property

Gets and sets the country name for the current phonebook entry.

Syntax
[form].object.CountryName [= country]

Remarks
The CountryName property returns the name of the country associated with the country code
used when dialing the current phonebook entry. If no country code has been specified, this
property will return an empty string. Setting this property to the name of a country will change the
current country code. If no area code has been defined, and the country code specifies the current
dialing location, the AreaCode property will be updated to the current area code.

Data Type
String

See Also
AreaCode Property, CountryCode Property, LoadEntry Method, SaveEntry Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DefaultGateway Property

Set the default route for IP packets through the dial-up adapter.

Syntax
[form].object.DefaultGateway [= { True | False }]

Remarks
The DefaultGateway property is used to determine the default route for IP packets. If set to True,
then packets are routed through the dial-up networking adapter when the connection is active.
The value of this property corresponds to the "Use Default Gateway" checkbox on the TCP/IP
configuration dialog.

Data Type
Boolean

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DeviceCount Property

Returns the number of dial-up networking devices available.

Syntax
[form].object.DeviceCount

Remarks
The DeviceCount property returns the number of dial-up networking devices available. This
property can be used in conjunction with the DeviceEntry property array to enumerate the
devices.

Data Type
Integer (Int32)

See Also
DeviceEntry Property, DeviceName Property, DeviceType Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DeviceEntry Property

Return the name of the specified device entry.

Syntax
[form].object.DeviceEntry(Index)

Remarks
The DeviceEntry property array can be used in conjunction with the DeviceCount property to
enumerate the available dial-up networking devices. Typically this is used to provide a user with a
selection of dial-up devices. The device used by the current phonebook entry can be changed by
setting the DeviceName property to one of the device entry values.

Note that you should first set the DeviceType property to the type of device which you wish to
enumerate. The default device type is "modem", for serial analog modems or other devices which
recognize the AT command set.

Data Type
String

See Also
DeviceCount Property, DeviceName Property, DeviceType Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DeviceName Property

Gets and sets the device name for the current dial-up networking connection.

Syntax
[form.]object.DeviceName [= devicename]

Remarks
The DeviceName property returns a description of the device that the connection was established
on. For example, the string "US Robotics Sportster 28000" may be returned for a modem. Note
that this property value may change if the DeviceType property is modified. Setting this property
will change the device used to establish the dial-up networking connection. Changes to this
property value should be made after changes to the DeviceType property.

To enumerate a list of available devices for a given device type, use the DeviceCount property
and DeviceEntry property array.

Data Type
String

See Also
DeviceCount Property, DeviceEntry Property, DeviceType Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DeviceType Property

Gets and sets the device type for the current dial-up networking connection.

Syntax
[form.]object.DeviceType [= devicetype]

Remarks
The DeviceType property returns the type of device that the connection was established with.
Setting this property will change the type of device that will be used to establish the connection.
Valid device names are:

Constant Value Description

rasDeviceModem modem An internal or external serial analog modem device, or other serial
communications device which supports the AT command set

rasDeviceISDN isdn An ISDN terminal adapter. Note that some ISDN devices, such as
the 3Com ImpactIQ are considered modem devices.

rasDeviceX25 x25 An X25 device adapter.

rasDeviceVPN vpn A virtual private network connection.

RasDevicePad pad A packet assembler/disassembler.

Because changing the device type can change the current device name, it is recommended that
applications change this property value before changing the value of the DeviceName property.

Data Type
String

See Also
DeviceCount Property, DeviceEntry Property, DeviceName Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DynamicAddress Property

Configure the current phonebook entry to use a dynamic IP address.

Syntax
[form].object.DynamicAddress [= { True | False }]

Remarks
The DynamicAddress property determines if the current phonebook entry should use a
dynamically assigned IP address. If this property is set to True, then an IP address is assigned to
the dial-up adapter when the connection is established. If set to False, then the dial-up adapter IP
address is set to the value of the InternetAddress property.

Data Type
Boolean

See Also
DynamicNameServers Property, InternetAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DynamicNameServers Property

Configure the current phonebook entry to use dynamic nameservers.

Syntax
[form].object.DynamicNameServers [= { True | False }]

Remarks
The DynamicNameServers property determines if the current phonebook entry should use
dynamically assigned nameservers. If this property is set to True, then one or more nameservers
are assigned to the dial-up adapter when the connection is established. If set to False, then the
dial-up adapter nameservers are set to the values specified by the NameServer property array.

Data Type
Boolean

See Also
DynamicAddress Property, InternetAddress Property, NameServer Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FramingProtocol Property

Gets and sets the framing protocol for the current phonebook entry.

Syntax
[form].object.FramingProtocol [= protocol]

Remarks
The FramingProtocol property is used to set or return the framing protocol used for the current
phonebook entry. The following values may be specified:

Value Constant Description

1 rasFramingProtocolPpp Point-to-Point Protocol (PPP). This is the most common
protocol used by Internet Service Providers (ISPs).

2 rasFramingProtocolSlip Serial Line Internet Protocol (SLIP). This is a protocol
commonly used when connecting to older UNIX systems.

4 rasFramingProtocolRas A proprietary Microsoft protocol implemented in Windows for
Workgroups 3.11 and Windows NT 3.1

Note that unless there is a specific need for the application to use SLIP or the Microsoft protocol, it
is recommended that PPP always be selected as the framing protocol.

Data Type
Integer (Int32)

See Also
NetworkProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Handle Property

Gets and sets the handle for the current dial-up networking connection.

Syntax
object.Handle [= hrasconn]

Remarks
The Handle property returns the handle to the current dial-up networking connection, or a value
of zero if the control has not been used to establish a connection. Setting the value of this
property to a valid handle causes the control to inherit the specified connection, and the control's
properties will be updated with information about that connection. This enables an application to
monitor and control a connection that was established by the user or another program.

Setting the Handle property to a value of zero causes the control to release the current
connection, however it will not cause the dial-up networking session to terminate. To disconnect
from the server, the Disconnect method must be called by the application. Setting the property to
a non-zero value which does not specify a valid handle will generate an error.

Data Type
Integer (Int32)

See Also
AutoConnect Property, Connection Property, Connections Property, IsConnected Property

 InternetAddress Property

Return the IP address assigned to the current dial-up networking session.

Syntax
object.InternetAddress [= ipaddress]

Remarks
The InternetAddress property returns the IP address assigned to the current dial-up networking
session. If no connection has been established, or the connection has not been made with a PPP
server, then this property will return an empty string. If the DynamicAddress property is set to
False, changing this property value will update the IP address assigned to the current phonebook
entry.

The IP address may only be changed before a connection is established.

Data Type
String

See Also
DynamicAddress Property, ServerAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Interval Property

Gets and sets the interval at which the connection is monitored.

Syntax
[form.]object.Interval [= milliseconds]

Remarks
The Interval property specifies the interval, in milliseconds, at which the connection is monitored
by the control. The minimum value of 0 indicates that the control should not monitor the
connection.The maximum interval value is 65536 milliseconds, which is slightly more than one
minute. The default value is 1000, which causes the control to check the connection status every
second.

Note that setting the property value to zero will prevent the control from detecting certain
conditions, such as a disconnected telephone line or a modem that is turned off.

Data Type
Integer (Int32)

See Also
OnStatus Event, OnTimeout Event, Timeout Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IpHeaderCompression Property

Configure the current phonebook entry to enable IP header compression.

Syntax
[form].object.DynamicAddress [= { True | False }]

Remarks
The IpHeaderCompression property is used to enable or disable IP header compression. If set to
True, when a connection is established, RAS will negotiate with the dial-up server to use header
compression. If set to False, header compression will not be negotiated. This property corresponds
to the "Use IP Header Compression" checkbox on the TCP/IP configuration dialog.

Data Type
Boolean

See Also
DynamicNameServers Property, InternetAddress Property, SoftwareCompression Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsConnected Property

Determine if the control is connected to a server.

Syntax
object.IsConnected

Remarks
The read-only IsConnected property is used to determine if the control has connected to the
server. A value of true indicates that the connection has been established.

Note that the IsConnected property should not be used to determine if an active dial-up
networking connection has been established by another application. The property will only return
True if the control has been used to establish the connection itself, or if a connection is inherited
by setting either the AutoConnect or Handle properties. To determine if there are any active
dial-up networking connections, check the value of the Connections property.

Data Type
Boolean

See Also
AutoConnect Property, AutoDisconnect Property, Connection Property, Connections Property,
PhoneEntry Property, Connect Method, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsInitialized Property

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 LastError Property

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= value]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero (to clear the error) or a valid error code
for the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 LastErrorString Property

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 LcpExtensions Property

Configure the current phonebook entry to use PPP LCP extensions.

Syntax
[form].object.LcpExtensions [= { True | False }]

Remarks
The LcpExtensions property determines if the PPP LCP extensions defined in RFC 1570 will be
used. If the PPP framing protocol is being used for the dial-up connection, it is recommended that
this property be set to True. However, some older implementations of PPP may require that this
property be set to False in order to establish a connection.

Data Type
Boolean

See Also
FramingProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 LocalNumber Property

Gets and sets the local phone number specified in the phonebook entry.

Syntax
[form].object.LocalNumber [= number]

Remarks
The LocalNumber property sets or returns the local phone number that is specified in the current
phonebook entry. If the CountryCode property has a value of zero, then the local number is
dialed to connect to the server. If the CountryCode property is set to a valid country code, then
RAS will also use the country and area code values when dialing the phone number.

Note that this property only determines the local phone number for the phonebook entry, and
can be overridden by setting the PhoneNumber property to a specific value.

Data Type
String

See Also
AreaCode Property, CountryCode Property, CountryName Property, PhoneNumber Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ModemLights Property

Enable or disable the dial-up networking system tray icon.

Syntax
[form].object.ModemLights [= { True | False }]

Remarks
The ModemLights property determines if the dial-up networking icon in the system tray is
displayed when a connection is established.

Data Type
Boolean

See Also
ModemSpeaker Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ModemSpeaker Property

Enable or disable the modem speaker.

Syntax
[form].object.ModemSpeaker [= { True | False }]

Remarks
The ModemSpeaker property determines if the modem speaker is enabled when dialing the
server. If the property is set to False, the modem will be silent when dialing the telephone number
and establishing the connection. Note that setting this property to True will not force the speaker
on if the modem hardware has been configured to explicitly disable the speaker.

To disable the speaker, the modem must support changes to the speaker volume. Disabling the
speaker is typically done by instructing the modem to set the speaker volume to zero.

Data Type
Boolean

See Also
ModemLights Property

 NameServer Property

Gets and sets the IP addresses of the nameservers assigned to the current phonebook entry.

Syntax
[form].object.NameServer(Index) [= ipaddress]

Remarks
The NameServer property array is used to set or return the nameserver IP addresses assigned to
the current phonebook entry. The index value may range from 0 to 3:

Index Description

0 Primary DNS nameserver IP address

1 Alternate DNS nameserver IP address

2 Primary WINS nameserver IP address

3 Alternate WINS nameserver IP address

Setting the property array to an IP address changes the corresponding address assigned to the
phonebook entry. Note that assigned nameserver addresses are only used if the
DynamicNameServers property has been set to False. If dynamic nameservers are assigned to
the session, this property array will not return those addresses, it will return empty strings.

Data Type
String

See Also
DynamicNameServers Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NetworkLogon Property

Configure the current phonebook entry to logon to the network.

Syntax
[form].object.NetworkLogon [= { True | False }]

Remarks
The NetworkLogon property determines if RAS automatically logs on to the network after a
connection has been established. This property currently has no effect under Windows NT.

Data Type
Boolean

See Also
DynamicNameServers Property, InternetAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NetworkProtocol Property

Gets and sets the network protocol for the current phonebook entry.

Syntax
[form].object.NetworkProtocol [= protocol]

Remarks
The NetworkProtocol property is used to set or return the network protocol used for the current
phonebook entry. The following values may be specified:

Value Constant Description

1 rasNetworkProtocolNetBEUI Negotiate the NetBEUI protocol.

2 rasNetworkProtocolIpx Negotiate the IPX protocol.

4 rasNetworkProtocolIp Negotiate the TCP/IP protocol.

These values may be combined if multiple protocols should be negotiated when the connection is
established. Note that unless there is a specific need for the application to use the NetBEUI or IPX
protocols, it is recommended that only the TCP/IP protocol be specified.

Data Type
Integer (Int32)

See Also
FramingProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Password Property

The password required to establish a connection with the server.

Syntax
object.Password [= password]

Remarks
The Password property specifies the password required to establish a connection with the server.
Note that this may not be the same password that is used to login to the server using terminal
emulation software.

Data Type
String

See Also
UserName Property, UserDomain Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PhoneBook Property

Sets the file name of the Remote Access phone book to use.

Syntax
[form.]object.PhoneBook [= filename]

Remarks
The PhoneBook property specifies the file name of the Remote Access phone book. Setting this
property to an empty string causes the default phone book to be used.

Data Type
String

See Also
PhoneBookEntry Property, PhoneBookEntries Property, UserPhoneBook Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PhoneBookEntries Property

Return the number of entries in the current phone book.

Syntax
[form.]object.PhoneBookEntries

Remarks
The PhoneBookEntries property returns the number of entries in the current phone book. A
value of zero indicates that no phone book entries are available.

Data Type
Integer (Int32)

See Also
PhoneBookEntry Property, PhoneEntry Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PhoneBookEntry Property

Return the name for the specified phone book entry.

Syntax
[form.]object.PhoneBookEntry(Index)

Remarks
The PhoneBookEntry property array contains a list of the entries in the current phone book, and
may be used to establish a connection with a server. Specifying an index greater than the number
of available entries in the phone book will generate an error.

Data Type
String

See Also
PhoneBookEntries Property, PhoneEntry Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PhoneEntry Property

Specify the phone book entry to use to establish a connection with a server.

Syntax
[form.]object.PhoneEntry [= entry]

Remarks
The PhoneEntry property can be used to specify a phone book entry to use to connect with a
server. The entry name identifies a communications profile which includes the telephone number,
callback number and domain name of the server. Setting the PhoneEntry property to an empty
string indicates that a telephone number will be provided to establish the connection.

Data Type
String

See Also
PhoneBookEntries Property, PhoneBookEntry Property, PhoneNumber Property, LoadEntry
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PhoneNumber Property

Specifies the telephone number of the server.

Syntax
[form.]object.PhoneNumber [= value]

Remarks
The PhoneNumber property specifies the telephone number of the server. If this property is not
set, then the PhoneEntry property must be set to a valid phone book entry. If both the
PhoneNumber and PhoneEntry properties are defined, the PhoneNumber property will
override the value specified in the phone book.

Data Type
String

See Also
PhoneEntry Property, CallbackNumber Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RequireEncryption Property

Configure the current phonebook entry to require secure authentication.

Syntax
[form].object.RequireEncryption [= { True | False }]

Remarks
The RequireEncryption property determines if encryption is required during PPP authentication.
If the property is set to True, then only secure password schemes can be used to authenticate the
client. If the property is set to False, the client can use the PAP plain-text authentication protocol
to authenticate the client. Some older PPP implementations may require that this property be set
to False in order to establish a connection.

Data Type
Boolean

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ScriptFile Property

Gets and sets the name of the script file for the current phonebook entry.

Syntax
[form].object.ScriptFile [= filename]

Remarks
The ScriptFile property specifies the name of the login script used to establish a connection with
the server. This property must be set to the full pathname of the script file. If a script file is not
required, then this property should be set to an empty string.

Data Type
String

See Also
Terminal Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ServerAddress Property

Return the IP address of the dial-up networking server.

Syntax
[form.]object.ServerAddress

Remarks
The ServerAddress property returns the IP address of the dial-up networking server that the local
host has connected to. If no connection has been established, or the connection has not been
made with a PPP server, then this property will return an empty string. This property may also
return an empty string if the server did not provide this information during the connection
process.

Data Type
String

See Also
InternetAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SoftwareCompression Property

Configure the current phonebook entry to negotiate software compression.

Syntax
[form].object.SoftwareCompression [= { True | False }]]

Remarks
The SoftwareCompression property determines if data compression is negotiated during the
connection. If the property is set to True, then the client will negotiate a compatible compression
protocol. Software compression should only be disabled if the client is unable to establish a
connection with the server.

Data Type
Boolean

See Also
IpHeaderCompression Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 State Property

Return the current status of the control.

Syntax
object.Status

Remarks
This read-only property returns the status of the control. It may be one of the following values:

Value Constant Description

-1 rasStatusUnused No connection has been established

0 rasStatusOpenPort The communications port is about to be opened

1 rasStatusPortOpened The communications port has been opened

2 rasStatusConnectDevice A device is about to be connected

3 rasStatusDeviceConnected A device has been connected successfully

4 rasStatusAllDevicesConnected All devices have been connected

5 rasStatusAuthenticate Authenticating username and password

6 rasStatusAuthNotify An authentication event has occurred

7 rasStatusAuthRetry Requesting authentication with new credentials

8 rasStatusAuthCallback The server has requested a callback number

9 rasStatusAuthChangePassword The user has requested to change the password

10 rasStatusAuthProject Registering computer on the network

11 rasStatusAuthLinkSpeed The link speed calculation phase is starting

12 rasStatusAuthAck An authentication request is being acknowledged

13 rasStatusReAuthenticate Authenticating username and password

14 rasStatusAuthenticated The user has been authenticated

15 rasStatusPrepareForCallback The line is about to be disconnected in preparation for
callback

16 rasStatusWaitForModemReset The modem is resetting itself in preparation for
callback

17 rasStatusWaitForCallback Waiting for callback from server

18 rasStatusProjected Protocol specific information has been negotiated

19 rasStatusStartAuthentication User authentication is being initiated

20 rasStatusCallbackComplete Callback completed and resuming authentication

21 rasStatusLogonNetwork Logging on to the network

22 rasStatusSubEntryConnected A subentry has been connected

23 rasStatusSubEntryDisconnected A subentry has been disconnected

4096 rasStatusInteractive Initiating interactive login session

4097 rasStatusRetryAuthentication Retrying user authentication

4098 rasStatusCallbackSetByCaller Callback has been set by caller

4099 rasStatusPasswordExpired Password has expired

8192 rasStatusConnected Connected to server

8193 rasStatusDisconnected Disconnected from server

Data Type
Integer (Int32)

See Also
AutoConnect Property, AutoDisconnect Property, Interval Property, IsConnected Property,
OnStatus Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Terminal Property

Determine if a terminal window is displayed during the connection process.

Syntax
[form].object.Terminal [= value]

Remarks
The Terminal property array is used to control if a terminal window is displayed during the dial-up
networking connection process. The property may be set to one of the following values:

Value Description

0 No terminal window is displayed

1 Terminal window is displayed before dialing

2 Terminal window is displayed after dialing. Do not use if scripting has been enabled.

3 Terminal window is display before and after dialing. Do not use if scripting has been
enabled.

The terminal window can be used to allow user input before and/or after the dial-up networking
connection has been established. If scripting has been enabled by setting the ScriptFile property,
no terminal window should be displayed after the connection. This is because scripting has it's
own terminal implementation.

Note that this property is only supported on Windows NT 4.0 and later versions of the operating
system. Displaying a terminal window also imposes several restrictions on the behavior of the
control. Because of how the Remote Access Services API is implemented by Microsoft, a
connection dialog will be displayed after the Connect method is called if the Terminal property is
non-zero. Setting this property to a non-zero value will also disable any asynchronous event
notifications. It is not recommended that you set this property unless it is absolutely necessary.

Data Type
Integer (Int32)

See Also
ScriptFile Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ThrowError Property

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError [= { True | False }]

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, methods will not raise an exception if an error occurs.
Instead, the application should check the return value of the method and report any errors based
on that value. It is the responsibility of the application to interpret the error code and take an
appropriate action. This is the default value for the property.

If the ThrowError property is set to True, any method which generates an error will cause the
component to raise an exception which must be handled or the application will terminate.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of this property. This property only controls how errors are handled when
calling methods.

Data Type
Boolean

See Also
LastError Property, LastErrorString Property, OnError Event

 Timeout Property

Gets and sets the number of seconds until a connection attempt fails.

Syntax
[form.]object.Timeout [= seconds]

Remarks
This property specifies the number of seconds that the control has to establish a connection with a
server. If a connection is not established within that time period, the OnTimeout event is fired and
the control is reset. The default value for this property is 20 seconds.

Data Type
Integer (Int32)

See Also
Interval Property, OnStatus Event, OnTimeout Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 UserDomain Property

Specifies the NT domain on which user authentication is to occur.

Syntax
[form.]object.UserDomain [= domain]

Remarks
The UserDomain property is used to specify the NT domain on which the user name and
password will be authenticated. An empty string specifies the domain in which the Remote Access
server is a member. An asterisk specifies the domain stored in the phone book entry.

Data Type
String

See Also
Password Property, UserName Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 UserName Property

Set the user name that is required to establish a connection with the server.

Syntax
[form.]object.UserName [= name]

Remarks
The UserName property specifies the user that is logging into the server, and is required for
authentication purposes.

Data Type
String

See Also
Password Property, UserDomain Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 UserPhoneBook Property

Returns the name of the default user phonebook.

Syntax
[form].object.UserPhoneBook

Remarks
The UserPhoneBook property returns the name of the default user phonebook. The value
returned depends on how the user has configured dial-up networking, specifically whether the
system, user or alternate phonebook has been selected. The current phonebook can be changed
by setting the PhoneBook property.

Note that this property always returns an empty string under Windows 98 since phonebooks are
not used (entries are stored in the system registry).

Data Type
String

See Also
PhoneBook Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Version Property

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes.

Data Type
String

 Internet Dialer Control Methods

Method Description

Connect Establish a connection with a server

CreateEntry Create a new entry in the current phonebook

DeleteEntry Delete a phonebook entry from the local system

Disconnect Terminate the connection with a server

EditEntry Edit an existing phonebook entry on the local system

Initialize Initialize the component and load the Remote Access Services library

LoadEntry Load the specified entry from the current phonebook

RenameEntry Rename an existing phonebook entry

Reset Resets the control state and disconnects the current session

SaveEntry Save the specified entry to the current phonebook

Uninitialize Uninitialize the component and unload the Remote Access Services library

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Connect Method

Establish a connection with a server.

Syntax
object.Connect([EntryName])

Parameters
EntryName

An optional string value that specifies the name of the phonebook entry to use to establish the
connection. If this argument is not provided, the value of the PhoneEntry property is used.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Connect method establishes a dial-up networking connection with a service provider using
the specified phonebook entry. If this method is called without any arguments and PhoneEntry
property has not been set, then the current values of the PhoneNumber, UserName,
UserDomain, and Password properties will be used to create a temporary phonebook entry.

See Also
Disconnect Method, CallbackNumber Property, Password Property, PhoneEntry Property,
PhoneNumber Property, UserName Property, UserDomain Property

 CreateEntry Method

Create a new entry in the current phonebook.

Syntax
object.CreateEntry

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The CreateEntry method displays a dialog box which allows the user to create a new phonebook
entry on the system. If you do not wish to display a dialog box, use the SaveEntry method
instead.

See Also
DeleteEntry Method, EditEntry Method, RenameEntry Method, SaveEntry Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 DeleteEntry Method

Delete a phonebook entry from the local system.

Syntax
object.DeleteEntry([EntryName])

Parameters
EntryName

An optional string value which specifies specifies the phonebook entry to delete. If this
argument is not provided, the value of the PhoneEntry property will be used.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

See Also
CreateEntry Method, EditEntry Method, RenameEntry Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Disconnect Method

Terminate the dial-up networking connection.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

See Also
Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 EditEntry Method

Edit an existing phonebook entry on the local system.

Syntax
object.EditEntry([EntryName])

Parameters
EntryName

An optional string value which specifies the phonebook entry to edit. If this argument is not
provided, the value of the PhoneEntry property will be used.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The EditEntry method edits the specified entry from the local phonebook. This will cause a dialog
box to be displayed from which the user can change the connection information. If you do not
want to display a dialog, then use the SaveEntry method instead.

See Also
CreateEntry Method, DeleteEntry Method, RenameEntry Method, SaveEntry Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Initialize Method

Initialize the control and validate the runtime license key.

Syntax
object.Initialize([LicenseKey])

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set rasDialer = CreateObject("SocketTools.Dialer.11")

nError = rasDialer.Initialize(strLicenseKey)
If nError > 0 Then
 MsgBox "Unable to initialize the SocketTools component"
End If

See Also
IsInitialized Property, Uninitialize Method

 LoadEntry Method

Load the specified entry from the current phonebook.

Syntax
object.LoadEntry([EntryName])

Parameters
EntryName

An optional string value which specifies the phonebook entry to load. If this argument is not
provided, the current entry is reloaded from the phonebook, abandoning any changes that
have been made.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The LoadEntry method loads the specified entry from the current phonebook and sets the control
properties to match the configuration.

See Also
PhoneBook Property, PhoneEntry Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RenameEntry Method

Rename an existing phonebook entry.

Syntax
object.RenameEntry(OldName, NewName)

Parameters
OldName

A string value that specifies the name of the phonebook entry to be renamed.

NewName

A string value that specifies the new name of the phonebook entry. This name must not already
exist for another connectoid in the current phonebook.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

See Also
CreateEntry Method, DeleteEntry Method, EditEntry Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Reset Method

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, active dial-up connections will be terminated and any handles allocated by the
control will be released. Any property changes to the current phonebook entry will be ignored,
reverting to their previous values.

See Also
Initialize Method, Uninitialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SaveEntry Method

Save the specified entry to the current phonebook.

Syntax
object.SaveEntry([EntryName])

Parameters
EntryName

An optional string value that specifies the name of phonebook entry. If this argument is not
provided, the current value of the PhoneEntry property is used.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The SaveEntry method saves the specified entry to the current phonebook, based on the current
control properties. If the entry does not exist, it will be created. If an entry by that name already
exists, it will be overwritten. Note that unlike the CreateEntry method, this method does not
display any dialogs.

See Also
PhoneBook Property, PhoneEntry Property, CreateEntry Method, EditEntry Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Uninitialize Method

Uninitialize the component and unload the Remote Access Services library.

Syntax
object.Uninitialize

Parameters
None.

Return Type
None.

Remarks
The Uninitialize method terminates any active dial-up networking connection established by the
control and unloads the Remote Access Services (RAS) library. This method is not typically used
because any resources that have been allocated by an instance of the control will automatically be
released when it is destroyed. To prevent the connection from being terminated when the control
is uninitialized, set the AutoDisconnect property to False or set the Handle property to a value of
zero before calling this method.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
AutoDisconnect Property, Handle Property, Connect Method, Disconnect Method, Initialize
Method

 Internet Dialer Control Events

Event Description

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnStatus This event is generated when the control state changes

OnTimeout This event is generated when the control is unable to establish a connection

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnConnect Event

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ([Index As Integer])

Remarks
The OnConnect event is generated when a successful connection has been established with the
server. To monitor the progress of the connection attempt, use the OnStatus event.

See Also
OnDisconnect Event, OnStatus Event

 OnDisconnect Event

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ([Index As Integer])

Remarks
The OnDisconnect event is generated when the connection is terminated by the server.

See Also
OnConnect Event

 OnError Event

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ([Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant)

Remarks
This event is generated when an error occurs during a control operation. The OnError event is
typically fired when a method is called which results in an error, or an error occurs during the
connection or authentication process.

The ErrorCode argument specifies the numeric error code. The Remote Access Services subsystem
returns errors in the range of 600 to 800. These are automatically converted to 10600 through
10800 to avoid conflicts with standard error codes. For example, error 10676 corresponds to the
RAS error 676, which indicates that the line is busy.

The Description argument contains a description of the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnStatus Event

The OnStatus event is generated when the control state changes.

Syntax
Sub object_OnStatus ([Index As Integer,] ByVal State As Variant, ByVal Description As
Variant)

Remarks
This event is generated when the status of the control changes. Typically this occurs when a
connection is being established with a server.

The State argument is a numeric code which identifies the state of the control. This is the same
value as returned by the State property.

The Description argument contains a string which describes the new state. Applications may use
this value to provide feedback to the user or for logging purposes.

See Also
AutoConnect Property, AutoDisconnect Property, IsConnected Property, Status Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnTimeout Event

The OnTimeout event is generated when the control is unable to establish a connection.

Syntax
Sub object_OnTimeout ([Index As Integer])

Remarks
This event is generated when the control is unable to establish a connection with a server in the
number of seconds specified by the Timeout property.

See Also
Timeout Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Dialer Control Errors

Value Constant Description

10600 rasErrorPending An operation is pending

10601 rasErrorInvalidPortHandle An invalid port handle was detected

10602 rasErrorPortAlreadyOpen The specified port is already open

10603 rasErrorBufferTooSmall The caller's buffer is too small

10604 rasErrorWrongInfoSpecified Incorrect information was specified

10605 rasErrorCannotSetPortInfo The port information cannot be set

10606 rasErrorPortNotConnected The specified port is not connected

10607 rasErrorEventInvalid An invalid event was detected

10608 rasErrorDeviceDoesNotExist A device was specified that does not exist

10609 rasErrorDevicetypeDoesNotExist A device type was specified that does not exist

10610 rasErrorBufferInvalid An invalid buffer was specified

10611 rasErrorRouteNotAvailable A route was specified that is not available

10612 rasErrorRouteNotAllocated A route was specified that is not allocated

10613 rasErrorInvalidCompressionSpecified An invalid compression was specified

10614 rasErrorOutOfBuffers There were insufficient buffers available

10615 rasErrorPortNotFound The specified port was not found

10616 rasErrorAsyncRequestPending An asynchronous request is pending

10617 rasErrorAlreadyDisconnecting The modem or other connecting device is already
disconnecting

10618 rasErrorPortNotOpen The specified port is not open

10619 rasErrorPortDisconnected A connection to the remote computer could not be
established

10620 rasErrorNoEndpoints No endpoints could be determined

10621 rasErrorCannotOpenPhonebook The system could not open the phone book file

10622 rasErrorCannotLoadPhonebook The system could not load the phone book file

10623 rasErrorCannotFindPhonebookEntry The system could not find the phone book entry for this
connection

10624 rasErrorCannotWritePhonebook The system could not update the phone book file

10625 rasErrorCorruptPhonebook The system found invalid information in the phone book
file

10626 rasErrorCannotLoadString A string could not be loaded

10627 rasErrorKeyNotFound A key could not be found

10628 rasErrorDisconnection The connection was terminated by the remote computer

before it could be completed

10629 rasErrorRemoteDisconnection The connection was closed by the remote computer

10630 rasErrorHardwareFailure The modem or other connecting device was
disconnected due to hardware failure

10631 rasErrorUserDisconnection The user disconnected the modem or other connecting
device

10632 rasErrorInvalidSize An incorrect structure size was detected

10633 rasErrorPortNotAvailable The modem or other connecting device is already in use
or is not configured properly

10634 rasErrorCannotProjectClient Your computer could not be registered on the remote
network

10635 rasErrorUnknown There was an unknown error

10636 rasErrorWrongDeviceAttached The device attached to the port is not the one expected

10637 rasErrorBadString A string was detected that could not be converted

10638 rasErrorRequestTimeout The request has timed out

10639 rasErrorCannotGetLana No asynchronous net is available

10640 rasErrorNetBIOSError An error has occurred involving NetBIOS

10641 rasErrorServerOutOfResources The server cannot allocate NetBIOS resources needed to
support the client

10642 rasErrorNameExistsOnNet One of your computer's NetBIOS names is already
registered on the remote network

10643 rasErrorServerGeneralNetFailure A network adapter at the server failed

10644 rasErrorMsgAliasNotAdded You will not receive network message popups

10645 rasErrorAuthInternal There was an internal authentication error

10646 rasErrorRestrictedLogonHours The account is not permitted to log on at this time of
day

10647 rasErrorAcctDisabled The account is disabled

10648 rasErrorPasswdExpired The password for this account has expired

10649 rasErrorNoDialInPermission The account does not have permission to dial in

10650 rasErrorServerNotResponding The remote access server is not responding

10651 rasErrorFromDevice The modem or other connecting device has reported an
error

10652 rasErrorUnrecognizedResponse There was an unrecognized response from the modem
or other connecting device

10653 rasErrorMacroNotFound A macro required by the modem or other connecting
device was not found in the configuration file

10654 rasErrorMacroNotDefined A command or response in the configuration file refers
to an undefined macro

10655 rasErrorMessageMacroNotFound The message macro was not found in the configuration
file

10656 rasErrorDefaultOffMacroNotFound The configuration file contains an undefined macro

10657 rasErrorFileCouldNotBeOpened The configuration file could not be opened

10658 rasErrorDevicenameTooLong The device name in the configuration file is too long

10659 rasErrorDevicenameNotFound The configuration file refers to an unknown device name

10660 rasErrorNoResponses The configuration file contains no responses for the
command

10661 rasErrorNoCommandFound The configuration file is missing a command

10662 rasErrorWrongKeySpecified There was an attempt to set a macro not listed in
configuration file

10663 rasErrorUnknownDeviceType The configuration file refers to an unknown device type

10664 rasErrorAllocatingMemory The system has run out of memory

10665 rasErrorPortNotConfigured The modem or other connecting device is not properly
configured

10666 rasErrorDeviceNotReady The modem or other connecting device is not
functioning

10667 rasErrorReadingIniFile The system was unable to read the configuration file

10668 rasErrorNoConnection The connection was terminated

10669 rasErrorBadUsageInIniFile The usage parameter in the configuration file is invalid

10670 rasErrorReadingSectionname The system was unable to read the section name from
the configuration file

10671 rasErrorReadingDeviceType The system was unable to read the device type from the
configuration file

10672 rasErrorReadingDeviceName The system was unable to read the device name from
the configuration file

10673 rasErrorReadingUsage The system was unable to read the usage from the
configuration file

10674 rasErrorReadingMaxconnectbps The system was unable to read the maximum connection
BPS rate from the configuration file

10675 rasErrorReadingMaxcarrierbps The system was unable to read the maximum carrier
connection speed from the configuration file

10676 rasErrorLineBusy The phone line is busy

10677 rasErrorVoiceAnswer A person answered instead of a modem or other
connecting device

10678 rasErrorNoAnswer The remote computer did not respond

10679 rasErrorNoCarrier The system could not detect the carrier

10680 rasErrorNoDialtone There was no dial tone

10681 rasErrorInCommand The modem or other connecting device reported a
general error

10682 rasErrorWritingSectionname There was an error in writing the section name

10683 rasErrorWritingDevicetype There was an error in writing the device type

10684 rasErrorWritingDevicename There was an error in writing the device name

10685 rasErrorWritingMaxconnectbps There was an error in writing the maximum connection
speed.

10686 rasErrorWritingMaxCarrierBps There was an error in writing the maximum carrier speed

10687 rasErrorWritingUsage There was an error in writing the usage

10688 rasErrorWritingDefaultOff There was an error in writing the default-off

10689 rasErrorReadingDefaultOff There was an error in reading the default-off

10690 rasErrorEmptyIniFile The configuration file is empty

10691 rasErrorAuthenticationFailure Access was denied because the username and/or
password was invalid on the domain

10692 rasErrorPortOrDevice There was a hardware failure in the modem or other
connecting device

10693 rasErrorNotBinaryMacro An internal error has occurred

10694 rasErrorDcbNotFound An internal error has occurred

10695 rasErrorStateMachinesNotStarted The state machines are not started

10696 rasErrorStateMachinesAlreadyStarted The state machines are already started

10697 rasErrorPartialResponseLooping The response looping did not complete

10698 rasErrorUnknownResponseKey A response keyname in the configuration file is not in the
expected format

10699 rasErrorRecvBufFull The modem or other connecting device response caused
a buffer overflow

10700 rasErrorCmdTooLong The expanded command in the configuration file is too
long

10701 rasErrorUnsupportedBps The modem moved to a connection speed not
supported by the COM driver

10702 rasErrorUnexpectedResponse Device response received when none expected

10703 rasErrorInteractiveMode The connection needs information from you, but the
application does not allow user interaction

10704 rasErrorBadCallbackNumber The callback number is invalid

10705 rasErrorInvalidAuthState The authorization state is invalid

10706 rasErrorWritingInitbps An internal error has occurred

10707 rasErrorX25Diagnostic There was an error related to the X.25 protocol

10708 rasErrorAcctExpired The account has expired

10709 rasErrorChangingPassword There was an error changing the password on the
domain

10710 rasErrorOverrun Serial overrun errors were detected while communicating
with the modem

10711 rasErrorRasmanCannotInitialize A configuration error on this computer is preventing this
connection

10712 rasErrorBiplexPortNotAvailable The two-way port is initializing, wait a few seconds and
redial

10713 rasErrorNoActiveIsdnLines No active ISDN lines are available

10714 rasErrorNoIsdnChannelsAvailable No ISDN channels are available to make the call

10715 rasErrorTooManyLineErrors Too many errors occurred because of poor phone line
quality

10716 rasErrorIpConfiguration The Remote Access Service IP configuration is unusable

10717 rasErrorNoIpAddresses No IP addresses are available in the static pool of
Remote Access Service IP addresses

10718 rasErrorPppTimeout The connection was terminated because the remote
computer did not respond in a timely manner

10719 rasErrorPppRemoteTerminated The connection was terminated by the remote computer

10720 rasErrorPppNoProtocolsConfigured A connection to the remote computer could not be
established

10721 rasErrorPppNoResponse The remote computer did not respond

10722 rasErrorPppInvalidPacket Invalid data was received from the remote computer

10723 rasErrorPhoneNumberTooLong The phone number, including prefix and suffix, is too
long

10724 rasErrorIpxcpNoDialoutConfigured The IPX protocol cannot dial out on the modem because
this computer is not configured for dialing out

10725 rasErrorIpxcpNoDialinConfigured The IPX protocol cannot dial in on the modem because
this computer is not configured for dialing in

10726 rasErrorIpxcpDialoutAlreadyActive The IPX protocol cannot be used for dialing out on more
than one modem

10727 rasErrorAccessingTcpcfgDll Cannot access TCPCFG.DLL

10728 rasErrorNoIpRasAdapter The system cannot find an IP adapter

10729 rasErrorSlipRequiresIp SLIP cannot be used unless the IP protocol is installed

10730 rasErrorProjectionNotComplete Computer registration is not complete

10731 rasErrorProtocolNotConfigured The protocol is not configured

10732 rasErrorPppNotConverging Your computer and the remote computer could not
agree on PPP control protocols

10733 rasErrorPppCpRejected A connection to the remote computer could not be
completed

10734 rasErrorPppLcpTerminated The PPP link control protocol was terminated

10735 rasErrorPppRequiredAddressRejected The requested address was rejected by the server

10736 rasErrorPppNcpTerminated The remote computer terminated the control protocol

10737 rasErrorPppLoopbackDetected Loopback was detected

10738 rasErrorPppNoAddressAssigned The server did not assign an address

10739 rasErrorCannotUseLogonCredentials The authentication protocol required by the server
cannot use the stored password

10740 rasErrorTapiConfiguration An invalid dialing rule was detected

10741 rasErrorNoLocalEncryption The local computer does not support the required data
encryption type

10742 rasErrorNoRemoteEncryption The remote computer does not support the required
data encryption type

10743 rasErrorRemoteRequiresEncryption The remote computer requires data encryption

10744 rasErrorIpxcpNetNumberConflict The system cannot use the IPX network number assigned
by the remote computer

10745 rasErrorInvalidSmm An internal error has occurred

10746 rasErrorSmmUninitialized An internal error has occurred

10747 rasErrorNoMacForPort An internal error has occurred

10748 rasErrorSmmTimeout An internal error has occurred

10749 rasErrorBadPhoneNumber An invalid telephone number has been specified

10750 rasErrorWrongModule An internal error has occurred

10751 rasErrorInvalidCallbackNumber The callback number contains an invalid character

10752 rasErrorScriptSyntax A syntax error was encountered while processing a script

10753 rasErrorHangupFailed The connection could not be disconnected because it
was created by the multi-protocol router

10754 rasErrorBundleNotFound The system could not find the multi-link bundle

10755 rasErrorCannotDoCustomdial The system cannot perform automated dial because this
connection has a custom dialer specified

10756 rasErrorDialAlreadyInProgress This connection is already being dialed

10757 rasErrorRasautoCannotInitialize Remote Access Services could not be started
automatically

10758 rasErrorConnectionAlreadyShared Internet Connection Sharing is already enabled on the
connection

10759 rasErrorSharingChangeFailed An error occurred while the existing Internet Connection
Sharing settings were being changed

10760 rasErrorSharingRouterInstall An error occurred while routing capabilities were being
enabled

10761 rasErrorShareConnectionFailed An error occurred while Internet Connection Sharing was

being enabled for the connection

10762 rasErrorSharingPrivateInstall An error occurred while the local network was being
configured for sharing

10763 rasErrorCannotShareConnection Internet Connection Sharing cannot be enabled

10764 rasErrorNoSmartCardReader No smart card reader is installed

10765 rasErrorSharingAddressExists Internet Connection Sharing cannot be enabled

10766 rasErrorNoCertificate A certificate could not be found

10767 rasErrorSharingMultipleAddresses Internet Connection Sharing cannot be enabled

10768 rasErrorFailedToEncrypt The connection attempt failed because of failure to
encrypt data

10769 rasErrorBadAddressSpecified The specified destination is not reachable

10770 rasErrorConnectionReject The remote computer rejected the connection attempt

10771 rasErrorCongestion The connection attempt failed because the network is
busy

10772 rasErrorIncompatible The remote computer's network hardware is
incompatible with the type of call requested

10773 rasErrorNumberChanged The connection attempt failed because the destination
number has changed

10774 rasErrorTempfailure The connection attempt failed because of a temporary
failure

10775 rasErrorBlocked The call was blocked by the remote computer

10776 rasErrorDonotdisturb The call could not be connected because the remote
computer has invoked the Do Not Disturb feature

10777 rasErrorOutOfOrder The connection attempt failed because the modem on
the remote computer is out of order

10778 rasErrorUnableToAuthenticateServer It was not possible to verify the identity of the server

10779 rasErrorSmartCardRequired To dial out using this connection you must use a smart
card

10780 rasErrorInvalidFunctionForEntry An attempted function is not valid for this connection

10781 rasErrorCertForEncryptionNotFound The connection requires a certificate, and no valid
certificate was found

10782 rasErrorSharingRrasConflict Network Address Translation must be removed before
enabling Internet Connection Sharing

10783 rasErrorSharingNoPrivateLan Internet Connection Sharing cannot be enabled

10784 rasErrorNoDiffUserAtLogon You cannot dial using this connection at logon time

10785 rasErrorNoRegCertAtLogon You cannot dial using this connection at logon time

10786 rasErrorOakleyNoCert The L2TP connection attempt failed because there is no
valid machine certificate on your computer for security
authentication

10787 rasErrorOakleyAuthFail The L2TP connection attempt failed because the security
layer could not authenticate the remote computer

10788 rasErrorOakleyAttribFail The L2TP connection attempt failed because the security
layer could not negotiate compatible parameters with
the remote computer

10789 rasErrorOakleyGeneralProcessing The L2TP connection attempt failed because the security
layer encountered a processing error during initial
negotiations with the remote computer

10790 rasErrorOakleyNoPeerCert The L2TP connection attempt failed because certificate
validation on the remote computer failed

10791 rasErrorOakleyNoPolicy The L2TP connection attempt failed because security
policy for the connection was not found

10792 rasErrorOakleyTimedOut The L2TP connection attempt failed because security
negotiation timed out

10793 rasErrorOakleyError The L2TP connection attempt failed because an error
occurred while negotiating security

10794 rasErrorUnknownFramedProtocol The Framed Protocol RADIUS attribute for this user is not
PPP

10795 rasErrorWrongTunnelType The Tunnel Type RADIUS attribute for this user is not
correct

10796 rasErrorUnknownServiceType The Service Type RADIUS attribute for this user is neither
Framed nor Callback Framed

10797 rasErrorConnectingDeviceNotFound A connection to the remote computer could not be
established because the modem was not found or was
busy

10798 rasErrorNoEaptlsCertificate A certificate could not be found that can be used with
this Extensible Authentication Protocol

10799 rasErrorSharingHostAddressConflict Internet Connection Sharing cannot be enabled

10800 rasErrorAutomaticVpnFailed Unable to establish the VPN connection

10801 rasErrorValidatingServerCert Unable to verify the digital certificate sent by the server

Internet Server Control

A general purpose TCP/IP networking component for developing server applications.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name InternetServerCtl.InternetServer

File Name CSWSVX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.InternetServer.11

ClassID 9F5674C0-43F2-4EFF-BB9F-2D9AAD54C187

Threading Model Apartment

Help File CSW11HLP.CHM

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
The Internet Server ActiveX control provides a simplified interface for creating event-driven,
multithreaded server applications using the TCP/IP protocol. The control interface is similar to the
SocketWrench ActiveX control, however it is designed specifically to make it easier to implement a
server application without requiring the need to manage multiple socket controls. In addition, the
Internet Server control supports secure communications using the Secure Sockets Layer (SSL) and
Transport Layer Security (TLS) protocols.

Each instance of the Internet Server control represents a server, and each active client connection
is managed internally and referenced by an integer value which uniquely identifies the client
session. All interaction with the server and the clients connected to it uses an event-driven model,
with the program written to respond to events such as OnConnect, OnRead and OnWrite.

Developers who have used the SocketWrench ActiveX control will find the Internet Server control
has a familiar interface, with a subset of properties and methods that are specific to creating a
server application. Each of the network events have an extra parameter which specifies the socket
handle which should be used when communicating with the client. This enables the application to
communicate with multiple clients without having to create multiple socket objects or use a control
array.

Requirements
The SocketTools ActiveX Edition components are self-registering controls compatible with any
programming language that supports COM (Component Object Model) and the ActiveX control
specification. If you are using Visual Basic 6.0 you must have Service Pack 6 (SP6) installed. It is

recommended that you install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Server Control Properties

Property Description

AdapterAddress Returns the IP address associated with the specified network adapter

AdapterCount Returns the number of available local and remote network adapters

Backlog Gets and sets the number of client connections that may be queued by the server

ByteOrder Gets and sets the byte order in which integer data will be written to and read from the socket

CertificateName Gets and sets the common name for the server certificate

CertificatePassword Gets and sets the password associated with the server certificate

CertificateStore Gets and sets the name of the server certificate store or file

CertificateUser Gets and sets the user that owns the server certificate

ClientAddress Return the address of the current client session

ClientCount Return the number of active client sessions connected to the server

ClientHandle Return the socket handle associated with a specific client session

ClientHost Return the hostname for the current client session

ClientId Return a unique identifier for the current client session

ClientName Gets and sets a unique string moniker that is associated with the current client session

ClientPort Return the port number used by the current client session

ClientThread Return the thread ID for the current client session

CodePage Gets and sets the code page used when reading and writing text

ExternalAddress Return the external IP address assigned to the local system

IsActive Determine if the server has been started

IsBlocked Determine if the control is blocked performing an operation

IsClosed Determine if the current client connection has been closed by the remote host

IsInitialized Determine if the control has been initialized

IsListening Determine if the server is listening for connections

IsReadable Return if data can be read from the current client socket without blocking

IsWritable Return if data can be written to the current client socket without blocking

KeepAlive Set or return if keep-alive packets are sent to connected clients

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error that occurred

MaxClients Gets and sets the maximum number of clients that can connect to the server

NoDelay Enable or disable the Nagle algorithm

Priority Gets and sets the priority assigned to the server

ReuseAddress Set or return if the server address can be reused

Secure Set or return if client connections are encrypted using the SSL or TLS security protocols.

SecureProtocol Gets and sets the security protocol used to establish a secure connection

ServerAddress Gets and sets the address that will be used by the server to listen for connections

ServerHandle Return the handle to the socket created to listen for client connections

ServerName Return the fully qualified domain name of the local system

ServerPort Gets and sets the port number that will be used by the server to listen for connections

ServerThread Return the thread ID for the server

StackSize Gets and sets the size of the stack allocated for threads created by the server

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/control/property/serverhandle.html

 AdapterAddress Property

Returns the IP address associated with the specified network adapter.

Syntax
object.AdapterAddress(Index)

Remarks
The AdapterAddress property array returns the IP addresses that are associated with the local
network or remote dial-up network adapters configured on the system. The AdapterCount
property can be used to determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and
dial-up adapters will not be listed in a specific order. An application should not make the
assumption that the address returned by AdapterAddress(0) always refers to a local network
adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will return the IP address allocated for that
connection.

When using Visual Studio .NET, you must use the accessor method get_AdapterAddress instead
of the property name, otherwise an error will be returned indicating that it not a member of the
control class.

Data Type
String

See Also
AdapterCount Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AdapterCount Property

Returns the number of available local and remote network adapters.

Syntax
object.AdapterCount

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress
property array to enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will returned IP address allocated for that
connection.

Data Type
Integer (Int32)

See Also
AdapterAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Backlog Property

Gets and sets the number of client connections that may be queued by the server.

Syntax
object.Backlog [= backlog]

Remarks
The Backlog property specifies the maximum size of the queue used to manage pending
connections to the service. If the property is set to value which exceeds the maximum size for the
underlying service provider, it will be silently adjusted to the nearest legal value. There is no
standard way to determine what the maximum backlog value is.

This property should be set to the desired value before the Start method is called. The default
backlog value is 5 on all Windows platforms. The Windows Server platforms support a maximum
backlog value of 200.

Note that this property does not specify the total number of connections that the server
application may accept. It only specifies the size of the backlog queue which is used to manage
pending client connections. Once the client connection has been accepted, it is removed from the
queue. Set the MaxClients property to specify the maximum number of clients that may connect
with the server.

Data Type
Integer (Int32)

See Also
IsListening Property, MaxClients Property, Start Method, Throttle Method, OnAccept Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ByteOrder Property

Gets and sets the byte order in which integer data will be written to and read from the socket.

Syntax
object.ByteOrder [= 0 | 1]

Remarks
The ByteOrder property is used to specify how 16-bit (short) integer and 32-bit (long) integer
data is written to and read from the socket. The default value for this property is 0, which specifies
that integers should be written in the native byte order for the local machine. A value of 1
indicates that integers should be written in network byte order.

When applications write integer values on a socket (instead of string representations of those
values), they should typically be converted to network byte order before they are sent. Likewise,
when an integer value is read, it should then be converted from the network byte order back to
the byte order used by the local machine. The native byte order, also called the host byte order,
should only be used if it can be assured that both the sender and the receiver are running on an
identical or compatible machine architectures (for example, if both systems are Intel-based).

This property will affect how data is read by the Read method and by the Write method, if the
Variant data that is being read or written is recognized as integer data.

Data Type
Integer (Int32)

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateName Property

Gets and sets the common name for the server certificate.

Syntax
object.CertificateName [= name]

Remarks
This property sets the common name or friendly name of the certificate that should be used when
starting a secure server. If the Secure property is set to True, this property must be specify a valid
certificate name. The certificate must have a private key associated with it, otherwise client
connections will fail because the control will be unable to create a security context for the session.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificatePassword Property

Gets and sets the password associated with the server certificate.

Syntax
object.CertificatePassword [= password]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateStore Property

Gets and sets the name of the server certificate store or file.

Syntax
object.CertificateStore [= store]

Remarks
This property sets the name of the certificate store that contains the server certificate that should
be used when starting a server with security enabled. The certificate may either be stored in the
registry or in a file. If the certificate is stored in the registry, then this property should be set to one
of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the client certificate will be installed in the user's personal certificate store, and
therefore it is not necessary to set this property value because that is the default location that will
be used to search for the certificate. This property is only used if the CertificateName property is
also set to a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the client certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateUser Property

Gets and sets the user that owns the server certificate.

Syntax
object.CertificateUser [= username]

Remarks
This property sets the name of the user that owns the server certificate that will be used. If this
property is not set, the certificate store for the current user will be used when searching for the
certificate. If this property is used to specify another user, the server process must have the
appropriate permission to access the registry location that contains the client certificate. On
Windows Vista and later versions of the operating system, this requires that the process run with
elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ClientAddress Property

Return the Internet address of the current client connection.

Syntax
object.ClientAddress

Remarks
The ClientAddress property returns the address of the current client session which has connected
to the server. This property only returns a meaningful value inside an event handler such as
OnAccept or OnConnect.

If this property is accessed inside an OnAccept event handler, it will return the address of the
client that is requesting the connection. The server application may use this information to
determine if it wishes to accept or reject the client connection.

Data Type
String

See Also
ClientHost Property, ClientPort Property, ServerAddress Property, OnAccept Event, OnConnect
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ClientCount Property

Return the number of active client sessions connected to the server.

Syntax
object.ClientCount

Remarks
The ClientCount read-only property returns the number of active client sessions that have been
established with the server.

The value returned by this property does not include clients that are in the process of terminating.
For example, if the Suspend method is called to suspend the server and terminate all of the client
connections, each client is signaled to disconnect from the server and the active client count is
immediately set to zero. Once a client has been signaled to disconnect, it is no longer considered
to be an active client connection even if that session does not terminate immediately. This means
that you cannot use this property value to determine the number of clients in the process of
disconnecting from the server or when all clients have disconnected.

To determine when all clients have disconnected from the server after the Suspend or Restart
method has been called, you must implement an OnIdle event handler. This event occurs after
the last active client session has terminated.

Data Type
Integer (Int32)

See Also
ClientHandle Property, Restart Method, Suspend Method, OnDisconnect Event, OnIdle Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ClientHandle Property

Return the socket handle associated with a specific client session.

Syntax
object.ClientHandle(Index)

Remarks
The ClientHandle property is read-only, zero-based property array that returns the socket handle
allocated for the client session specified by the Index parameter. An exception will be thrown if the
index value exceeds the maximum number of active client sessions. To determine the number of
clients that are currently connected to the server, use the ClientCount property.

You should always check the value of the ClientCount property prior to enumerating through the
client connections using the ClientHandle property array. Never assume that a particular client
session will always be found in the same position in the property array. The socket handles
returned by the property array can be used in conjunction with the Read and Write methods to
exchange data with a particular client session outside of an event handler.

Data Type
Integer (Int32)

See Also
ClientHandle Property, Disconnect Method, FindClient Method, Read Method, Write Method,
OnConnect Event, OnRead Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ClientHost Property

Return the hostname for the current client session.

Syntax
object.ClientHost

Remarks
The ClientHost property returns the hostname of the current client session which has established
a connection with the server. This property value is only meaningful when accessed within an
event handler, such as the OnConnect event.

Accessing this property causes the control to perform a blocking reverse DNS lookup, attempting
to match the client Internet address with a hostname. Not all addresses have a reverse DNS
record, in which case this property will return an empty string. It is recommended that most
applications use the value of the ClientAddress property rather than use the ClientHost property
to distinguish between client connections.

Data Type
String

See Also
ClientAddress Property, ClientPort Property, ServerAddress Property, OnAccept Event, OnConnect
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ClientId Property

Return a unique identifier for the current client session.

Syntax
object.ClientId

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value can be used by the application to identify that client session, and is different than the socket
handle allocated for the client. While it is possible for a client socket handle to be reused by the
operating system, client IDs are unique throughout the life of the server session and are never
duplicated.

It is important to note that the actual value of the client ID should be considered opaque. It is only
guaranteed that the value will be greater than zero, and that it will be unique to the client session.

This property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientHost Property, ClientName Property, ServerAddress Property,
ServerPort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ClientName Property

Gets and sets a unique string moniker that is associated with the current client session.

Syntax
object.ClientName [= moniker]

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session by setting the ClientName
property from within a class event handler such as the OnConnect event.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular
server can have the same moniker. The maximum length for a moniker is 127 characters.

This property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler.

Data Type
String

See Also
ClientAddress Property, ClientId Property, ServerAddress Property, ServerPort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ClientPort Property

Return the port number of the current client connection.

Syntax
object.ClientPort

Remarks
The ClientPort property returns the port number that the current client has used when
establishing a connection with the server. This property value is only meaningful when accessed
within an event handler such as the OnConnect event.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientHost Property, ServerAddress Property, ServerPort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ClientThread Property

Return the thread ID for the active client session.

Syntax
object.ClientThread

Remarks
The ClientThread property returns the thread ID for the current client session. Until the thread
terminates, the thread identifier uniquely identifies the thread throughout the system. This
property only returns a meaningful value when accessed from within an event handler, or a
function that has been called from within an event handler.

The thread ID can be used with Windows API functions such as OpenThread. Exercise caution
when using thread-related functions, interfering with the normal operation of the thread can have
unexpected results. You should never use this property value to obtain a thread handle and then
call the TerminateThread function to terminate a client session. This will prevent the thread from
releasing the resources that were allocated for the session and can leave the server in an unstable
state. To terminate a client session, use the Disconnect method.

Data Type
Integer (Int32)

See Also
ClientId Property, ServerThread Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CodePage Property

Gets and sets the code page used when reading and writing text.

Syntax
object.CodePage [= value]

Remarks
The CodePage property is an integer value which specifies how strings are encoded when data is
sent or received. Any valid code page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale. This is the default encoding type.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. It is not recommended that you use this code page unless
you know that the remote host is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to
as "octets" in networking terminology. However, the internal string type used by ActiveX controls
are Unicode where each character is represented by 16 bits. To send and receive data using
strings, these Unicode strings are converted to a stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale,
mapping the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers

a string buffer, the stream of bytes received from the remote host are converted to Unicode
before they are returned to your application.

If you are exchanging text with another system and it appears to corrupted or characters are
being replaced with question marks or other symbols, it is likely the system is sending text which is
using a different character encoding. Most services use UTF-8 encoding to represent non-ASCII
characters and selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when reading or writing binary data to a
socket. If possible, you should always use a byte array as the buffer parameter for the
Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, the control defaults to using the code page for the current locale.
This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Data Type
Integer (Int32)

See Also
Read Method, ReadLine Method, Write Method, WriteLine Method

 ExternalAddress Property

Return the external IP address for the local system.

Syntax
object.ExternalAddress

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the
local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the LocalAddress property will only return the IP address for the local system on
the LAN side of the network unless a connection has already been established to a remote host.
The ExternalAddress property can be used to determine the IP address assigned to the router on
the Internet side of the connection and can be particularly useful for servers running on a system
behind a NAT router.

Using this property requires that you have an active connection to the Internet; checking the value
of this property on a system that uses dial-up networking may cause the operating system to
automatically connect to the Internet service provider. The control may be unable to determine
the external IP address for the local host for a number of reasons, particularly if the system is
behind a firewall or uses a proxy server that restricts access to external sites on the Internet. If the
external address for the local host cannot be determined, the property will return an empty string.

If the control is able to obtain a valid external address for the local host, that address will be
cached for sixty minutes. Because dial-up connections typically have different IP addresses
assigned to them each time the system is connected to the Internet, it is recommended that this
property only be used in conjunction with broadband connections using a NAT router. Checking
this property value may cause the thread to block until the external IP address can be resolved.

Data Type
String

See Also
ClientAddress Property, ServerAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsActive Property

Determine if the server has been started.

Syntax
object.IsActive

Remarks
The IsActive property returns True if the server has been started using the Start method. If the
server has not been started, the property will return False.

To determine if the server is accepting client connections, use the IsListening property. This
property will only indicate if the server has been started. For example, if the server has been
suspended using the Suspend method, this property will return a value of True, while the
IsListening property will return a value of False.

An application should not depend on this property returning False immediately after the Stop
method has been called to shutdown the server. This property will continue to return True until all
clients have disconnected from the server and the server thread has terminated. To determine
when the server has stopped, implement a handler for the OnStop event.

Data Type
Boolean

See Also
IsListening Property, Start Method, Stop Method, OnStop Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsBlocked Property

Determine if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the control is blocked performing an operation. If the
IsBlocked property returns False, this means there are no blocking operations on the current
thread at that time. If the property returns True, this tells you that you can't proceed with a socket
operation. However, if the property returns False this does not guarantee that the next socket
operation will not fail with a swErrorOperationWouldBlock or swErrorOperationInProgress
error. The application should treat these errors as recoverable, and should be prepared to retry
operations that result in them.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless of whether the control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
LastError Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsClosed Property

Determine if the current client connection has been closed by the remote host.

Syntax
object.IsClosed

Remarks
The IsClosed property returns True if the current client connection has been closed by the remote
host. The value of this property is only meaningful inside an event handler such as OnRead.

Data Type
Boolean

See Also
IsReadable Property, IsWritable Property, OnConnect Event, OnRead Event, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsInitialized Property

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsListening Property

Determine if the server is listening for client connections.

Syntax
object.IsListening

Remarks
The IsListening property returns True if the server is listening for connections after the Start
method has been called. If the server has not been started, is not yet accepting client connections
or has been suspended, this property will return False.

When a server is started, the control starts a background thread which creates the listening socket
and begins waiting for incoming client connections. This property will only return True once the
server thread has started executing, so it may not return a value of True immediately after the
Start method has been called. To determine the status of the server at any time, check the value
of the State property.

Data Type
Boolean

See Also
IsActive Property, Start Method, Stop Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsReadable Property

Return if data can be read from the current client socket without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the current client socket without
blocking. This property can be checked before the application attempts to read the socket,
preventing an error. The value of this property is only meaningful inside an event handler such as
OnRead.

Data Type
Boolean

See Also
IsClosed Property, IsWritable Property, Peek Method, Read Method, OnRead Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsWritable Property

Return if data can be written to the current client socket without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written to the current client socket without
blocking. If the IsWritable property returns False, this means that the application cannot write to
the socket at that time. However, if the property returns True, this does not guarantee that you will
be able to write to the socket without an error. The next socket operation may result in a
swErrorOperationWouldBlock or swErrorOperationInProgress error. The application should
treat these errors as recoverable, and should be prepared to retry operations that result in them.

The value of this property is only meaningful inside an event handler such as OnRead or
OnWrite.

Data Type
Boolean

See Also
IsClosed Property, IsReadable Property, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 KeepAlive Property

Set or return if keep-alive packets are sent to connected clients.

Syntax
object.KeepAlive [= { True | False }]

Remarks
Setting the KeepAlive property to a value of True indicates that packets are to be sent to
connected clients when no data is being exchanged to keep the connection active.

The default interval at which these packets are sent is typically two hours and cannot be modified
using the control. Consult the Windows system administration documentation for information on
how to change the default keep-alive interval.

Data Type
Boolean

See Also
NoDelay Property, ReuseAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 LastError Property

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= errorcode]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero (to clear the error) or a valid error code
for the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 LastErrorString Property

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 MaxClients Property

Gets and sets the maximum number of clients that can connect to the server.

Syntax
object.MaxClients [= clients]

Remarks
The MaxClients property specifies the maximum number of client connections that will be
accepted by the server. Once the maximum number of connections has been established, the
server will reject any subsequent connections until the number of active client connections drops
below the specified value. A value of zero specifies that there should be no limit on the number of
clients.

Changing the value of this property while a server is actively listening for connections will modify
the maximum number of client connections permitted, but it will not affect connections that have
already been established.

By default, there are no limits on the number of client connections or the connection rate when a
server is started. Use the Throttle method to change the maximum number of client connections
per IP address or the overall connection rate threshold for the server.

It is important to note that regardless of the maximum number of clients specified by this
property, the actual number of client connections that can be managed by the server depends on
the number of sockets that can be allocated from the operating system. The amount of physical
memory installed on the system affects the number of connections that can be maintained
because each connection allocates memory for the socket context from the non-paged memory
pool.

Data Type
Integer (Int32)

See Also
Backlog Property, Timeout Property, Start Method, Throttle Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NoDelay Property

Enable or disable the Nagle algorithm.

Syntax
object.NoDelay [= { True | False }]

Remarks
The NoDelay property is used to enable or disable the Nagle algorithm, which buffers
unacknowledged data and ensures that a full-size packet can be sent to the remote host. By
default this property value is set to False, which enables the Nagle algorithm (in other words, the
data being written may not actually be sent until it is optimal to do so). Setting this property to
True disables the Nagle algorithm, minimizing the time delays between the data packets being
sent.

This property should be set to True only if it is absolutely required and the implications of doing so
are understood. Disabling the Nagle algorithm can have a significant negative impact on the
performance of the server.

Data Type
Boolean

See Also
KeepAlive Property, ReuseAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Priority Property

Gets and sets the priority assigned to the server.

Syntax
object.Priority [= priority]

Remarks
The Priority property can be used to control the processor usage, memory and network
bandwidth allocated by the server for client sessions. One of the following values may be
specified:

Value Constant Description

0 swPriorityBackground This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. Each client thread will be assigned a
lower scheduling priority and will be frequently forced
to yield execution to other threads.

1 swPriorityLow This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. Each client thread will be assigned
a lower scheduling priority and will occasionally be
forced to yield execution to other threads.

2 swPriorityNormal The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

3 swPriorityHigh This priority increases the overall resource utilization for
each client session and their threads will be given
higher scheduling priority. It is not recommended that
this priority be used on a system with a single
processor.

4 swPriorityCritical This priority can significantly increase processor,
memory and network utilization. Each client thread will
be given higher scheduling priority and will be more
responsive to network events. It is not recommended
that this priority be used on a system with a single
processor.

The swPriorityNormal priority balances resource and network bandwidth utilization while
ensuring that a single-threaded server application remains responsive to the user. Lower priorities
reduce the overall resource utilization of the server at the expense of throughput.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

Data Type
Integer (Int32)

See Also
Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReuseAddress Property

Set or return if the local address can be reused by the server.

Syntax
object.ReuseAddress [= { True | False }]

Remarks
The ReuseAddress property is used to determine if the local address and port number can be
reused when starting a new instance of the server. Setting this property to True enables a server
application to listen for connections using the specified address and port number even if they
were in use recently. This is typically used to enable the server to close the listening socket and
immediately reopen it without getting an error that the address is in use.

When a listening socket closed, the socket will normally go into a TIME-WAIT state where the local
address and port number cannot be immediately reused. A consequence of this is that calling the
Stop method immediately followed by the Start method using the same address and port
number values may result in an error indicating that the specified address is already in use. By
setting this property to True, that error is avoided and the listening socket can be created
immediately without waiting for the TIME-WAIT period to elapse. Note that calling the Restart
method allows the local address and port number to be reused, regardless of this property value.

If you wish to determine if a local port number is already in use by another application, set this
property to false and attempt to start a server using that port number. If another application is
already using that port number, an error will be generated indicating that the address is in use and
the server could not be started.

Data Type
Boolean

See Also
ServerAddress Property, ServerPort Property, Restart Method, Start Method, Stop Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Secure Property

Set or return if client connections are encrypted using the TLS protocol.

Syntax
object.Secure [={ True | False }]

Remarks
The Secure property determines if client connections are encrypted using the Transport Layer
Security (TLS) protocol. The default value for this property is False, which specifies that clients will
use a standard, unencrypted connection to the server. To enable secure connections, the
application should set this property value to True prior to calling the Start method.

When secure connections are enabled, the server will accept the client connection and then wait
for the client to initiate the handshake where both the client and server negotiate the various
encryption options available. This process is handled automatically by the server, and all that is
required is that the application specify the server certificate which should be used. This is done by
setting the CertificateName property, and optionally the CertificateStore property if required.

It is recommended that the application use exception handling to catch any errors that may occur
when changing the value of this property. If the control is unable to initialize the Windows security
libraries, an exception will be thrown when this property value is modified.

Data Type
Boolean

See Also
CertificateName Property, CertificateStore Property, SecureProtocol Property, Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SecureProtocol Property

Gets and sets the security protocol used to establish a secure connection.

Syntax
object.SecureProtocol [= protocol]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
accepting a secure connection with a client. By default, the control will attempt to use TLS 1.2
when accepting the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate
protocol is automatically selected based on the capabilities of both the client and server. It is
recommended that you only change this property value if you fully understand the implications of
doing so. Assigning a value to this property will override the default and force the control to
attempt to use only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 stProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 stProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 stProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 stProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 stProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 stProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 stProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server 2019
and later versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator.
Attempting to set this property after the server has been started will result in an exception being
thrown. This property should only be set after setting the Secure property to True and before

calling the Start method.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform.

Data Type
Integer (Int32)

See Also
CertificateName Property, CertificateStore Property, Secure Property, Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ServerAddress Property

Gets and sets the address that will be used by the server to listen for connections.

Syntax
object.ServerAddress [= address]

Remarks
The ServerAddress property is used to specify the default address that the server will use when
listening for connections. Setting this property to the value 0.0.0.0 or an empty string indicates that
the server should listen for client connections using any valid network interface. If an address is
specified, it must be a valid Internet address that is bound to a network adapter configured on the
local system. Clients will only be able to connect to the server using that specific address.

It is common to set this property to the value 127.0.0.1 for testing purposes. It is a non-routable
address that specifies the local system, and most software firewalls are configured so they do not
block applications using this address.

Data Type
String

See Also
ExternalAddress Property, ServerName Property, ServerPort Property, Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ServerName Property

Return the fully qualified domain name of the local system.

Syntax
object.ServerName

Remarks
The ServerName read-only property returns the fully qualified domain name of the local system.
This consists of the local computer name and its domain name. The actual value returned depends
on the system configuration. If no domain has been specified for the system, then only the
machine name will be returned.

Data Type
String

See Also
ServerAddress Property, ServerPort Property, Resolve Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ServerPort Property

Gets and sets the port number that will be used by the server to listen for connections.

Syntax
object.ServerPort [= port]

Remarks
The ServerPort property is used to set the port number that server will use to listen for incoming
client connections. Valid port numbers are in the range of 1 to 65535. It is recommended that
most custom servers specify a port number larger than 5000 to avoid potential conflicts with
standard Internet services and ephemeral ports used by client applications.

If a port number is specified that is already in use by another application, the OnError event will
fire and the background server thread will terminate. To enable a server to be stopped and
immediately restarted using the same address and port number, make sure that the
ReuseAddress property is set to a value of True.

Data Type
Integer (Int32)

See Also
ReuseAddress Property, ServerAddress Property, ServerName Property, Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ServerThread Property

Return the thread ID for the server.

Syntax
object.ServerThread

Remarks
The ServerThread property returns the thread ID for the active server. Until the thread terminates,
the thread identifier uniquely identifies the thread throughout the system. If there is no active
server, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
ClientAddress Property, ClientThread Property, ServerAddress Property, ServerPort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 StackSize Property

Gets and sets the size of the stack allocated for threads created by the server.

Syntax
object.StackSize [= bytes]

Remarks
The StackSize property returns the initial amount of memory that is committed to the stack for
each thread created by the server. By default, the stack size for each thread is set to 256K.
Increasing or decreasing the stack size will only affect new threads that are created by the server, it
will not affect those threads that have already been created to manage active client sessions. It is
recommended that most applications use the default stack size.

You should not change this value unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Data Type
Integer (Int32)

See Also
Start Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ThrowError Property

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. For example, in Visual Basic 6.0, the On Error statement is used to
establish error handling. Note that if an error occurs while a property value is being accessed, an
exception will be raised regardless of the value of the ThrowError property.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

Dim nError As Long

' The control will not raise an exception when an error occurs
Server1.ThrowError = False

' Start the server
nError = Server1.Start()

' If the method returns an error code, then display a message box
' and exit the subroutine
If nError > 0 Then
 MsgBox Server1.LastErrorString, vbExclamation
 Exit Sub
Endif

The following example handles errors by generating an exception:

On Error GoTo Failed

' The control will raise an exception when an error occurs
Server1.ThrowError = True

' Start the server
Server1.Start
Exit Sub

' If the method fails, code execution will resume at this label
Failed:
MsgBox Err.Description, vbExclamation
Exit Sub

See Also
LastError Property, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Timeout Property

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds]

Remarks
Setting this property specifies the number of seconds until a blocking network operation fails and
the control returns an error.

Data Type
Integer (Int32)

See Also
LastError Property, OnError Event, OnTimeout Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Trace Property

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False }]

Remarks
The Trace property is used to enable (or disable) the tracing of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Only those function calls made by the SocketTools networking controls will be logged. Calls made
directly to the Windows Sockets API, or calls made by other controls, will not be logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TraceFile Property

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named CSTRACE.LOG is created in the system's temporary directory. If no temporary directory
exists, then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035]
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column identifies if the trace record is reporting information, a warning, or
an error. What follows is the name of the function being called, the arguments passed to the
function and the function's return value. If a warning or error is reported, the error code is
appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TraceFlags Property

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= flags]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 swTraceInfo All function calls are written to the trace file. This is the default value.

1 swTraceError Only those function calls which fail are recorded in the trace file.

2 swTraceWarning Only those function calls which fail, or return values which indicate a
warning, are recorded in the trace file.

4 swTraceHexDump All functions calls are written to the trace file, plus all the data that is
sent or received is displayed, in both ASCII and hexadecimal format.

Since socket function tracing is enabled per-process, the trace flags are shared by all instances of
the controls being used. If multiple controls have tracing enabled, the TraceFlags property should
be set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and the error WSAEWOULDBLOCK is
returned, a warning is generated since the application simply needs to attempt to write the data at
a later time.

Data Type
String

See Also
Trace Property, TraceFile Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Version Property

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes.

Data Type
String

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Server Control Methods

Method Description

Abort Abort the specified client session, terminating its connection to the server

Broadcast Broadcast data to all active clients connected to the server

Cancel Cancels the current blocking network operation

Disconnect Disconnect the specified client session from the server

FindClient Return the socket handle for the client session with the specified moniker or client ID

Initialize Initialize the control and validate the runtime license key

Peek Read data from the specified client session, but do not remove it from the socket buffer

Read Read data from the specified client session

ReadLine Read a line of data from the specified client session, storing it in a string buffer

Reject Reject a pending client connection

Reset Reset the internal state of the control, stopping the server and terminating all client connections

Resolve Resolves a host name to a host IP address

Restart Restart the server, terminating all active client connections

Resume Resume accepting new client connections

Start Start listening for client connections on the specified IP address and port number

Stop Stop listening for new client connections and terminate all client sessions

Suspend Suspend accepting new client connections

Throttle Limit the maximum number of client connections, connections per IP address and connection rate

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the specified client session

WriteLine Write a line of data to the specified client session, terminated with a carriage-return and linefeed

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Abort Method

Abort the specified client session, terminating its connection to the server.

Syntax
object.Abort(Handle)

Parameters
Handle

An integer value that specifies the handle to the client session.

Return Value
A value of zero is returned if the connection was aborted successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
The Abort method immediately closes the specified client socket, terminating its connection to the
server. Any queued data in the socket's send and receive buffers will be discarded, and the client
may terminate abnormally unless it is designed to handle aborted connections. It is not
recommended that you use this method unless you understand the implications of doing so. To
gracefully terminate the client connection, use the Disconnect method.

See Also
Disconnect Method, Stop Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Broadcast Method

Broadcast data to all active clients connected to the server.

Syntax
object.Broadcast(Buffer, [Length])

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, it is recommended that a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of clients that the data was broadcast to. A return value of -1
indicates an error condition, and the value of the LastError property will indicate the cause of the
failure.

Remarks
The Broadcast method sends the data in Buffer to all clients connected to the server. If this
method is called inside a server event handler, the message is broadcast to all clients except for
the current, active client that is processing the event notification. If this method is called outside of
an event handler, the data is broadcast to all connected clients.

See Also
Read Method, ReadLine Method, Write Method, WriteLine Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Cancel Method

Cancel a blocking socket operation.

Syntax
object.Cancel(Handle)

Parameters
Handle

An integer value that specifies the handle to the client session.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation for the specified client session. This
method sets an internal flag that is periodically checked during a blocking operation, such as
waiting for more data to arrive. If the client is not blocked at the time that this method is called, it
will have no effect.

See Also
Reset Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Disconnect Method

Disconnect the specified client session from the server.

Syntax
object.Disconnect(Handle)

Parameters
Handle

An integer value that specifies the handle to the client session.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the specified client connection, releasing the socket handle that was
allocated for the session. It is only necessary to use this method if you want the server to explicitly
terminate a client connection. Normally the client will close its connection to the server, the
OnDisconnect event will fire and the server will automatically close the socket handle allocated
for that client session.

See Also
Restart Method, Stop Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 FindClient Method

Return the socket handle for the client session with the specified moniker or client ID.

Syntax
object.FindClient(Client)

Parameters
Client

An integer value that specifies the handle to the client session or a string value that specifies a
client name.

Return Value
An integer value which specifies the socket handle for the client session. If the specified moniker
does not match an active client session, the method will return a value of -1 and the value of the
LastError property will indicate the cause of the failure.

Remarks
The FindClient method returns a handle to the client session identified either by its moniker or
client ID. The handle value that is returned can be used in conjunction with other methods that
require it, such as the Read and Write methods.

If the Client parameter is a string, it is considered to be a client moniker and the method will
search the table of connected clients and return the handle for the session that matches the
specified moniker. A moniker can be assigned to the client session by setting the ClientName
property from within an event handler such as the OnConnect event. Monikers are not case-
sensitive, and they must be unique so that no client socket for a particular server can have the
same moniker. The maximum length for a moniker is 127 characters.

If the Client parameter is an integer, it is considered to be a client ID and the method will return
the handle for the client session that matches that ID. The ID for a client session can be obtained
using the ClientId property from within an event handler such as the OnConnect event. Each
client connection that is accepted by the server is assigned a unique numeric value, and unlike the
socket handle for the client session, a client ID will not be reused throughout the life of the server.

See Also
ClientCount Property, ClientHandle Property, ClientId Property, ClientName Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Initialize Method

Initialize the control and validate the runtime license key.

Syntax
object.Initialize([LicenseKey])

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set objServer = CreateObject("SocketTools.InternetServer.11")

nError = objServer.Initialize(strLicenseKey)
If nError > 0 Then
 MsgBox "Unable to initialize the InternetServer control"
 End
End If

See Also
IsInitialized Property, Uninitialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Peek Method

Return data read from the specified client session, but do not remove it from the socket buffer.

Syntax
object.Peek(Handle, Buffer, [Length])

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, it is recommended
that a Byte array be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
If the method succeeds, it will return the number of bytes available to read from the socket
without causing the thread to block. A return value of zero indicates that there is no data available
to read at that time. If an error occurs, a value of -1 is returned.

Remarks
The Peek method reads the specified number of bytes from the specified socket and copies them
into the buffer, but it does not remove the data from the internal socket buffer. Note that it is
possible for the returned data to contain embedded null characters.

The data returned by the Peek method is not removed from the socket buffers. It must be
consumed by a subsequent call to the Read method. The return value indicates the number of
bytes that can be read in a single operation, up to the specified buffer size. However, it is
important to note that it may not indicate the total amount of data available to be read from the
socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a
loop to poll a socket may cause the server application to become non-responsive. To determine if
there is data available to be read, use the IsReadable property.

See Also
IsReadable Property, Read Method, ReadLine Method, Write Method, WriteLine Method, OnRead
Event, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Read Method

Return data read from the specified client session.

Syntax
object.Read(Handle, Buffer, [Length])

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, a Byte array
should be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
The number of bytes actually read from the socket is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been sent by the client to the server, up to the number of
bytes specified. If no data is available to be read, the application will wait until data is returned by
the server or the client connection is closed.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Read method.
When you provide a String variable as the buffer, the control will process the data as
text. Binary characters may be interpreted as 8-bit ANSI character encoding and
embedded null characters will corrupt the data. Reading the data into a byte array
ensures that you receive the data exactly as it was sent by the server.

See Also
CodePage Property, IsReadable Property, Peek Method, ReadLine Method, Write Method,
OnRead Event, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReadByte Method

Read a byte of data from the client.

Syntax
object.ReadByte(Handle)

Parameters
Handle

An integer value that specifies the handle to the client session.

Return Value
The integer value of the byte read from the socket. If an error occurs, the method will return a
value of -1 and the program should check the value of the LastError property to determine the
specific cause of the error.

Remarks
The ReadByte method returns one byte of data that has been read from the client socket
specified by the Handle argument. If no data is available to be read, an error will be generated if
the control is non-blocking mode. If the control is in blocking mode, the program will stop until a
byte of data is returned by the server or the connection is closed.

See Also
IsReadable Property, Timeout Property, Read Method, Write Method, WriteByte Method, OnRead
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReadLine Method

Read up to a line of data from the socket and returns it in a string buffer.

Syntax
object.ReadLine(Handle, Buffer, [Length])

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned as
a string of characters. This is the most appropriate data type to use if the server is sending data
that consists of printable characters. If the server is sending binary data, it is recommended that
a Byte array be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
This method will return True if a line of data has been read. If an error occurs or there is no more
data available to read, then the method will return False. It is possible for data to be returned in
the string buffer even if the return value is False. Applications should check the length of the string
after the method returns to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return
zero; however, data may have already been copied into the string buffer prior to the error
condition. It is the responsibility of the application to process that data, regardless of the function
return value.

Remarks
The ReadLine method reads data from the socket up to the specified number of bytes or until an
end-of-line character sequence is encountered. Unlike the Read method which reads arbitrary
bytes of data, this function is specifically designed to return a single line of text data in a string
variable. When an end-of-line character sequence is encountered, the function will stop and
return the data up to that point; the string will not contain the carriage-return or linefeed
characters.

There are some limitations when using the ReadLine method. The method should only be used to
read text, never binary data. In particular, it will discard nulls, linefeed and carriage return control
characters. This method will force the thread to block until an end-of-line character sequence is
processed, the read operation times out or the remote host closes its end of the socket
connection.

The Read and ReadLine methods can be intermixed, however be aware that the Read method
will consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
CodePage Property, IsReadable Property, Peek Method, Read Method, Write Method, WriteLine
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Reject Method

Rejects a connection request from a remote host.

Syntax
object.Reject

Parameters
None.

Return Value
A value of zero is returned if the rejection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the
connection being aborted. If there are no pending client connections at the time, this method will
immediately return with an error indicating that the operation would cause the thread to block.

This method can only be used inside the OnAccept event, when the server accepts the pending
client connection. If this method is called outside of an event handler, it will fail.

Rejecting a client connection can cause the client to terminate abnormally unless it is designed to
handle aborted connection attempts. It is not recommended that you use this method unless you
understand the implications of doing so. To gracefully terminate a client connection, use the
Disconnect method.

See Also
Abort Method, Disconnect Method, Start Method, OnAccept Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Reset Method

Reset the internal state of the control, stopping the server and terminating all client connections.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released. Is the server is active when this method is called, the method will return
immediately and the server shutdown process will proceed asynchronously in the background.

If this method is used to forcibly stop an active server, no further events will be generated by the
control. The OnDisconnect event will not fire for each client session that is terminated and the
OnStop event will not fire when the shutdown process has completed. If your application depends
on these events, you should not use the Reset method to stop an active server.

See Also
Restart Method, Stop Method, OnStop Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Resolve Method

Resolves a host name to a host IP address.

Syntax
object.Resolve(HostName, IpAddress)

Parameters
HostName

A string value that specifies the host name to resolve.

IpAddress

A string that will contain the IP address for the specified host name when the method returns.
This parameter must be passed by reference.

Return Value
A value of zero is returned if the host name could be resolved into an IP address. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

See Also
ClientAddress Property, ClientHost Property, ServerAddress Property, ServerName Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Restart Method

Restart the server, terminating all active client connections

Syntax
object.Restart

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Restart method terminates all active client connections, recreates a new listening socket
bound to the same address and port number, and then resumes accepting new client
connections.

See Also
IsActive Property, IsListening Property, ReuseAddress Property, Start Method, Stop Method,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Resume Method

Resume accepting new client connections.

Syntax
object.Restart

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Resume method instructs the server to resume accepting new client connections. Any
pending client connections that were requested while the server was suspended will be accepted.

See Also
IsActive Property, IsListening Property, Restart Method, Start Method, Stop Method, Suspend
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Start Method

Start listening for client connections on the specified IP address and port number.

Syntax
object.Start([LocalAddress], [LocalPort], [Backlog], [MaxClients], [Timeout], [Options])

Parameters
LocalAddress

An optional string value that specifies the IP address of the network adapter that the control
should use when listening for connection requests. If this is an empty string, the server will listen
for connection on all valid network interfaces configured for the local system. If this argument is
not specified, the control will accept connections on the address specified by the value of the
ServerAddress property.

LocalPort

An optional integer value that specifies the port number to listen for connections on. If this
argument is not provided, it defaults to the value specified by the ServerPort property.

Backlog

An optional integer value that specifies the maximum size of the queue used to manage
pending connections to the service. If the argument is set to value which exceeds the maximum
size for the underlying service provider, it will be silently adjusted to the nearest legal value. On
Windows workstations, the maximum backlog value is 5. On Windows servers, the maximum
value is 200. If this argument is not provided, the value specified by the Backlog property will
be used.

MaxClients

An optional integer value that specifies the maximum number of clients that may connect to the
server. If this argument is not provided, the value specified by the MaxClients property will be
used. A value of zero specifies that there is no fixed limit to the number of active client
connections that may be established with the server. This value can be adjusted after the server
has been created by calling the Throttle method

Timeout

An optional integer value that specifies the number of seconds the control will wait for a
network operation to complete. If this argument is not specified, the value of the Timeout
property will be used as the default

Options

An optional integer value that specifies specifies one or more socket options which are to be
used when establishing the connection. The value is created by combining the options using a
bitwise Or operator. Note that if this argument is specified, it will override any property values
that are related to that option.

Value Constant Description

2 swOptionDontRoute This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

4 swOptionKeepAlive This option specifies that packets are to be sent to
the remote system when no data is being

exchanged to keep the connection active. This is
the same as setting the KeepAlive property to a
value of True.

8 swOptionReuseAddress This option specifies the local address can be
reused when the server is stopped and
immediately restarted. This is the same as setting
the ReuseAddress property to a value of True.

16 swOptionNoDelay This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a
full-size packet can be sent to the remote host.
This is the same as setting the NoDelay property
to a value of True.

&H1000 swOptionSecure This option specifies the server will enable the
security protocols and negotiate with the client to
establish an encrypted session. This is the same as
setting the Secure property to a value of True.
<</td>

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Start method begins listening for client connections on the specified local address and port
number. The server is started in its own thread and manages the client sessions independently of
the calling thread.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

See Also
MaxClients Property, ServerAddress Property, ServerPort Property, Timeout Property, Restart
Method, Stop Method, OnStart Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Stop Method

Stop listening for new client connections and terminate all client sessions.

Syntax
object.Stop

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active
client connections and terminates the thread that is managing the server session. This method will
block waiting for the clients to disconnect and the server thread to terminate. Once the server has
stopped, the OnStop event will fire.

Clients that are disconnected using the Stop method are terminated immediately and will not
generate an OnDisconnect event. If your application is using this event to perform some cleanup
on a per-client basis, then you should shutdown the server by first calling the Suspend method to
prevent new connections from being accepted and terminate all active client sessions. The
OnDisconnect event will fire for each client as it disconnects from the server, and when the last
client has disconnected, the OnIdle event will fire. You can then call the Stop method to complete
the shutdown of the server.

After the server has been stopped, the closed listening socket will go into a TIME-WAIT state which
prevents an application from reusing the same address and port number bound to that socket for
a brief period of time, typically two to four minutes. This is normal behavior designed to prevent
delayed or misrouted packets of data from being read by a subsequent connection. To
immediately start a new server using the same local address and port number, set the
ReuseAddress property to a value of True.

See Also
IsActive Property, Restart Method, Start Method, Suspend Method, OnStop Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Suspend Method

Suspend accepting new client connections.

Syntax
object.Suspend

Parameters
None.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. Any
incoming client connections will be queued up to the maximum backlog value specified when the
server was started. To resume accepting client connections, call the Resume method.

It is not recommended that you leave a server in a suspended state for extended periods of time.
Once the connection backlog queue has filled, subsequent incoming client connections will be
rejected.

See Also
IsActive Property, IsListening Property, Restart Method, Resume Method, Start Method, Stop
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Throttle Method

Limit the maximum number of client connections, connections per IP address and connection rate.

Syntax
object.Throttle([MaxClients], [MaxClientsPerAddress], [ConnectionRate])

Parameters
MaxClients

An optional integer value that specifies the maximum number of clients that may connect to the
server. A value of zero specifies that there is no fixed limit to the number of client connections.

MaxClientsPerAddress

An optional integer value that specifies the maximum number of clients that may connect to the
server from the same IP address. A value of zero specifies that there is no fixed limit to the
number of client connections per address. By default, there is no limit on the number of client
connections per address.

ConnectionRate

An optional integer value that specifies a restriction on the rate of client connections, limiting
the number of connections that will be accepted within that period of time. A value of zero
specifies that there is no restriction on the rate of client connections. The higher this value, the
fewer the number of connections that will be accepted within a specific period of time. By
default, there is no limit on the client connection rate.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Throttle method limits the number of connections and the connection rate to minimize the
potential impact of a large number of client connections over a short period of time. This can be
used to protect the server from a client application that is malfunctioning or a deliberate denial-
of-service attack in which the attacker attempts to flood the server with connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the Start method is called with the maximum number of clients set to 100, and then
the Throttle method is called lowering that value to 75, no existing client connections will be
affected by the change. However, the server will not accept any new connections until the number
of active clients drops below 75.

Increasing the ConnectionRate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

See Also

MaxClients Property, Timeout Property, Start Method, Stop Method,

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Uninitialize Method

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. Any active client sessions will be terminated and the server will stop
listening for new client connections. Any items in the server FIFO queue will be removed and the
memory allocated for the queue will be released. This method is not typically used because any
resources that have been allocated by an instance of the control will automatically be released
when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Write Method

Write data to the specified client session.

Syntax
object.Write(Handle, Buffer, [Length])

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the server is
expecting binary data, it is recommended that a Byte array be used instead.

Length

A numeric value which specifies the number of bytes to write. Its maximum value is 231-1 =
2147483647. If a value is specified for this argument and it is greater than the actual size of the
buffer, then the Length argument will be ignored and the entire contents of the buffer will be
written. If the argument is omitted, then the maximum number of bytes to write is determined
by the size of the buffer.

Return Value
This method returns the number of bytes actually written to the socket, or -1 if an error was
encountered.

Remarks
The Write method sends the data in Buffer to the specified client socket. Typically the data is
copied to an internal buffer and control is immediately returned to the calling thread. If the buffer
is full, the current thread will block until the data can be sent. If the client does not acknowledge
the data that is being sent to it, this method will eventually fail with an error indicating that the
connection has been aborted.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Write method.
When you provide a String variable as the buffer, the control will process the data as
text. If the string contains Unicode characters, it will automatically be converted to 8-
bit encoded text prior to being written. Using a byte array ensures that binary data
will be sent as-is without being encoded.

See Also
CodePage Property, IsWritable Property, Timeout Property, Read Method, Write Method, OnWrite
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WriteByte Method

Write a byte of data to the client.

Syntax
object.WriteByte(Handle, Value)

Parameters
Handle

An integer value that specifies the handle to the client session.

Value

An integer or character value that specifies the byte of data that should be sent to the remote
host. If the argument is a numeric value, it will be automatically converted to its equivalent byte
value and written to the socket. If the argument is a string value, then the first character will be
written to the socket.

Return Value
This method returns a Boolean value. If the byte of data was successfully written to the socket, the
method will return True. If the data could not be written to the socket, the method will return False
and the application should check the value of the LastError property to determine the exact cause
of the failure.

Remarks
The WriteByte method writes a single byte of data to the client socket specified by the Handle
argument. Typically the data is copied to an internal buffer and control is immediately returned to
the calling thread. If the buffer is full, the current thread will block until the data can be sent. If the
client does not acknowledge the data that is being sent to it, this method will eventually fail with
an error indicating that the connection has been aborted.

See Also
IsWritable Property, Timeout Property, Read Method, ReadByte Method, Write Method, OnWrite
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WriteLine Method

Write a line of data to the specified client session, terminated with a carriage-return and linefeed.

Syntax
object.WriteLine(Handle, [Buffer])

Parameters
Handle

An integer value that specifies the handle to the client session.

Buffer

An optional string which contains the data that will be sent to the remote host. The data will
always be terminated with a carriage-return and linefeed control character sequence. If this
argument is omitted, then a only a carriage-return and linefeed are written to the socket. Note
that if the string contains a null character, any data that follows the null character will be
discarded.

Return Value
This method returns True if the contents of the string have been written to the socket. If an error
occurs, the method will return False.

Remarks
The WriteLine method writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the Write method which writes
arbitrary bytes of data to the socket, this method is specifically designed to write a single line of
text data from a string.

The WriteLine method should only be used to send text, never binary data. In particular, the
method will discard any data that follows a null character and will append linefeed and carriage
return control characters to the data stream. Calling this this method will force the thread to block
until the complete line of text has been written, the write operation times out or the remote host
aborts the connection.

The Write and WriteLine function calls can be safely intermixed.

See Also
CodePage Property, IsWritable Property, Timeout Property, Read Method, ReadLine Method,
Write Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Server Control Events

Event Description

OnAccept This event is generated when a client connects to the server

OnCancel This event is generated when a blocking network operation is canceled

OnConnect This event is generated when a client connection is established

OnDisconnect This event is generated when a client connection is terminated

OnError This event is generated when an error occurs

OnIdle This event is generated after the last client has disconnected from the server

OnRead This event is generated when a client has sent data to the server

OnStart This event is generated when the server has started listening for connections

OnStop This event is generated when the server has stopped

OnTimeout This event is generated when a network operation times out

OnWrite This event is generated when data can be written to the client

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnAccept Event

The OnAccept event is generated when a remote host connects to the server.

Syntax
Sub object_OnAccept ([Index As Integer,] ByVal Handle As Variant)

Remarks
This event is generated when a client attempts to establish a connection with the server.

The Handle argument specifies the socket descriptor of the server that has accepted the
connection. The ClientAddress property may be used to determine the IP address of the client.
To prevent the client from completing the connection, call the Reject method.

After the client connection has been established and the worker thread for that client session has
started, the OnConnect event will fire.

See Also
ClientAddress Property, Reject Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnCancel Event

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer,] ByVal Handle As Variant)

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method. The Handle argument specifies the handle to the active
client socket.

See Also
Cancel Method, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnConnect Event

The OnConnect event is generated when a client connection is established.

Syntax
Sub object_OnConnect ([Index As Integer,] ByVal Handle As Variant)

Remarks
The OnConnect event is generated when the client connection to the server has completed. The
Handle argument specifies the handle to the client socket that was allocated for the session. This
handle can be used with methods such as Read and Write to exchange information with the
client.

The ClientAddress property can be used to determine the IP address of the client which
established the connection. To terminate the client connection, use the Disconnect method.

See Also
ClientAddress Property, Disconnect Method, Read Method, ReadLine Method, Write Method,
WriteLine Method, OnAccept Event, OnDisconnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnDisconnect Event

The OnDisconnect event is generated when a client connection is terminated.

Syntax
Sub object_OnDisconnect ([Index As Integer,] ByVal Handle As Variant)

Remarks
The OnDisconnect event is generated when the connection is terminated by the client and there
is no more data available to be read. The Handle argument specifies the socket handle of the
client session which has terminated. It is important to note that the client handle is provided for
informational purposes only and the application should not attempt to read or write data using
this handle. When this event fires, the connection to the client has already been closed and the
handle is no longer valid.

It is not necessary to call the Disconnect method inside the OnDisconnect event handler
because the connection has already been closed.

See Also
OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnError Event

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ([Index As Integer,] ByVal Handle As Variant, ByVal ErrorCode As
Variant, ByVal Description As Variant)

Remarks
This event is generated when an error occurs during a control action. Visual Basic errors do not
generate this event.

The Handle argument specifies the handle to the server or the specific client session which is
associated with the error.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnIdle Event

The OnIdle event is generated after the last client has disconnected from the server.

Syntax
Sub object_OnIdle ([Index As Integer])

Remarks
This event will only occur after at least one client has connected to the server and then closes its
connection or is disconnected. This event will not occur immediately after the server has started
using the Start method, and will not occur when the server is stopped using the Stop method.
Your application should implement an OnStart event handler for when the server first starts, and
an OnStop event handler for when the server is stopped.

If one or more new client connections are accepted after this event occurs, the event will be
generated again when those clients disconnect and the active client count drops to zero.
Therefore it is to be expected that this event will occur multiple times over the lifetime of the
server as it continues to listen for connections.

See Also
IsActive Property, Restart Method, Start Method, Stop Method, OnStop Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnRead Event

The OnRead event is generated when a client has sent data to the server.

Syntax
Sub object_OnRead ([Index As Integer,] ByVal Handle As Variant)

Remarks
The OnRead event is generated when the client sends data to the server. The Handle argument
specifies the handle to the client socket which can be used with the Read or ReadLine methods
to read the data that was sent.

The application should not call the Read method repeatedly inside the OnRead event handler.
When this event fires, it guarantees that data can be read from the specified client without causing
the program to enter a blocked state. However, calling this method multiple times inside the event
handler may cause the application to block when there is no more data available to read and this
can negatively impact the overall performance of the server.

The preferred approach is to call the Read method once inside the event handler, buffer and/or
process the data received from the client and exit the event handler. If there is more data available
to be read from the client, the OnRead event will fire again. If you must call the Read method
multiple times within the event handler, first check the value of the IsReadable property to
determine if there is data available to be read.

See Also
IsReadable Property, Peek Method, Read Method, Write Method, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnStart Event

The OnStart event is generated when the server starts listening for connections.

Syntax
Sub object_OnStart ([Index As Integer])

Remarks
This event is generated after the Start method has been called and the server and begins listening
for connections from clients. An application can use this event to update the user interface and
perform any additional initialization functions that are required by the application.

See Also
IsActive Property, Start Method, Stop Method, OnStop Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnStop Event

The OnStop event is generated when the server has stopped.

Syntax
Sub object_OnStop ([Index As Integer])

Remarks
This event is generated after the Stop method has been called and all active client sessions have
terminated. An application can use this event to update the user interface and perform any
additional cleanup functions that are required by the application. If the server has a large number
of active clients, this event may not occur immediately. The OnDisconnect event will fire for each
client as the server is in the process of shutting down. During the shutdown process, the server is
still considered to be active, however it will not accept any further connections. When the OnStop
event is fired, the server thread has terminated and the listening socket has been closed.

This event will not occur if the server is forcibly stopped using the Reset method, or when the
Uninitialize method is called prior to disposing an instance of the control. Applications that
depend on this event should ensure that the server is shutdown gracefully using the Stop method
prior to terminating the application.

See Also
IsActive Property, Start Method, Stop Method, OnDisconnect Event, OnStart Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnTimeout Event

The OnTimeout event is fired when a network operation times out.

Syntax
Sub object_OnTimeout ([Index As Integer,] ByVal Handle As Variant)

Remarks
The OnTimeout event is generated when a network operation, such as sending or receiving data,
times out. The Handle property specifies the socket handle for the current client session when the
timeout occurred.

The value of the Timeout property determines how long the control will wait for a network
operation to complete.

See Also
Timeout Property, OnCancel Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnWrite Event

The OnWrite event is generated when data can be written to the client.

Syntax
Sub object_OnWrite ([Index As Integer,] ByVal Handle As Variant)

Remarks
The OnWrite event is generated when the client can accept data from the server. The Handle
argument specifies the handle to the client socket and can be used in conjunction with the Write
or WriteLine methods.

This event is typically fired once when the client connection is established with the server, the
session thread starts and the client socket enters a writable state. If the internal send buffer for the
client socket becomes full, this event will fire again when more data can be written to the socket. It
is important to note that this event is level-triggered and will not fire repeatedly if the client socket
is writable. Under most circumstances this event fire only once for each client session after the
initial connection has been established.

See Also
IsWritable Property, Write Method, WriteLine Method, OnRead Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Server Control Error Codes

Value Constant Description

10001 swErrorNotHandleOwner Handle not owned by the current thread

10002 swErrorFileNotFound The specified file or directory does not exist

10003 swErrorFileNotCreated The specified file could not be created

10004 swErrorOperationCanceled The blocking operation has been canceled

10005 swErrorInvalidFileType The specified file is a block or character device, not a regular
file

10006 swErrorInvalidDevice The specified device or address does not exist

10007 swErrorTooManyParameters The maximum number of function parameters has been
exceeded

10008 swErrorInvalidFileName The specified file name contains invalid characters or is too
long

10009 swErrorInvalidFileHandle Invalid file handle passed to function

10010 swErrorFileReadFailed Unable to read data from the specified file

10011 swErrorFileWriteFailed Unable to write data to the specified file

10012 swErrorOutOfMemory Out of memory

10013 swErrorAccessDenied Access denied

10014 swErrorInvalidParameter Invalid argument passed to function

10015 swErrorClipboardUnavailable The system clipboard is currently unavailable

10016 swErrorClipboardEmpty The system clipboard is empty or does not contain any text
data

10017 swErrorFileEmpty The specified file does not contain any data

10018 swErrorFileExists The specified file already exists

10019 swErrorEndOfFile End of file

10020 swErrorDeviceNotFound The specified device could not be found

10021 swErrorDirectoryNotFound The specified directory could not be found

10022 swErrorInvalidBuffer Invalid memory address passed to function

10024 swErrorNoHandles No more handles available to this process

10035 swErrorOperationWouldBlock The specified operation would block the current thread

10036 swErrorOperationInProgress A blocking operation is currently in progress

10037 swErrorAlreadyInProgress The specified operation is already in progress

10038 swErrorInvalidHandle Invalid handle passed to function

10039 swErrorInvalidAddress Invalid network address specified

10040 swErrorInvalidSize Datagram is too large to fit in specified buffer

10041 swErrorInvalidProtocol Invalid network protocol specified

10042 swErrorProtocolNotAvailable The specified network protocol is not available

10043 swErrorProtocolNotSupported The specified protocol is not supported

10044 swErrorSocketNotSupported The specified socket type is not supported

10045 swErrorInvalidOption The specified option is invalid

10046 swErrorProtocolFamily The specified protocol family is not supported

10047 swErrorProtocolAddress The specified address is invalid for this protocol family

10048 swErrorAddressInUse The specified address is in use by another process

10049 swErrorAddressUnavailable The specified address cannot be assigned

10050 swErrorNetworkUnavailable The networking subsystem is unavailable

10051 swErrorNetworkUnreachable The specified network is unreachable

10052 swErrorNetworkReset Network dropped connection on reset

10053 swErrorConnectionAborted Connection was aborted due to timeout or other failure

10054 swErrorConnectionReset Connection was reset by remote network

10055 swErrorOutOfBuffers No buffer space is available

10056 swErrorAlreadyConnected Connection already established with remote host

10057 swErrorNotConnected No connection established with remote host

10058 swErrorConnectionShutdown Unable to send or receive data after connection shutdown

10060 swErrorOperationTimeout The specified operation has timed out

10061 swErrorConnectionRefused The connection has been refused by the remote host

10064 swErrorHostUnavailable The specified host is unavailable

10065 swErrorHostUnreachable The specified host is unreachable

10067 swErrorTooManyProcesses Too many processes are using the networking subsystem

10091 swErrorNetworkNotReady Network subsystem is not ready for communication

10092 swErrorInvalidVersion This version of the operating system is not supported

10093 swErrorNetworkNotInitialized The networking subsystem has not been initialized

10101 swErrorRemoteShutdown The remote host has initiated a graceful shutdown sequence

11001 swErrorInvalidHostName The specified hostname is invalid or could not be resolved

11002 swErrorHostNameNotFound The specified hostname could not be found

11003 swErrorHostNameRefused Unable to resolve hostname, request refused

11004 swErrorHostNameNotResolved Unable to resolve hostname, no address for specified host

12001 swErrorInvalidLicense The license for this product is invalid

12002 swErrorProductNotLicensed This product is not licensed to perform this operation

12003 swErrorNotImplemented This function has not been implemented on this platform

12004 swErrorUnknownLocalHost Unable to determine local host name

12005 swErrorInvalidHostAddress Invalid host address specified

12006 swErrorInvalidServicePort Invalid service port number specified

12007 swErrorInvalidServiceName Invalid or unknown service name specified

12008 swErrorInvalidEventId Invalid event identifier specified

12009 swErrorOperationNotBlocking No blocking operation in progress on this socket

12101 swErrorSecurityNotInitialized Unable to initialize security interface for this process

12102 swErrorSecurityContext Unable to establish security context for this session

12103 swErrorSecurityCredentials Unable to open client certificate store or establish client
credentials

12104 swErrorSecurityCertificate Unable to validate the certificate chain for this session

12105 swErrorSecurityDecryption Unable to decrypt data stream

12106 swErrorSecurityEncryption Unable to encrypt data stream

12201 swErrorOperationNotSupported The specified operation is not supported

12330 swErrorFeatureNotSupported The specified feature is not supported

12337 swErrorMaximumConnections The maximum number of client connections exceeded

12338 swErrorThreadCreationFailed Unable to create a new thread for the current process

12339 swErrorInvalidThreadHandle The specified thread handle is no longer valid

12340 swErrorThreadTerminated The specified thread has been terminated

12341 swErrorThreadDeadlock The operation would result in the current thread becoming
deadlocked

12342 swErrorInvalidClientMoniker The specified moniker is not associated with any client session

12343 swErrorClientMonikerExists The specified moniker has been assigned to another client
session

12344 swErrorServerInactive The specified server is not listening for client connections

12345 swErrorServerSuspended The specified server is suspended and not accepting client
connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench ActiveX Control

A general purpose TCP/IP networking component for developing client and server applications.

Reference

Properties
Methods
Events
Error Codes

Control Information

Object Name SocketWrenchCtl.SocketWrench

File Name CSWSKX11.OCX

Version 11.0.2180.1635

ProgID SocketTools.SocketWrench.11

ClassID B2880FA8-3F91-40C1-B8A1-D63FF4B9FF9B

Threading Model Apartment

Help File CSW11HLP.CHM

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
The SocketWrench control provides a simplified interface for the standard Windows Sockets API
used to develop Internet and intranet applications using the TCP/IP protocol. With SocketWrench,
you can create both client and server applications, as well as send and receive UDP datagrams.
SocketWrench also supports secure connections using the standard Secure Sockets Layer (SSL)
and Transport Layer Security (TLS) protocols. Enabling the security features of the control is done
by setting a single property, and all of the data that is exchanged between your application and
the remote host will be encrypted.

Instead of using complex API calls, virtually all network functions can be performed by setting the
control's properties and responding to events. For developers who are not familiar with the details
of Internet programming, SocketWrench can also insulate them from many of the common pitfalls,
without sacrificing functionality or flexibility.

Each instance of the control that you use corresponds to one socket which may or may not be
currently connected to a remote host. If you need access to multiple sockets, you simply create
multiple instances of the control. This is most commonly needed when your application acts a
server and must be able to handle several connections at one time.

Requirements
SocketWrench is a self-registering ActiveX control compatible with any programming language
that supports COM (Component Object Model) and the ActiveX control specification. If you are
using Visual Basic 6.0, you must have Service Pack 6 (SP6) installed. It is recommended that you
install all updates for your development tools.

This control is supported on Windows 7, Windows Server 2008 R2 and later versions of the
desktop and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1)
installed as a minimum requirement. It is recommended that you install the current service pack
and all critical updates available for the operating system.

This product includes both 32-bit and 64-bit ActiveX controls. Native 64-bit CPU support requires
the latest 64-bit version of Windows 7, Windows Server 2008 R2 or later versions of the Windows
operating system.

Distribution
When you distribute an application that uses this control, you can either install the file in the same
folder as your application executable or as a shared component in the appropriate system folder.
If you install the control in the system folder, it is important that you distribute the correct version
for the target platform and it must be registered. If you install the control in the same folder as
your executable, it is recommended that you use registration-free activation or COM redirection to
ensure that the correct version of the control is loaded by the application.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Control Properties

Property Description

AdapterAddress Returns the IP address associated with the specified network adapter

AdapterCount Returns the number of available local and remote network adapters

AtMark A read-only property that returns True if the next receive will return urgent data

AutoResolve Determines if host names and addresses are automatically resolved

Backlog Gets and sets the number of client connections that may be queued by a listening socket

Blocking Gets and sets the blocking state of the control

Broadcast Determines if datagrams should be broadcast over the network

ByteOrder Gets and sets the byte order in which integer data will be written to and read from the socket

CertificateExpires Return the date and time that the server certificate expires

CertificateIssued Return the date and time that the server certificate was issued

CertificateIssuer Returns information about the organization that issued the server certificate

CertificateName Gets and sets the common name for the security certificate

CertificatePassword Gets and sets the password associated with the certificate

CertificateStatus Return the status of the server certificate

CertificateStore Gets and sets the name of the certificate store or file

CertificateSubject Returns information about the organization to which the server certificate was issued

CertificateUser Gets and sets the user that owns the client certificate

CipherStrength Return the length of the key used by the encryption algorithm

CodePage Gets and sets the code page used when reading and writing text

ExternalAddress Return the external IP address assigned to the local system

HashStrength Return the length of the message digest that was selected

HostAddress Gets and sets the IP address of the remote host

HostAlias Returns the aliases defined for the current hostname

HostFile Gets and sets the name of an alternate host file

HostName Gets and sets the name of the remote host

InLine Sets or returns if urgent data is received in-line with non-urgent data

Interval Gets and sets the number of milliseconds between calls to the control's timer event

IsBlocked Determine if the control is blocked performing an operation

IsClosed Determine if the connection has been closed by the remote host

IsConnected Determine if the control is connected to a remote host

IsInitialized Determine if the control has been initialized

IsListening Returns if the socket is listening for connections

IsReadable Determine if data can be read from the socket without blocking

IsWritable Determine if data can be written to the socket without blocking

KeepAlive Set or return if keep-alive packets are sent on a connected socket

LastError Gets and sets the last error that occurred on the control

LastErrorString Return a description of the last error that occurred

Linger Gets and sets the number of seconds to wait for the socket to close

LocalAddress Return the IP address of the local host

LocalName Return the name of the local host

LocalPort Gets and sets the port number for a local listening socket

NoDelay Enable or disable the Nagle algorithm

Options Gets and sets the options that are used in establishing a connection

PeerAddress Return the IP address of the remote peer

PeerName Return the name of the remote peer

PeerPort Return the port number of the remote connection or datagram

PhysicalAddress Return the MAC address for the local host's Ethernet or Token Ring adapter

Protocol Gets and sets the protocol that should be used to create the socket

RemotePort Gets and sets the port number for a remote connection

ReservedPort Set or return if a reserved local port number should be allocated

ReuseAddress Set or return if an address can be reused

Secure Set or return if a connection to the remote host is secure

SecureCipher Return the encryption algorithm used to establish a secure connection

SecureHash Return the message digest selected when establishing a secure connection

SecureKeyExchange Return the key exchange algorithm used to establish a secure connection

SecureProtocol Gets and sets the security protocol used to establish a secure connection

ThrowError Enable or disable error handling by the container of the control

Timeout Gets and sets the amount of time until a blocking operation fails

Trace Enable or disable socket function level tracing

TraceFile Specify the socket function trace output file

TraceFlags Gets and sets the socket function tracing flags

Urgent Send or receive urgent data

Version Return the current version of the object

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/control/property/options.html

 AdapterAddress Property

Returns the IP address associated with the specified network adapter.

Syntax
object.AdapterAddress(Index)

Remarks
The AdapterAddress property array returns the IP addresses that are associated with the local
network or remote dial-up network adapters configured on the system. The AdapterCount
property can be used to determine the number of adapters that are available.

Multihomed systems with more than one local network adapter, or a combination of local and
dial-up adapters will not be listed in a specific order. An application should not make the
assumption that the address returned by AdapterAddress(0) always refers to a local network
adapter.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will return the IP address allocated for that
connection.

When using Visual Studio .NET, you must use the accessor method get_AdapterAddress instead
of the property name, otherwise an error will be returned indicating that it not a member of the
control class.

Data Type
String

See Also
AdapterCount Property, LocalAddress Property, LocalName Property, PhysicalAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AdapterCount Property

Returns the number of available local and remote network adapters.

Syntax
object.AdapterCount

Remarks
The AdapterCount property returns the number of local and remote dial-up networking adapters
available on the local system. This value can be used in conjunction with the AdapterAddress
property array to enumerate the IP addresses assigned to the various network adapters.

Note that it is possible that the AdapterCount property will return 0, and AdapterAddress(0) will
return an empty string. This indicates that the system does not have a physical network adapter
with an assigned IP address, and there are no dial-up networking connections currently active. If a
dial-up networking connection is established at some later point, the AdapterCount property will
change to 1, and the AdapterAddress(0) property will returned IP address allocated for that
connection.

Data Type
Integer (Int32)

See Also
AdapterAddress Property, LocalAddress Property, LocalName Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AtMark Property

A read-only property that returns True if the next receive will return urgent data.

Syntax
object.AtMark

Remarks
This property can only be used if the Protocol is swProtocolTcp and the InLine property has been
set to True. Reading this property is the same as using the SIOCATMARK option with the
ioctlsocket function.

Data Type
Boolean

See Also
Urgent Property, OnRead Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 AutoResolve Property

Determines if host names and addresses are automatically resolved.

Syntax
object.AutoResolve [= { True | False }]

Remarks
Setting the AutoResolve property determines if the control automatically resolves host names
and addresses specified by the HostName and HostAddress properties. If set to True, setting the
HostName property will cause the control to automatically determine the corresponding IP
address and set the HostAddress property accordingly. Likewise, setting the HostAddress
property will cause the control to determine the host name and set the HostName property.
Setting the property to False prevents the control from resolving host names until a connection
attempt is made.

Note: When using the domain name service (DNS), setting the HostName or HostAddress
property may cause the thread to block, sometimes for several seconds, until the name or address
is resolved. To prevent this behavior, set AutoResolve to False.

Data Type
Boolean

See Also
HostAddress Property, HostFile Property, HostName Property, Resolve Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Backlog Property

Gets and sets the number of client connections that may be queued by a listening socket.

Syntax
object.Backlog [= backlog]

Remarks
The Backlog property specifies the maximum size of the queue used to manage pending
connections to the server. If the property is set to value which exceeds the maximum size for the
underlying service provider, it will be silently adjusted to the nearest legal value. There is no
standard way to determine what the maximum backlog value is.

This property must be set to the desired value before the Listen method is called, if the Listen
method is used with default parameters. The default backlog value is 5 on all Windows platforms.
The Windows Server platforms support a maximum backlog value of 200.

Note that this property does not specify the total number of connections that the server
application may accept. It only specifies the size of the backlog queue which is used to manage
pending client connections. Once the client connection has been accepted, it is removed from the
queue.

Data Type
Integer (Int32)

See Also
IsListening Property, OnAccept Event, Accept Method, Listen Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Blocking Property

Gets and sets the blocking state of the control.

Syntax
object.Blocking [= { True | False }]

Remarks
Setting the Blocking property determines if control actions complete synchronously or
asynchronously. If set to True, then each control action (such as sending or receiving data) will
return when the operation has completed or timed-out. If set to False, control actions will return
immediately. If the operation would result in the control blocking (such as attempting to receive
data when none has been written), an error is generated. Control events such as OnDisconnect,
OnRead and OnWrite are only fired if the socket is non-blocking.

Data Type
Boolean

See Also
IsBlocked Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Broadcast Property

Determines if datagrams should be broadcast over the network.

Syntax
object.Broadcast [= { True | False }]

Remarks
If the Broadcast property is set to a value of true, the datagram written to the socket will be
broadcast to all systems on the network. Use of this property is restricted to the swProtocolUdp
protocol.

Data Type
Boolean

See Also
InLine Property, KeepAlive Property, ReuseAddress Property, Route Property, Protocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html

 ByteOrder Property

Gets and sets the byte order in which integer data will be written to and read from the socket.

Syntax
object.ByteOrder [= 0 | 1]

Remarks
The ByteOrder property is used to specify how 16-bit (short) integer and 32-bit (long) integer
data is written to and read from the socket. The default value for this property is 0, which specifies
that integers should be written in the native byte order for the local machine. A value of 1
indicates that integers should be written in network byte order.

When applications write integer values on a socket (instead of string representations of those
values), they should typically be converted to network byte order before they are sent. Likewise,
when an integer value is read, it should then be converted from the network byte order back to
the byte order used by the local machine. The native byte order, also called the host byte order,
should only be used if it can be assured that both the sender and the receiver are running on an
identical or compatible machine architectures (for example, if both systems are Intel-based).

This property will affect how data is read by the Read method and by the Write method, if the
Variant data that is being read or written is recognized as integer data.

Data Type
Integer (Int32)

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateExpires Property

Return the date and time that the server certificate expires.

Syntax
object.CertificateExpires

Remarks
The CertificateExpires property returns the date and time that the server certificate expires. This
property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateIssued Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateIssued Property

Return the date and time that the server certificate was issued.

Syntax
object.CertificateIssued

Remarks
The CertificateIssued property returns the date and time that the server certificate was issued.
This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

See Also
CertificateExpires Property, CertificateIssuer Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateIssuer Property

Returns information about the organization that issued the server certificate.

Syntax
object.CertificateIssuer

Remarks
The CertificateIssuer property returns a string that contains information about the organization
that issued the server certificate. The string value is a comma separated list of tagged name and
value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a relative
distinguished name (RDN), and when concatenated together, forms the issuer's distinguished
name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification Authority

To obtain a specific value, such as the name of the issuer or the issuer's country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site the
certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As
String) As String
 Dim strFieldValue As String
 Dim cchValue As Integer, cchFieldName As Integer
 Dim nOffset As Integer

 GetCertNameValue = ""
 cchValue = Len(strValue)
 cchFieldName = Len(strFieldName)

 If cchValue = 0 Or cchFieldName = 0 Then
 Exit Function
 End If

 nOffset = InStr(strValue, strFieldName & "=")

 If nOffset > 0 Then

 '
 ' If the field name was found in the string, then
 ' remove everything to the left of the token from
 ' the string
 '

 strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

 '
 ' If the value is quoted, then strip off the leading
 ' quote and look for the ending quote in the string;
 ' otherwise look for the comma that marks the end of
 ' the field name/value pair
 '

 If Left(strFieldValue, 1) = Chr(34) Then
 strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
 nOffset = InStr(strFieldValue, Chr(34))
 Else
 nOffset = InStr(strFieldValue, ",")
 End If

 '
 ' If the offset is 0, then the name/value pair is
 ' the last token in the string; otherwise, remove
 ' everything to the right of that position
 '

 If nOffset > 0 Then
 strFieldValue = Left(strFieldValue, nOffset - 1)
 End If

 GetCertNameValue = strFieldValue
 End If

End Function

This function could then be used to return the name of the company who issued the server
certificate:

Dim strIssuer As String
Dim strCompanyName As String

strIssuer = HttpClient1.CertificateIssuer
If Len(strIssuer) = 0 Then
 MsgBox "A secure connection has not been established"
Else
 strCompanyName = GetCertNameValue(strIssuer, "O")
 MsgBox "This certificate was issued by " & strCompanyName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateStatus Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateName Property

Gets and sets the common name for the security certificate.

Syntax
object.CertificateName [= name]

Remarks
This property sets the common name or friendly name of the client certificate that should be used
to establish the connection with the server, or the name of the server certificate if the control is
being used to create a server application. This property is used in conjunction with the
CertificateStore property to identify the certificate that should be used to create a security
context for the session.

For client applications, it is only required that you set this property value if the server requires a
client certificate for authentication. If this property is not set, a client certificate will not be provided
to the server. The certificate must be designated as a client certificate and have a private key
associated with it, otherwise the connection attempt will fail.

For server applications, it is required that you specify a certificate name if security has been
enabled by setting the Secure property to True. The certificate must be designated as a server
certificate and have a private key associated with it, otherwise the control will be unable to accept
incoming client connections.

Certificates may be installed and viewed on the local system using the Certificate Manager that is
included with the Windows operating system. For more information, refer to the documentation
for the Microsoft Management Console.

Data Type
String

See Also
CertificateStore Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificatePassword Property

Gets and sets the password associated with the certificate.

Syntax
object.CertificatePassword [= password]

Remarks
This property sets the password that should be used to access a certificate in the specified
certificate store. It is only required when the CertificateStore property specifies a file that contains
a certificate and private key in PKCS #12 format.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateStatus Property

Return the status of the server certificate.

Syntax
object.CertificateStatus

Remarks
The CertificateStatus property returns an integer value which identifies the status of the server
certificate. This property may return one of the following values:

Constant Value Description

swCertificateNone 0 No certificate information is available. A secure connection was
not established with the server.

swCertificateValid 1 The certificate is valid.

swCertificateNoMatch 2 The certificate is valid, however the domain name specified in
the certificate does not match the domain name of the site that
the client has connected to. This is typically the case if the
HostAddress property is used rather than the HostName
property. It is recommended that the client examine the
CertificateSubject property to determine the domain name of
the site that the certificate was issued for.

swCertificateExpired 3 The certificate has expired and is no longer valid. The client can
examine the CertificateExpires property to determine when
the certificate expired.

swCertificateRevoked 4 The certificate has been revoked and is no longer valid. It is
recommended that the client application immediately terminate
the connection if this status is returned.

swCertificateUntrusted 5 The certificate has not been issued by a trusted authority, or the
certificate is not trusted on the local host. It is recommended
that the client application immediately terminate the connection
if this status is returned.

swCertificateInvalid 6 The certificate is invalid. This typically indicates that the internal
structure of the certificate is damaged. It is recommended that
the client application immediately terminate the connection if
this status is returned.

This property value should be checked after the connection to the server has completed, but prior
to beginning a transaction. If a secure connection has not been established, this property will
return a value of zero.

Data Type
Integer (Int32)

Example
The following example establishes a secure connection to a server:

SocketWrench1.HostName = strHostName
SocketWrench1.Secure = True

nError = SocketWrench1.Connect()
If nError > 0 Then
 MsgBox "Unable to connect to server " & strHostName, vbExclamation
 Exit Sub
End If

If SocketWrench1.CertificateStatus <> swCertificateValid Then
 nResult = MsgBox("The server certificate could not be validated" & vbCrLf &
_
 "Are you sure you wish to continue?", vbYesNo)

 If nResult = vbNo Then
 SocketWrench1.Disconnect
 Exit Sub
 End If
End If

SocketWrench1.Disconnect

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateSubject
Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateStore Property

Gets and sets the name of the certificate store or file.

Syntax
object.CertificateStore [= store]

Remarks
This property sets the name of the certificate store that contains the certificate that should be used
when establishing a secure connection with the server or accepting secure client connections. The
certificate may either be stored in the registry or in a file. If the certificate is stored in the registry,
then this property should be set to one of the following predefined values:

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. If a certificate store is not specified, this is the default value
that is used.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

In most cases the certificate will be installed in the user's personal certificate store, and therefore it
is not necessary to set this property value because that is the default location that will be used to
search for the certificate. This property is only used if the CertificateName property is also set to
a valid certificate name.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU" for the
current user, or "HKLM" for the local machine. For example, a certificate store name of "HKLM:MY"
would specify the personal certificate store for the local machine, rather than the current user. If
neither prefix is specified, it will default to the certificate store for the current user.

This property may also be used to specify a file that contains the certificate. In this case, the
property should specify the full path to the file and must contain both the certificate and private
key in PKCS #12 format. If the file is protected by a password, the CertificatePassword property
must also be set to specify the password.

Data Type
String

See Also
CertificateName Property, CertificatePassword Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateSubject Property

Returns information about the organization that the server certificate was issued to.

Syntax
object.CertificateSubject

Remarks
The CertificateSubject property returns a string that contains information about the organization
that the server certificate was issued for. The string value is a comma separated list of tagged
name and value pairs. In the nomenclature of the X.500 standard, each of these pairs are called a
relative distinguished name (RDN), and when concatenated together, forms the subject's
distinguished name (DN). For example:

C=US, O="RSA Data Security, Inc.", OU=Secure Server Certification
Authority

To obtain a specific value, such as the name of the subject's company or country, the application
must parse the string returned by this property. Some of the common tokens used in the
distinguished name are:

Name Description

C The ISO standard two character country code

S The name of the state or province

L The name of the city or locality

O The name of the company or organization

OU The name of the department or organizational unit

CN The common name; with X.509 certificates, this is the domain name of the site the
certificate was issued for

This property will return an empty string if a secure connection has not been established with the
server.

Data Type
String

Example
The following example demonstrates how to extract the value of a relative distinguished name
token:

Function GetCertNameValue(ByVal strValue As String, ByVal strFieldName As
String) As String
 Dim strFieldValue As String
 Dim cchValue As Integer, cchFieldName As Integer
 Dim nOffset As Integer

 GetCertNameValue = ""
 cchValue = Len(strValue)
 cchFieldName = Len(strFieldName)

 If cchValue = 0 Or cchFieldName = 0 Then
 Exit Function

 End If

 nOffset = InStr(strValue, strFieldName & "=")

 If nOffset > 0 Then

 '
 ' If the field name was found in the string, then
 ' remove everything to the left of the token from
 ' the string
 '

 strFieldValue = Right(strValue, cchValue - (nOffset + cchFieldName))

 '
 ' If the value is quoted, then strip off the leading
 ' quote and look for the ending quote in the string;
 ' otherwise look for the comma that marks the end of
 ' the field name/value pair
 '

 If Left(strFieldValue, 1) = Chr(34) Then
 strFieldValue = Right(strFieldValue, Len(strFieldValue) - 1)
 nOffset = InStr(strFieldValue, Chr(34))
 Else
 nOffset = InStr(strFieldValue, ",")
 End If

 '
 ' If the offset is 0, then the name/value pair is
 ' the last token in the string; otherwise, remove
 ' everything to the right of that position
 '

 If nOffset > 0 Then
 strFieldValue = Left(strFieldValue, nOffset - 1)
 End If

 GetCertNameValue = strFieldValue
 End If

End Function

This function could then be used to return the domain name that the server certificate was issued
for:

Dim strSubject As String
Dim strDomainName As String

strSubject = HttpClient1.CertificateSubject
If Len(strSubject) = 0 Then
 MsgBox "A secure connection has not been established"
Else
 strDomainName = GetCertNameValue(strSubject, "CN")
 MsgBox "This certificate was issued for " & strDomainName
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus

Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CertificateUser Property

Gets and sets the user that owns the certificate.

Syntax
object.CertificateUser [= username]

Remarks
This property sets the name of the user that owns the certificate that will be used to establish a
secure connection with the server or accept secure client connections. If this property is not set,
the certificate store for the current user will be used when searching for the certificate. If this
property is used to specify another user, the process must have the appropriate permission to
access the registry location that contains the client certificate. On Windows Vista and later versions
of the operating system, this requires that the process run with elevated privileges.

Data Type
String

See Also
CertificateName Property, CertificateStore Property, Secure Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CipherStrength Property

Return the length of the key used by the encryption algorithm.

Syntax
object.CipherStrength

Remarks
The CipherStrength property returns the number of bits in the key used to encrypt the secure
data stream. Common values returned by this property are 128 and 256. A key length of 40-bits
or 56-bits is considered to be insecure, and suject to brute force attacks. 128-bit and 256-bit keys
are considered secure. If this property returns a value of 0, this means that a secure connection
has not been established with the server.

Data Type
Integer (Int32)

See Also
HashStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CodePage Property

Gets and sets the code page used when reading and writing text.

Syntax
object.CodePage [= value]

Remarks
The CodePage property is an integer value which specifies how strings are encoded when data is
sent or received. Any valid code page identifier may be specified. Some common values are:

Value Description

0 Text sent and received using a string should be converted using the ANSI code
page for the current locale. This is the default encoding type.

1 Text sent and received using a string should be converted using the system
default OEM code page. The OEM code page typically contains characters that
are used by console applications and are based on character sets commonly
used by MS-DOS. It is not recommended that you use this code page unless
you know that the remote host is sending text which includes OEM characters.

1252 Text sent and received using a string should be converted using the Windows
ANSI code page for western European languages. This code page is commonly
used by legacy Windows applications for English and some other western
languages. It should be noted that while this code page is similar to ISO 8859-
1 character encoding, it is not identical.

28591 Text sent and received using a string should be converted using the ISO 8859-
1 code page for western European languages. This code page is commonly
referred to as Latin-1 and is similar to the Windows 1252 code page.

65000 Data that is sent and received using a string should be converted using UTF-7
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-7 encoded Unicode. All data received from the server will be
converted from UTF-7. It is not recommended that you use this code page
unless you know that the remote host is sending UTF-7 encoded text.

65001 Data that is sent and received using a string should be converted using UTF-8
encoding. If this code page is specified, data written to the socket will be
encoded as UTF-8 encoded Unicode. All data received from the server will be
converted from UTF-8 to UTF-16 Unicode. Because UTF-8 is backwards
compatible with the ASCII character set, it is safe to use this encoding option
when sending and receiving ASCII text.

A complete list of available code page identifiers can be found in Microsoft's documentation for
the Win32 API.

All data which is exchanged over a socket is sent and received as 8-bit bytes, typically referred to
as "octets" in networking terminology. However, the internal string type used by ActiveX controls
are Unicode where each character is represented by 16 bits. To send and receive data using
strings, these Unicode strings are converted to a stream of bytes.

By default, strings are converted to an array of bytes using the code page for the current locale,
mapping the 16-bit Unicode characters to bytes. Similarly, when reading data from the socket into

https://docs.microsoft.com/en-us/windows/win32/intl/code-page-identifiers

a string buffer, the stream of bytes received from the remote host are converted to Unicode
before they are returned to your application.

If you are exchanging text with another system and it appears to corrupted or characters are
being replaced with question marks or other symbols, it is likely the system is sending text which is
using a different character encoding. Most services use UTF-8 encoding to represent non-ASCII
characters and selecting the UTF-8 code page will typically resolve the issue.

Strings are only guaranteed to be safe when sending and receiving text. Using a
string data type is not recommended when reading or writing binary data to a
socket. If possible, you should always use a byte array as the buffer parameter for the
Read and Write methods whenever you are exchanging binary data.

For backwards compatibility, the control defaults to using the code page for the current locale.
This property value directly corresponds to Windows code page identifiers, and will accept any
valid code page in addition to the values listed above. Setting this property to an invalid code
page will result in an error.

Data Type
Integer (Int32)

See Also
Read Method, ReadLine Method, ReadStream Method, Write Method, WriteLine Method,
WriteStream Method

 ExternalAddress Property

Return the external IP address for the local system.

Syntax
object.ExternalAddress

Remarks
The ExternalAddress property returns the IP address assigned to the router that connects the
local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the LocalAddress property will only return the IP address for the local system on
the LAN side of the network unless a connection has already been established to a remote host.
The ExternalAddress property can be used to determine the IP address assigned to the router on
the Internet side of the connection and can be particularly useful for servers running on a system
behind a NAT router. Note that you should not assign the LocalAddress property to the value
returned by the ExternalAddress property. If the server is running behind a NAT router, the
router must be configured to forward incoming connections to the appropriate address on the
LAN.

Using this property requires that you have an active connection to the Internet; checking the value
of this property on a system that uses dial-up networking may cause the operating system to
automatically connect to the Internet service provider. The control may be unable to determine
the external IP address for the local host for a number of reasons, particularly if the system is
behind a firewall or uses a proxy server that restricts access to external sites on the Internet. If the
external address for the local host cannot be determined, the property will return an empty string.

If the control is able to obtain a valid external address for the local host, that address will be
cached for sixty minutes. Because dial-up connections typically have different IP addresses
assigned to them each time the system is connected to the Internet, it is recommended that this
property only be used in conjunction with persistent broadband connections.

It is important to note that checking this property value may cause the thread to block until the
external IP address can be resolved and should never be used in conjunction with non-blocking
(asynchronous) socket connections. If you need to check this property value in an application
which uses asynchronous sockets, it is recommended that you create a new thread and access the
property from within that thread.

Data Type
String

See Also
HostAddress Property, LocalAddress Property, PeerAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Handle Property

Returns the descriptor for the current socket.

Syntax
object.Handle

Remarks
The Handle read-only property returns the descriptor of the socket being used by the control. If
the control is not connected to a remote host, a value of -1 is returned. This property can be used
in conjunction with direct calls to the Windows Sockets API.

When using Visual Studio .NET, you must use the property name CtlHandle instead.

Data Type
Integer (Int32)

See Also
Connect Method, Listen Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HashStrength Property

Return the length of the message digest that was selected.

Syntax
object.HashStrength

Remarks
The HashStrength property returns the number of bits used in the message digest (hash) that
was selected. Common values returned by this property are 128 and 160. If this property returns a
value of 0, this means that a secure connection has not been established with the server.

Data Type
Integer (Int32)

See Also
CipherStrength Property, Secure Property, SecureCipher Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HostAddress Property

Gets and sets the IP address of the remote host.

Syntax
object.HostAddress [= ipaddress]

Remarks
The HostAddress property can be used to set the IP address for a remote system that you wish to
communicate with. If the address is valid and matches an entry in the host table, the HostName
property will be changed to match the address.

Data Type
String

See Also
AutoResolve Property, HostFile Property, HostName Property, LocalAddress Property, Resolve
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HostAlias Property

Returns the aliases defined for the current hostname.

Syntax
object.HostAlias(Index)

Remarks
The HostAlias property array returns the aliases assigned to the host specified by the
HostAddress or HostName properties. If the host address or name can be resolved, the first
element in the HostAlias array (an index value of 0) always refers to the host's fully qualified
domain name. The end of the alias list is indicated when the property returns an empty string.

When using Visual Studio .NET, you must use the accessor method get_HostAlias instead of the
property name, otherwise an error will be returned indicating that it not a member of the control
class.

Data Type
String

Example
The following example places the all of the aliases for a specific host into a listbox:

Dim nIndex As Integer

List1.Clear
Socket1.HostName = Trim(Text1.Text)

Do While Len(Socket1.HostAlias(nIndex)) > 0
 List1.AddItem Socket1.HostAlias(nIndex)
 nIndex = nIndex + 1
Loop

See Also
HostAddress Property, HostName Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HostFile Property

Gets and sets the name of an alternate host file.

Syntax
object.HostFile [= filename]

Remarks
The HostFile property is used to specify the name of an alternate file for resolving hostnames and
IP addresses. The host file is used as a database that maps an IP address to one or more
hostnames, and is used when setting the HostName or HostAddress properties and establishing
a connection with a remote host. The file is a plain text file, with each line in the file specifying a
record, and each field separated by spaces or tabs. The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Setting this property loads the file into memory allocated for the current thread. If the contents of
the file have changed after the function has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, set the property again with
the same file name. To remove the alternate host file from memory, specify an empty string as the
file name.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

Because the alternate host file is cached for the current thread, setting this property will affect all
instances of the control in the same thread. For example, if a project has three instances of the
control loaded on a form, setting the HostFile property will affect all three controls, not just the
control that set the property. To determine if an alternate host file has been cached, check the
property value. If the property returns an empty string, no alternate host file has been cached.

Data Type
String

See Also
AutoResolve Property, HostAddress Property, HostName Property, LocalName Property, Resolve
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 HostName Property

Gets and sets the name of the remote host.

Syntax
object.HostName [= hostname]

Remarks
The HostName property should be set to the name of the remote system that you wish to
communicate with. If the name is found in the host table, the HostAddress property is updated to
reflect the IP address of the host.

Note that it is legal to assign an IP address to this property, but it is not legal to assign a host
name to the HostAddress property.

Data Type
String

See Also
AutoResolve Property, HostAddress Property, HostFile Property, LocalName Property, Resolve
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InLine Property

Sets or returns if urgent data is received in-line with non-urgent data.

Syntax
object.InLine [= { True | False }]

Remarks
The InLine property controls how urgent (out-of-band) data is handled when reading data from
the socket. If set to a value of true, urgent data is placed in the data stream along with non-urgent
data. To determine if the data that is being read is urgent, the AtMark property can be read.

Urgent data is sent and received directly from the socket, and is not buffered even if buffering is
enabled. It is recommended that you do not enable buffering if urgent data is being received in-
line.

Data Type
Boolean

See Also
NoDelay Property, Urgent Property, OnRead Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Interval Property

Gets and sets the number of milliseconds between calls to the control's OnTimer event.

Syntax
object.Interval [= milliseconds]

Remarks
The Interval property specifies the number of milliseconds between calls to the OnTimer event. A
value of zero indicates that the timer is disabled and no events will be generated. The maximum
interval value is 65536 milliseconds, which is slightly more than one minute.

Data Type
Integer (Int32)

See Also
OnTimer Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsBlocked Property

Return if the control is blocked performing an operation.

Syntax
object.IsBlocked

Remarks
The IsBlocked property returns True if the specified control is blocked performing an operation.
Because the Windows Sockets API only permits one blocking operation per thread of execution,
this property should be checked before starting any blocking operation.

If the IsBlocked property returns False, this means there are no blocking operations on the
current thread at that time. If the property returns True, this tells you that you can't proceed with a
socket operation. However, if the property returns False this does not guarantee that the next
socket operation will not fail with a swErrorOperationWouldBlock or
swErrorOperationInProgress error. The application should treat these errors as recoverable, and
should be prepared to retry operations that result in them.

Note that this property will return True if there is any blocking operation being performed by the
application, regardless of whether the control is responsible for the blocking operation or not.

Data Type
Boolean

See Also
Blocking Property, LastError Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsClosed Property

Determine if the connection has been closed by the remote host.

Syntax
object.IsClosed

Remarks
The IsClosed property returns True if the socket connection has been closed by the remote host.
Note that it is possible to continue to receive data due to buffering.

Data Type
Boolean

See Also
IsReadable Property, IsWritable Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsConnected Property

Determine if the control is connected to a remote host.

Syntax
object.IsConnected

Remarks
The IsConnected read-only property is set to a value of True if the control is connected with a
remote host, otherwise the property has a value of false.

Data Type
Boolean

See Also
Connect Method, Disconnect Method, OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsInitialized Property

Determine if the control has been initialized.

Syntax
object.IsInitialized

Remarks
The IsInitialized property is used to determine if the current instance of the control has been
initialized properly. Normally this is done automatically when the control is loaded, however there
are circumstances where the control may not be able to initialize itself. If this property returns
False, the application must call the Initialize method to initialize the control before performing
any other operation.

The most common reason that the control may not initialize correctly is that no valid development
or runtime license key can be found or the license key that was provided is invalid. It may also
indicate a problem with the system configuration or user access rights, such as not being able to
load the required networking libraries or not being able to access the system registry.

Data Type
Boolean

See Also
Initialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsListening Property

Returns if the socket is listening for connections.

Syntax
object.IsListening

Remarks
The IsListening property returns True if the socket is listening for connections after the Listen
method is called.

Data Type
Boolean

See Also
Backlog Property, Listen Method, OnAccept Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsReadable Property

Determine if data can be read from the socket without blocking.

Syntax
object.IsReadable

Remarks
The IsReadable property returns True if data can be read from the socket without blocking. For
non-blocking sockets, this property can be checked before the application attempts to read the
socket, preventing an error.

Data Type
Boolean

See Also
IsClosed Property, IsWritable Property, Peek Method, Read Method, OnRead Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 IsWritable Property

Determine if data can be written to the socket without blocking.

Syntax
object.IsWritable

Remarks
The IsWritable property returns True if data can be written to the socket without blocking. For
non-blocking sockets, this property can be checked before the application attempts to write to the
socket, preventing an error.

If the IsWritable property returns False, this means that the application cannot write to the socket
at that time. However, if the property returns True, this does not guarantee that you will be able to
write to the socket without an error. The next socket operation may result in a
swErrorOperationWouldBlock or swErrorOperationInProgress error. The application should
treat these errors as recoverable, and should be prepared to retry operations that result in them.

Data Type
Boolean

See Also
IsClosed Property, IsReadable Property, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 KeepAlive Property

Set or return if keep-alive packets are sent on a connected socket.

Syntax
object.KeepAlive [= { True | False }]

Remarks
Setting the KeepAlive property to a value of true indicates that packets are to be sent to the
remote system when no data is being exchanged to keep the connection active. This property can
only be set for stream sockets that were created with the Protocol property set to a value of
swProtocolTcp.

If this property is set to true, keep-alive packets will start being generated five seconds after the
socket has become idle with no data being sent or received. Enabling this option can be used by
applications to detect when a physical network connection has been lost. However, it is
recommended that most applications query the remote host directly to determine if the
connection is still active. This is typically accomplished by sending specific commands to the server
to query its status, or checking the elapsed time since the last response from the server.

Data Type
Boolean

See Also
Broadcast Property, InLine Property, NoDelay Property, Protocol Property, ReuseAddress Property,
Route Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html

 LastError Property

Gets and sets the last error that occurred on the control.

Syntax
object.LastError [= errorcode]

Remarks
The LastError property can be read to determine the last error that occurred for this control. If a
value is assigned to this property, it must either be zero (to clear the error) or a valid error code
for the control.

Data Type
Integer (Int32)

See Also
LastErrorString Property, ThrowError Property, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 LastErrorString Property

Return a description of the last error that occurred.

Syntax
object.LastErrorString

Remarks
The LastErrorString property returns a string that contains a description of the last error that
occurred.

Data Type
String

See Also
LastError Property, ThrowError Property, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Linger Property

Gets and sets the number of seconds to wait for the socket to close.

Syntax
object.Linger [= seconds]

Remarks
Setting the Linger property to a value greater than zero indicates that the Disconnect method
should wait up to the specified number of seconds for any data on the socket to be written before
it is closed. A value of zero indicates that the socket should be closed immediately (but gracefully,
without data loss).

Data Type
Integer (Int32)

See Also
OnDisconnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 LocalAddress Property

Return the IP address of the local host.

Syntax
object.LocalAddress

Remarks
The LocalAddress read-only property returns the local host's IP address in dot notation, as four
numbers separated by periods.

Data Type
String

See Also
AutoResolve Property, ExternalAddress Property, HostAddress Property, LocalName Property, Bind
Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 LocalName Property

Return the name of the local host.

Syntax
object.LocalName

Remarks
The LocalName read-only property returns the fully qualified domain name of the local system.
This consists of the local computer name and its domain name. The actual value returned depends
on the system configuration. If no domain has been specified for the system, then only the
machine name will be returned.

Data Type
String

See Also
AutoResolve Property, HostName Property, LocalAddress Property, Resolve Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 LocalPort Property

Gets and sets the port number for a local listening socket.

Syntax
object.LocalPort [= port]

Remarks
The LocalPort property is used to set the port number that a server will listen on for connections.

Data Type
Integer (Int32)

See Also
PeerPort Property, RemotePort Property, ReservedPort Property, Bind Method, Listen Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NoDelay Property

Enable or disable the Nagle algorithm.

Syntax
object.NoDelay [= { True | False }]

Remarks
The NoDelay property is used to enable or disable the Nagle algorithm, which buffers
unacknowledged data and ensures that a full-size packet can be sent to the remote host. By
default this property value is set to False, which enables the Nagle algorithm (in other words, the
data being written may not actually be sent until it is optimal to do so). Setting this property to
True disables the Nagle algorithm, minimizing the time delays between the data packets being
sent.

This property should be set to True only if it is absolutely required and the implications of doing so
are understood. Disabling the Nagle algorithm can have a significant negative impact on the
performance of the application.

Data Type
Boolean

See Also
InLine Property, KeepAlive Property, ReuseAddress Property, Route Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html

 PeerAddress Property

Return the IP address of the remote peer.

Syntax
object.PeerAddress

Remarks
The PeerAddress property returns the IP address of the remote system that the local host is
connected to. If a datagram socket is being used, this property will return the address of the
system which sent the last datagram that was read. If no connection has been established, this
property will return 255.255.255.255.

If this property is read inside an OnAccept event handler, it will return the IP address of the client
that is requesting the connection. The application may use this information to determine if it
wishes to accept or reject the client connection. If the IP address information is not available for
the client at that time, this property will return the address 0.0.0.0.

Data Type
String

See Also
HostAddress Property, LocalAddress Property, PeerName Property, PeerPort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PeerName Property

Return the name of the remote peer.

Syntax
object.PeerName

Remarks
The PeerName property returns the name of the remote system that the local host is connected
to. If a datagram socket is being used, this property will return the name of the system which sent
the last datagram that was read.

Accessing this property causes the control to perform a blocking reverse DNS lookup, attempting
to match the client Internet address with a hostname. Not all addresses have a reverse DNS
record, in which case this property will return an empty string. It is recommended that most
applications use the value of the PeerAddress property rather than use the PeerName property
to distinguish between connections from a remote host.

Data Type
String

See Also
HostName Property, LocalName Property, PeerAddress Property, PeerPort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PeerPort Property

Return the port number of the remote connection or datagram.

Syntax
object.PeerPort

Remarks
The PeerPort property returns the port number that the remote host has used when establishing
a connection with the local system. If a datagram socket is being used, this property will return the
port number used by the remote host which sent the last datagram that was received.

Data Type
String

See Also
LocalPort Property, PeerAddress Property, PeerName Property, RemotePort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 PhysicalAddress Property

Return the MAC address for the local host's Ethernet or Token Ring adapter.

Syntax
object.PhysicalAddress

Remarks
The PhysicalAddress property returns the Media Access Control (MAC) address for an Ethernet
or Token Ring network adapter installed and configured on the local system. Since it is guaranteed
that every adapter is assigned a unique address throughout the world, this value can be safely
used for identification purposes. It is possible that this property will return an empty string, which
indicates that it could not find a network adapter.

If more than one physical network adapter is installed on the system, this property will return the
MAC address of the first adapter that it finds.

Data Type
String

See Also
AdapterAddress Property, AdapterCount Property, LocalAddress Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Protocol Property

Gets and sets the protocol that should be used to create the socket.

Syntax
object.Protocol [= protocol]

Remarks
The Protocol property specifies the type of socket that is to be created. This property may only be
set before a socket has been created, or after it has been closed. Supported socket protocols are:

Value Constant Description

6 swProtocolTcp Specifies the User Datagram Protocol. This is a stateless, peer-to-peer
message oriented protocol, with the data sent in discrete packets. UDP
is a simpler network protocol that does not have the inherent reliability
of TCP, but it has less overhead and is ideal for real-time applications
where a dropped packet is preferable to the delay of waiting for a
packet to be retransmitted. It also supports the broadcasting of
datagrams over local networks, and is commonly used by services that
must exchange a relatively small amount of data with a large number
of clients.

17 swProtocolUdp Specifies the User Datagram Protocol. This is a stateless, peer-to-peer
message oriented protocol, with the data sent in discrete packets. UDP
is a simpler network protocol that does not have the inherent reliability
of TCP, but it has less overhead and is ideal for real-time applications
where a dropped packet is preferable to the delay of waiting for a
packet to be retransmitted. It also supports the broadcasting of
datagrams over local networks, and is commonly used by services that
must exchange a relatively small amount of data with a large number
of clients.

255 swProtocolRaw Raw sockets. This socket type is for special purpose applications which
need access to the IP datagram. It is not supported on all platforms
and should only be used if required.

The default value for this property is swProtocolTcp.

Data Type
Integer (Int32)

See Also
Bind Method, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 RemotePort Property

Gets and sets the port number for a remote connection.

Syntax
object.RemotePort [= portno%]

Remarks
The RemotePort property is used to set the port number that the control will use to establish a
connection with the remote host.

Data Type
Integer (Int32)

See Also
HostAddress Property, HostName Property, LocalPort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReservedPort Property

Set or return if a reserved local port number should be allocated.

Syntax
object.ReservedPort [= { True | False }]

Remarks
The ReservedPort property determines if a reserved local port number is used by the control
when the socket is created (reserved port numbers are in the range of 513 through 1023,
inclusive). Some application protocols require that the client bind to a local port number in this
range. By setting the LocalPort property to 0 and the ReservedPort property to True, a reserved
port number will be used when the socket is created. The default value for this property is False,
which specifies that a standard port number with a value of 1024 or higher will be bound to the
socket unless the LocalPort property is explicitly set to a non-zero value. Reserved ports should
only be used by those applications that expressly need them to implement a specific protocol.

It is possible that the error swErrorAddressInUse will be returned when attempting to connect
using a reserved port number. The value of the LocalPort property will contain the reserved port
number that could not be used.

Data Type
Boolean

See Also
LocalPort Property, RemotePort Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReuseAddress Property

Set or return if a local socket address can be reused by the application.

Syntax
object.ReuseAddress [= { True | False }]

Remarks
Setting this property to a value of true allows the address that the socket is listening on to be
reused.

When a listening socket is closed, the socket will normally go into a TIME-WAIT state where the
local address and port number cannot be immediately reused. A consequence of this is that
calling the Disconnect method immediately followed by the Listen method using the same
address and port number values may result in an error indicating that the specified address is
already in use. By setting this property to True, that error is avoided and the listening socket can
be created immediately without waiting for the TIME-WAIT period to elapse.

Data Type
Boolean

See Also
Broadcast Property, InLine Property, NoDelay Property, KeepAlive Property, Route Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html

 Secure Property

Set or return if a connection to the server is secure.

Syntax
object.Secure [={ True | False }]

Remarks
The Secure property determines if a secure connection is established to the server. The default
value for this property is False, which specifies that a standard connection to the server is used. To
establish a secure connection, the application should set this property value to True prior to calling
the Connect method. Once the connection has been established, the client may request files or
submit queries to the server as with standard connections.

It is possible for an application to establish a non-secure connection, and then switch to a secure
connection at some later point during the session. Initially set the Secure property to False, then
connect to the server normally. Once the connection has been established, setting the Secure
property to True will cause the control to negotiate a secure connection with the remote host. If
the socket was created using the Accept method, the control will block and wait for the client to
begin the negotiation. If the socket was created using the Connect method, it will immediately
begin the negotiation with the server. Note that if a non-blocking (asynchronous) socket is being
used, the application must wait to set the Secure property to True after the OnConnect event has
fired.

Setting the Secure property to False during a connection will cause the control to send a
shutdown message to the remote host. This may cause which may cause it to terminate the
connection, however it will not close the socket. It is recommended that applications do not set
the Secure property to False after a secure connection has been established, and instead use the
Disconnect method to close the connection.

It is recommended that the application use exception handling to catch any errors that may occur
when changing the value of this property. If the control is unable to initialize the Windows security
libraries, an exception will be thrown when this property value is modified.

Data Type
Boolean

Example
The following example establishes a secure connection to a web server:

SocketWrench1.HostName = strHostName
SocketWrench1.RemotePort = 443
SocketWrench1.Secure = True

nError = SocketWrench1.Connect()
If nError > 0 Then
 MsgBox "Unable to connect to server " & strHostName, vbExclamation
 Exit Sub
End If

If SocketWrench1.CertificateStatus <> swCertificateValid Then
 nResult = MsgBox("The server certificate could not be validated" & vbCrLf &
_
 "Are you sure you wish to continue?", vbYesNo)

 If nResult = vbNo Then
 SocketWrench1.Disconnect
 Exit Sub
 End If
End If

See Also
CertificateExpires Property, CertificateIssued Property, CertificateIssuer Property, CertificateStatus
Property, CertificateSubject Property, CipherStrength Property, HashStrength Property,
SecureCipher Property, SecureHash Property, SecureKeyExchange Property, SecureProtocol
Property, Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SecureCipher Property

Return the encryption algorithm used to establish the secure connection with the server.

Syntax
object.SecureCipher

Remarks
The SecureCipher property returns an integer value which identifies the algorithm used to
encrypt the data stream. This property may return one of the following values:

Value Constant Description

0 swCipherNone No cipher has been selected. This is not a secure
connection with the server.

1 swCipherRC2 The RC2 block cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-
bits in length, in 8-bit increments.

2 swCipherRC4 The RC4 stream cipher was selected. This is a variable key
length cipher which supports keys between 40- and 128-
bits in length, in 8-bit increments.

4 swCipherRC5 The RC5 block cipher was selected. This is a variable key
length cipher which supports keys up to 2040 bits, in 8-bit
increments.

8 swCipherDES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher using 56-bit keys.

16 swCipherDES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys, effectively
using a 168-bit key length.

32 swCipherDESX A variant of the DES block cipher which XORs an extra 64-
bits of the key before and after the plaintext has been
encrypted, increasing the key size to 184 bits.

64 swCipherAES The Advanced Encryption Standard cipher (also known as
the Rijndael cipher) is a fixed block size cipher which use a
key size of 128, 192 or 256 bits. This cipher is supported on
Windows XP SP3 and later versions of the operating system.

128 swCipherSkipjack The Skipjack block cipher was selected. This is a fixed key
length cipher, using 80-bit keys.

256 swCipherBlowfish The Blowfish block cipher was selected. This is a variable key
length cipher up to 448 bits, using a 64-bit block size.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also

CipherStrength Property, HashStrength Property, Secure Property, SecureHash Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SecureHash Property

Return the message digest selected when establishing the secure connection with the server.

Syntax
object.SecureHash

Remarks
The SecureHash property returns an integer value which identifies the message digest algorithm
that was selected when a secure connection is established. This property may return one of the
following values:

Constant Value Description

1 swHashMD5 The MD5 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be cryptographically
secure.

2 swHashSHA1 The SHA-1 algorithm was selected. This algorithm has been
deprecated and is no longer considered to be cryptographically
secure.

4 swHashSHA256 The SHA-256 algorithm has been selected.

8 swHashSHA384 The SHA-384 algorithm has been selected.

16 swHashSHA512 The SHA-512 algorithm has been selected.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureKeyExchange Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SecureKeyExchange Property

Return the key exchange algorithm used to establish the secure connection with the server.

Syntax
object.SecureKeyExchange

Remarks
The SecureKeyExchange property returns an integer value which identifies the key-exchange
algorithm used when establishing a secure connection. This property may return one of the
following values:

Value Constant Description

0 swKeyExchangeNone No key exchange algorithm has been selected. This is
not a secure connection with the server.

1 swKeyExchangeRSA The RSA public key exchange algorithm has been
selected.

2 swKeyExchangeKEA The KEA public key exchange algorithm has been
selected. This is an improved version of the Diffie-
Hellman public key algorithm.

4 swKeyExchangeDH The Diffie-Hellman public key exchange algorithm has
been selected.

8 swKeyExchangeECDH The Elliptic Curve Diffie-Hellman key exchange
algorithm was selected. This is a variant of the Diffie-
Hellman algorithm which uses elliptic curve
cryptography. This key exchange algorithm is only
supported on Windows XP SP3 and later versions of the
operating system.

If a secure connection has not been established, this property will return a value of zero.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureProtocol Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SecureProtocol Property

Gets and sets the security protocol used to establish the secure connection with the server.

Syntax
object.SecureProtocol [= protocol]

Remarks
The SecureProtocol property can be used to specify the security protocol to be used when
establishing a secure connection with a server. By default, the control will attempt to use TLS 1.2 to
establish the connection. If TLS 1.2 is not supported, TLS 1.0 will be used. The appropriate protocol
is automatically selected based on the capabilities of both the client and server. It is recommended
that you only change this property value if you fully understand the implications of doing so.
Assigning a value to this property will override the default and force the control to attempt to use
only the protocol specified. One or more of the following values may be used:

Value Constant Description

0 swProtocolNone No security protocol has been selected. A secure connection
has not been established.

1 swProtocolSSL2 The SSL 2.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

2 swProtocolSSL3 The SSL 3.0 protocol should be used. This protocol has been
deprecated and is no longer widely used. It is not
recommended that this protocol be used when establishing
secure connections.

4 swProtocolTLS10 The TLS 1.0 protocol should be used. This version of the
protocol is commonly used by older servers and is the only
version of TLS supported on Windows XP and Windows
Server 2003.

8 swProtocolTLS11 The TLS 1.1 protocol should be used. This version of TLS is
supported on Windows 7 and Windows Server 2008 R2 and
later versions of the operating system.

16 swProtocolTLS12 The TLS 1.2 protocol should be used. This is the default
version of the protocol and is supported on Windows 7 and
Windows Server 2008 R2 and later versions of Windows. It is
recommended that you use this version of TLS.

32 swProtocolTLS13 The TLS 1.3 protocol should be used when establishing a
secure connection. This is the newest version of the protocol
and is only supported on Windows 10, Windows Server
2019 and later versions of Windows. If this protocol version
is not supported, TLS 1.2 will be used instead.

Multiple security protocols may be specified by combining them using a bitwise Or operator. After
a connection has been established, reading this property will identify the protocol that was
selected to establish the connection. Attempting to set this property after a connection has been

established will result in an exception being thrown. This property should only be set after setting
the Secure property to True and before calling the Connect method.

Data Type
Integer (Int32)

See Also
CipherStrength Property, HashStrength Property, Secure Property, SecureCipher Property,
SecureHash Property, SecureKeyExchange Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ThrowError Property

Enable or disable error handling by the container of the control.

Syntax
object.ThrowError = { True | False }

Remarks
Error handling for methods can be done in either of two different styles, according to the value of
this property.

If the ThrowError property is set to False, the application should check the return value of any
method that is used, and report errors based upon the documented value of the return code. It is
the responsibility of the application to interpret the error code, if it is desired to explain the error in
addition to reporting it.

If the ThrowError property is set to True, then errors occurring within the control will be thrown to
the container of the control. In addition, the OnError event will fire. For example, in Visual Basic, it
is recommended that the OnError mechanism be used to catch errors.

Note that if an error occurs while a property value is being accessed, an error will be raised
regardless of the value of the ThrowError property, but the OnError event will not be fired.

Data Type
Boolean

Example
The following example handles errors by checking the return code of a method:

Dim lResult As Long

Socket1.ThrowError = False
lResult = Socket1.Connect

If lResult <> 0 Then
 MsgBox "Error on Connect: " & lResult
 Exit Sub
Endif

The following example handles errors by throwing them to the container (VB):

On Error Resume Next: Err.Clear

Socket1.ThrowError = True
Socket1.Connect

If Err.Number <> 0
 MsgBox Err.Description, vbExclamation
 Exit Sub
Endif
On Error GoTo 0

See Also
LastError Property, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Timeout Property

Gets and sets the amount of time until a blocking operation fails.

Syntax
object.Timeout [= seconds]

Remarks
Setting this property specifies the number of seconds until a blocking operation fails and the
control returns an error.

For backwards compatibility with previous versions of the control, if a value greater than 1000 is
specified when setting the property, the control assumes that milliseconds were intended and
adjusts the value accordingly.

Data Type
Integer (Int32)

See Also
LastError Property, OnError Event, OnTimeout Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Trace Property

Enable or disable socket function level tracing.

Syntax
object.Trace [= { True | False }]

Remarks
The Trace property is used to enable (or disable) the tracing of Windows Sockets function calls.
When enabled, each function call is logged to a file, including the function parameters, return
value and error code if applicable. This facility can be enabled and disabled at run time, and the
trace log file can be specified by setting the TraceFile property. All function calls that are being
logged are appended to the trace file, if it exists. If no trace file exists when tracing is enabled, the
trace file is created.

The tracing facility is available in all of the networking controls, and is enabled or disabled for an
entire process. This means that once tracing is enabled for a given control, all of the function calls
made by the process using any of the SocketTools controls will be logged. For example, if you
have an application using both the FTP and POP3 controls, and you set the Trace property to
True on the FTP control, function calls made by both the FTP and POP3 controls will be logged.
Additionally, enabling a trace is cumulative, and tracing is not stopped until it is disabled for all
controls used by the process.

If tracing is not enabled, there is no negative impact on performance or throughput. Once
enabled, application performance can degrade, especially in those situations in which multiple
processes are being traced or the trace file is fairly large. Since trace files can grow very quickly,
even with modest applications, it is recommended that you delete the file when it is no longer
needed.

Only those function calls made by the SocketTools networking controls will be logged. Calls made
directly to the Windows Sockets API, or calls made by other controls, will not be logged.

Data Type
Boolean

See Also
TraceFile Property, TraceFlags Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TraceFile Property

Specify the socket function trace output file.

Syntax
object.TraceFile [= filename]

Remarks
The TraceFile property is used to specify the name of the trace file that is created when socket
function tracing is enabled. If this property is set to an empty string (the default value), then a file
named CSTRACE.LOG is created in the system's temporary directory. If no temporary directory
exists, then the file is created in the current working directory.

If the file exists, the trace output is appended to the file, otherwise the file is created. Since socket
function tracing is enabled per-process, the trace file is shared by all instances of the controls
being used. If multiple controls have tracing enabled, the TraceFile property should be set to the
same value for each control. Since trace files can grow very quickly, even with modest applications,
it is recommended that you delete the file when it is no longer needed.

The trace file has the following format:

VB6 INF: WSAAsyncSelect(46, 0xcc4, 0x7e9, 0x27) returned 0
VB6 WRN: connect(46, 192.0.0.1:1234, 16) returned -1 [10035]
VB6 ERR: accept(46, NULL, 0x0) returned -1 [10038]

The first column contains the name of the process that is being traced (in this case, it is Visual
Basic 6.0). The second column identifies if the trace record is reporting information, a warning, or
an error. What follows is the name of the function being called, the arguments passed to the
function and the function's return value. If a warning or error is reported, the error code is
appended to the record (the value is placed inside brackets).

If parameters are passed as integer values, they are recorded in decimal. If the parameter or
return value is a pointer (a memory address), it is recorded as a hexadecimal value preceded with
"0x". A special type of pointer, called a null pointer, is recorded as NULL. Those functions which
expect socket addresses are displayed in the following format:

aa.bb.cc.dd:nnnn

The first four numbers separated by periods represent the IP address, and the number following
the colon represents the port number in host byte order. Note that in the second line of the above
example, the control is attempting to connect to a system with the IP address 192.0.0.1 on port
1234.

Note that if the specified file cannot be created, or the user does not have permission to modify
an existing file, the error is silently ignored and no trace output will be generated.

Data Type
String

See Also
Trace Property, TraceFlags Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 TraceFlags Property

Gets and sets the socket function tracing flags.

Syntax
object.TraceFlags [= flags]

Remarks
The TraceFlags property is used to specify the type of information written to the trace file when
socket function tracing is enabled. The following values may be used:

Value Constant Description

0 swTraceInfo All function calls are written to the trace file. This is the default value.

1 swTraceError Only those function calls which fail are recorded in the trace file.

2 swTraceWarning Only those function calls which fail, or return values which indicate a
warning, are recorded in the trace file.

4 swTraceHexDump All functions calls are written to the trace file, plus all the data that is
sent or received is displayed, in both ASCII and hexadecimal format.

Since socket function tracing is enabled per-process, the trace flags are shared by all instances of
the controls being used. If multiple controls have tracing enabled, the TraceFlags property should
be set to the same value for each control. Changing the trace flags for any one instance of the
control will affect the logging performed for all controls used by the application.

Warnings are generated when a non-fatal error is returned by a Windows Sockets function. For
example, if data is being written through the control and the error WSAEWOULDBLOCK is
returned, a warning is generated since the application simply needs to attempt to write the data at
a later time.

Data Type
String

See Also
Trace Property, TraceFile Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Urgent Property

Send or receive urgent data.

Syntax
object.Urgent [= { True | False }]

Remarks
This Boolean property affects how the Read and Write methods read or write data to the socket.
If set to a value of true, urgent (out-of-band) data will be read or written. All reads or writes of
urgent data are unbuffered. The property value will automatically be reset to a value of false after
the socket has been read or written.

Note: Not all implementations may support more than one byte of urgent data if the data is not
being received in-line. Refer to the InLine property for additional information.

Data Type
Boolean

See Also
InLine Property, OnRead Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Version Property

Return the current version of the object.

Syntax
object.Version

Remarks
The Version property returns the current version of the object. This can be used by an application
for validation purposes. The version returned is composed of four numbers, separated by periods.
The first number is the major version number, the second number is the minor version number,
the third is the build number and the fourth is the revision number.

Data Type
String

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Control Methods

Method Description

Abort Terminate the connection with a remote host

Accept Accepts a client connection on a listening socket

Bind Bind the socket to the specified local address and port number

Cancel Cancels the current blocking network operation

Connect Establish a connection with a server

ConnectUrl Establish a connection with a server using a URL

Disconnect Terminate the connection with a remote host

Flush Flush the contents of the send and receive socket buffers

Initialize Initialize the control and validate the runtime license key

Listen Listen for incoming connections

Peek Return data read from the socket, but do not remove it from the socket buffer

Read Return data read from the socket

ReadByte Read a single byte of data from the socket

ReadLine Read a line of data from the socket, storing it in a string buffer

ReadStream Read a stream of data from the socket, returning when all data has been read

Reject Reject a pending client connection

Reset Reset the internal state of the control

Resolve Resolves a host name to a host IP address

Shutdown Stop sending or receiving data on the socket

StoreStream Read a stream of data from the remote host, storing it in a file

Uninitialize Uninitialize the control and release any system resources that were allocated

Write Write data to the socket

WriteByte Write a single byte of data to the socket

WriteLine Write a line of data to the socket, terminated with a carriage-return and linefeed

WriteStream Write a stream of data to the socket, returning when all data has been written

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Abort Method

Terminate the connection with a remote host.

Syntax
object.Abort

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
The Abort method immediately closes the socket, without waiting for any remaining data to be
written out. This method should only be used when the connection must be closed immediately
before the application terminates.

See Also
Connect Method, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Accept Method

Accepts a client connection on a listening socket.

Syntax
object.Accept (Handle, [Options])

Parameters
Handle

An integer value that specifies the handle of the listening socket. If the control that invokes this
method is not the listening socket, then the listening socket may continue to listen for incoming
connections. If the control invokes this method using its own Handle property, it will stop
listening for connections.

Options

An optional integer value that specifies one or more options. If this parameter is omitted, the
values of the properties listed below will be used to determine the default options when
accepting the connection.

Value Constant Property

0 swOptionNone None

2 swOptionDontRoute Route = False

4 swOptionKeepAlive KeepAlive = True

8 swOptionReuseAddress ReuseAddress = True

16 swOptionNoDelay NoDelay = True

32 swOptionInLine InLine = True

&H1000 swOptionSecure Secure = True

Return Value
A value of zero is returned if the acceptance was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
To set the Options argument explicitly, set it as a combination of values chosen from the table
above. Use the appropriate constant if you wish the attribute corresponding to the property to be
True, except for the Route property. Specifying the swOptionDontRoute option is the same as
setting the Route property to a value of False.

See Also
Backlog Property, Handle Property, Listen Method, Reject Method, OnAccept Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Bind Method

Bind the socket to the specified local address and port number.

Syntax
object.Bind([LocalAddress], [LocalPort], [Protocol], [Timeout], [Options])

Parameters
LocalAddress

An optional string value that specifies the local Internet address that the socket should be
bound to. To bind to any valid network interface on the local system, specify the address 0.0.0.0.
Applications should only specify a particular address if it is absolutely necessary. In most cases a
local address is not required when establishing a client connection. If this value is not specified,
the LocalAddress property will be used to determine the default value.

LocalPort

An optional integer value that specifies a local port number that the socket should be bound to.
To bind to any available port number, specify a port number of 0. Applications should only
specify a particular port number if it is absolutely necessary. The maximum valid port number is
65535. If this argument is not specified, the LocalPort property will be used to determine the
default value.

Protocol

An optional integer value that specifies the protocol that should be used when establishing the
connection. If this argument is not specified, the value of the Protocol property will be used as
the default. One of the following values may be used:

Value Constant Description

6 swProtocolTcp Specifies the Transmission Control Protocol. This protocol
provides a reliable means of communication between two
computers using a client/server architecture. The data is
exchanged as a stream of bytes, with the protocol ensuring
that the data arrives in the same byte order that it was sent,
without duplication or missing data. This protocol is designed
for accuracy and not speed, therefore TCP can sometimes
incur relatively long delays while waiting for out-of-order
packets and the retransmission of data which can make it
unsuitable for some applications such as streaming video or
audio.

17 swProtocolUdp Specifies the User Datagram Protocol. This is a stateless, peer-
to-peer message oriented protocol, with the data sent in
discrete packets. UDP is a simpler network protocol that does
not have the inherent reliability of TCP, but it has less
overhead and is ideal for real-time applications where a
dropped packet is preferable to the delay of waiting for a
packet to be retransmitted. It also supports the broadcasting
of datagrams over local networks, and is commonly used by
services that must exchange a relatively small amount of data
with a large number of clients.

Timeout

An optional integer value that specifies the amount of time until a blocking operation fails. If this
argument is not specified, the Timeout property will be used to determine the default value.

Options

An optional integer value that specifies one or more options which are to be used when
establishing the connection. The value is created by combining the options using a bitwise Or
operator. Note that if this argument is specified, it will override any property values that are
related to that option.

Value Constant Description

1 swOptionBroadcast This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

2 swOptionDontRoute This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

4 swOptionKeepAlive This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This option is only valid
for stream sockets.

8 swOptionReuseAddress This option specifies the local address can be reused.
This option is commonly used by server applications.

16 swOptionNoDelay This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

32 swOptionInLine This option specifies that out-of-band data should be
received inline with the standard data stream. This
option is only valid for stream sockets.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
When this method is called with swProtocolUdp as the specified protocol, it will immediately
create the datagram socket and bind it to the given address. When this method is called with
swProtocolTcp as the specified protocol, creation of the socket is deferred until the Connect
method is called. For stream sockets, this method will set the local address, port number and
default options used when the socket is actually created.

See Also
Broadcast Property, LocalAddress Property, LocalPort Property, Timeout Property, Connect
Method, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Cancel Method

Cancels the current blocking network operation.

Syntax
object.Cancel

Parameters
None.

Return Value
None.

Remarks
The Cancel method cancels any blocking network operation in the current thread. This is typically
used inside an event handler, causing the blocking method to return to the caller with an error
indicating that the current operation was canceled. This method sets an internal flag that is
periodically checked during a blocking operation, such as waiting for more data to arrive. If the
current thread is not blocked at the time that this method is called, it will have no effect.

See Also
Reset Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Connect Method

Establish a connection with a server.

Syntax
object.Connect([RemoteAddress], [RemotePort], [Protocol], [Timeout], [Options], [LocalAddress],
[LocalPort])

Parameters
RemoteAddress

An optional string value that specifies the host name or IP address of the server. If this
parameter is omitted, it defaults to the value of the HostAddress property if it is defined;
otherwise, it defaults to the value of the HostName property.

RemotePort

An optional integer value that specifies the port number that the server is using to listen for
connections. If this parameter is omitted, the RemotePort property will be used to determine
the default value.

Protocol

An an optional integer value that specifies the protocol that should be used when establishing
the connection. If this parameter is omitted, the Protocol property will be used to determine
the default value. It may be one of the following values:

Value Constant Description

6 swProtocolTcp The connection will use the Transmission Control Protocol.
This protocol provides a reliable means of communication
between two computers using a client/server architecture. The
data is exchanged as a stream of bytes, with the protocol
ensuring that the data arrives in the same byte order that it
was sent, without duplication or missing data. This protocol is
designed for accuracy and not speed, therefore TCP can
sometimes incur relatively long delays while waiting for out-
of-order packets and the retransmission of data which can
make it unsuitable for some applications such as streaming
video or audio.

17 swProtocolUdp The connection will use the User Datagram Protocol. This is a
stateless, peer-to-peer message oriented protocol, with the
data sent in discrete packets. UDP is a simpler network
protocol that does not have the inherent reliability of TCP, but
it has less overhead and is ideal for real-time applications
where a dropped packet is preferable to the delay of waiting
for a packet to be acknowledged or retransmitted. It also
supports the broadcasting of datagrams over local networks,
and is commonly used by services that must exchange a
relatively small amount of data with a large number of clients.

Timeout

An optional integer value that specifies the amount of time until a blocking operation fails. If this
parameter is omitted, the Timeout property will be used to determine the default value.

Options

An optional integer value that specifies one or more socket options which are to be used when
establishing the connection. The value is created by combining the options using a bitwise Or
operator. Note that if this argument is specified, it will override any property values that are
related to that option.

Value Constant Description

1 swOptionBroadcast This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

2 swOptionDontRoute This option specifies default routing should not
be used. This option should not be specified
unless absolutely necessary.

4 swOptionKeepAlive This option specifies that packets are to be sent
to the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

&H10 swOptionNoDelay This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the
responsiveness of certain applications. This
option disables this buffering and immediately
sends data packets as they are written to the
socket.

&H20 swOptionInLine This option specifies that out-of-band data
should be received inline with the standard data
stream. This option is only valid for stream
sockets.

&H800 swOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&H1000 swOptionSecure This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS can be specified by setting
the SecureProtocol property. By default, the
connection will use TLS 1.2 and the strongest
cipher suites available. Older versions of
Windows prior to Windows 7 and Windows
Server 2008 R2 only support TLS 1.0 and secure
connections will automatically downgrade on
those platforms.

&H8000 swOptionSecureFallback This option specifies the client should permit the
use of less secure cipher suites for compatibility

with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

&H40000 swOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

LocalAddress

An optional string value that specifies the local IP address of the network adapter that the
control should use when establishing the connection. If this parameter is omitted, the control
will bind to any suitable adapter on the local system. It is recommended that you omit this
parameter when establishing a TCP connection unless you fully understand the implications of
binding the socket to a specific local address.

LocalPort

An optional integer value that specifies the local port number that the control should use when
establishing the connection. If this argument is not specified, an appropriate local port number
will be automatically allocated for the connection. It is recommended that you omit this
parameter when establishing a TCP connection unless you fully understand the implications of
binding the socket to a specific local port.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

See Also
HostName Property, KeepAlive Property, NoDelay Property, Options Property, RemotePort
Property, ReuseAddress Property, Route Property, Secure Property, SecureProtocol Property,
Timeout Property, Bind Method, Disconnect Method, OnConnect Event, OnDisconnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/control/property/options.html
file:///C|/Projects/cstools11/pdf/winsock/control/property/route.html

 ConnectUrl Method

Establish a connection with a server using a URL.

Syntax
object.ConnectUrl([Url], [Timeout], [Options])

Parameters
Url

An string value which specifies a URL used when establishing the connection. This parameter
cannot be omitted and it cannot be an empty string. If a non-standard URI scheme is used, the
port number must be explicitly specified or the method will fail. See the remarks below for more
information on the format supported by this method.

Timeout

An optional integer value that specifies the amount of time until a blocking operation fails. If this
parameter is omitted, the Timeout property will be used to determine the default value.

Options

An optional integer value that specifies one or more socket options which are to be used when
establishing the connection. The value is created by combining the options using a bitwise Or
operator. Note that if this argument is specified, it will override any property values that are
related to that option.

Value Constant Description

4 swOptionKeepAlive This option specifies that packets are to be sent
to the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

&H10 swOptionNoDelay This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the
responsiveness of certain applications. This
option disables this buffering and immediately
sends data packets as they are written to the
socket.

&H20 swOptionInLine This option specifies that out-of-band data
should be received inline with the standard data
stream. This option is only valid for stream
sockets.

&H800 swOptionTrustedSite This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

&H1000 swOptionSecure This option specifies that a secure connection
should be established with the remote host. The

specific version of TLS can be specified by setting
the SecureProtocol property. By default, the
connection will use TLS 1.2 and the strongest
cipher suites available.

&H8000 swOptionSecureFallback This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

&H40000 swOptionPreferIPv6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be
resolved to both an IPv6 and IPv4 address. This
option is ignored if the local system does not
have IPv6 enabled, or when the hostname can
only be resolved to an IPv4 address. If the server
hostname can only be resolved to an IPv6
address, the client will attempt to establish a
connection using IPv6 regardless if this option
has been specified.

Return Value
A value of zero is returned if the connection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The ConnectUrl method provides a simplified interface which can be used to establish a
connection using a URL. This method can only be used to establish connections using TCP and
does not currently support the use of URLs to connect with a service which uses UDP. The general
format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This method recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the
following:

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. The host name www.example.com would be resolved
into an IP address and the connection established on port 443. This method will also recognize a
simpler format which only includes the host name and port number without a URI scheme, such
as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an
explicit port number, the method cannot determine what port number should be used when
establishing the connection. The same also applies if a custom, non-standard URI scheme is
provided which is not recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this method will
automatically enable security options. For example, providing a URL which uses the https://
scheme will automatically enable a secure connection regardless if the Options parameter includes
that option. If a URI scheme is used in conjunction with a port number associated with a secure
service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since
port 443 is the standard port designated for a secure HTTP connection, a secure connection will
be enabled by default, even if swOptionSecure has not been specified by the caller. Alternatively,
if a custom port number is specified in the URL or the scheme is not recognized as one which
requires implicit TLS, security options will not be automatically enabled for the connection.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, this method will return an error indicating the port number
is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address
and this would be considered valid. Without the brackets, this URL would not be accepted.

Important: The URL provided to this method will only be used to establish a connection with a
server. This is a general purpose method which does not enable support for any particular
application protocol and all implementation details are the responsibility of your application. If you
require higher-level support for a specific Internet protocol, the SocketTools ActiveX Edition
provides a comprehensive collection of higher-level controls which can be used to access those
services.

If you use the swOptionSecure option to enable a secure connection, the connection will always
use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the dwOptionSecure option.
Instead, connect without this option and then set the Secure property to True when you are ready
to initiate the TLS handshake.

See Also
HostName Property, KeepAlive Property, NoDelay Property, Options Property, Secure Property,
Timeout Property, Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/control/property/options.html

 Disconnect Method

Terminate the connection with a remote host.

Syntax
object.Disconnect

Parameters
None.

Return Value
A value of zero is returned if the connection was terminated successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
This method terminates the network connection with the server.

See Also
Connect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Flush Method

Flush the contents of the send and receive socket buffers.

Syntax
object.Flush

Parameters
None.

Return Value
A value of zero is returned if the control buffers were flushed successfully. Otherwise, a non-zero
error code is returned which indicates the cause of the failure.

Remarks
The Flush method will flush any data waiting to be read or written to the remote host . It is
important to note that this method is not similar to flushing data to a disk file; it does not ensure
that a specific block of data has been written to the socket. For example, you should never call this
function immediately after calling the Write method or prior to calling the Disconnect method.

An application never needs to use the Flush method under normal circumstances. This method is
only to be used when the application needs to immediately return the socket to an inactive state
with no pending data to be read or written. Calling this function may result in data loss and should
only be used if you understand the implications of discarding any data which has been sent by the
remote host.

See Also
IsReadable Property, IsWritable Property, Read Method, Write Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Initialize Method

Initialize the control and validate the runtime license key.

Syntax
object.Initialize([LicenseKey])

Parameters
LicenseKey

An optional string value which specifies a runtime license key used to initialize the control. If the
license key is omitted or passed as an empty string, a development license must be installed on
the local system.

Return Value
A value of zero is returned if the control was initialized successfully. Otherwise, a non-zero error
code is returned which indicates the cause of the failure.

Remarks
This method dynamically loads other system libraries and allocates thread local storage. In most
cases, it is not necessary to call this method directly because it is automatically invoked when an
instance of the control is created by the container. However, if the control is created dynamically
using CreateObject or a similar method, this must be the first method that is called before you
attempt to modify any property values or invoke other methods. Failure to initialize the control
may result in in subsequent errors and/or cause an exception to be raised.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created.

If the control is being used within another DLL, it is important that you do not attempt to create an
instance of the control or call the Initialize method from within the DllMain function because it
can result in deadlocks or access violation errors. If the DLL is written in C++ and it is linked with
the C runtime library (CRT), it will automatically call the constructors and destructors for any static
and global C++ objects and has the same restrictions.

Example
Set objSocket = CreateObject("SocketTools.SocketWrench.11")

nError = objSocket.Initialize(strLicenseKey)
If nError > 0 Then
 MsgBox "Unable to initialize SocketWrench"
 End
End If

See Also
IsInitialized Property, Connect Method, Reset Method, Uninitialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Listen Method

Listen for incoming connections.

Syntax
object.Listen([LocalAddress], [LocalPort], [Backlog])

Parameters
LocalAddress

An optional string value that specifies the IP address the control should use when listening for
connection requests. If this argument is not specified, the control will bind to any suitable IPv4
interface on the local system.

LocalPort

An optional integer value that specifies the local port number that be used to listen for
connections. If this parameter is omitted, the LocalPort property will be used to determine the
default port number. If this value is zero, the listening socket will be bound to a random port
number.

Backlog

An optional integer value that specifies the maximum size of the queue used to manage
pending connections to the service. If this parameter is set to value which exceeds the maximum
size allowed by the operating system, it will be silently adjusted to the nearest legal value. If this
parameter is omitted, the Backlog property will be used to determine the default value.

Return Value
A value of zero is returned if the operation was successful, otherwise a non-zero error code is
returned which indicates the cause of the failure. This method will return an error if a socket has
already been created by a previous call to the Connect method.

Remarks
The Listen method causes the control to listen on a socket for incoming connections on a
particular local address and local port. If an IPv6 address is specified as the local IP address, the
system must have an IPv6 stack installed and configured, otherwise the method will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

See Also
Backlog Property, LocalPort Property, Accept Method, Connect Method, Reject Method, OnAccept
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Peek Method

Return data read from the socket, but do not remove it from the socket buffer.

Syntax
object.Peek(Buffer, [Length])

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, it is recommended
that a Byte array be used instead. This parameter must be passed by reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
If the method succeeds, it will return the number of bytes available to read from the socket
without causing the thread to block. A return value of zero indicates that there is no data available
to read at that time. If an error occurs, a value of -1 is returned.

Remarks
The Peek method reads the specified number of bytes from the socket and copies them into the
buffer, but it does not remove the data from the internal socket buffer. Note that it is possible for
the returned data to contain embedded null characters.

The data returned by the Peek method is not removed from the socket buffers. It must be
consumed by a subsequent call to the Read method. The return value indicates the number of
bytes that can be read in a single operation, up to the specified buffer size. However, it is
important to note that it may not indicate the total amount of data available to be read from the
socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a
loop to poll a non-blocking socket may cause the application to become non-responsive. To
determine if there is data available to be read, use the IsReadable property.

See Also
IsReadable Property, Read Method, ReadLine Method, Write Method, WriteLine Method, OnRead
Event, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Read Method

Return data read from the socket.

Syntax
object.Read(Buffer, [Length], [Options], [RemoteAddress], [RemotePort])

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. This is the most appropriate data type to use if the server is sending
data that consists of printable characters. If the server is sending binary data, a Byte array
should be used instead. This parameter must be passed by reference.

Length

An optional integer value which specifies the number of bytes to read. Its maximum value is

231-1 = 2147483647. This argument is required to be present for string data. If a value is
specified for this argument for other permissible types of data, and it is less than number of
bytes that is determined by the control, then Length will override the internally computed value.
If the argument is omitted, then the maximum number of bytes to read is determined by the
size of the buffer.

Options

An optional integer value that is reserved for future functionality and should either be omitted,
or specified with a value of zero. Specifying a non-zero value will cause the method to fail and
return an error.

RemoteAddress

An optional string that will contain the IP address of the remote host when the method returns.
This parameter must be passed by reference. For a TCP connection, the IP address is the same
value that was used to establish the connection. When reading data from a UDP socket, this is
the IP address of the peer that sent the datagram. This information can be used in conjunction
with the Write method to send a datagram back to that host. If the peer's IP address is not
required, this parameter may be omitted.

RemotePort

An optional integer that will contain the port number for the remote host when the method
returns. This parameter must be passed by reference. When reading a datagram from a UDP
socket, this is the port number used by the peer who sent the datagram. This information can
be used in conjunction with the Write method to send a datagram back to that host. If the
peer's port number is not required, this parameter may be omitted.

Return Value
The number of bytes actually read from the socket is returned by this method. If an error occurs, a
value of -1 is returned.

Remarks
The Read method returns data that has been read from the socket, up to the number of bytes
specified. If no data is available to be read, an error will be generated if the control is non-blocking
mode. If the control is in blocking mode, the program will wait until data is returned by the server
or the connection is closed.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Read method.
When you provide a String variable as the buffer, the control will process the data as
text. Binary characters may be interpreted as 8-bit ANSI encoding and embedded
null characters will corrupt the data. Reading the data into a byte array ensures that
you receive the data exactly as it was sent by the server.

If the remote host is sending text that you want to read a line at a time, use the ReadLine method.
If you wish to read a large amount of data using a single method call rather than making multiple
calls to the Read method, use the ReadStream method.

See Also
CodePage Property, IsReadable Property, ReadLine Method, ReadStream Method Write Method,
OnRead Event, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReadByte Method

Read a byte of data from the socket.

Syntax
object.ReadByte

Parameters
None.

Return Value
The integer value of the byte read from the socket. If an error occurs, the method will return a
value of -1 and the program should check the value of the LastError property to determine the
specific cause of the error.

Remarks
The ReadByte method returns one byte of data that has been read from the socket. If no data is
available to be read, an error will be generated if the control is non-blocking mode. If the control
is in blocking mode, the program will stop until a byte of data is returned by the server or the
connection is closed.

Note that you should not use the ReadByte method with a datagram socket. If you do, then only
the first byte of the datagram will be returned and the remaining data will be discarded. When
reading data from a datagram socket, it is recommended that you always use the Read method
with the length argument specifying the maximum size of the datagram.

See Also
IsReadable Property, Timeout Property, Read Method, Write Method, WriteByte Method, OnRead
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReadLine Method

Read up to a line of data from the socket and returns it in a string buffer.

Syntax
object.ReadLine(Buffer, [Length])

Parameters
Buffer

A buffer that the data will be stored in. If the variable is a String then the data will be returned
as a string of characters. If the data returned by the server contains UTF-8 encoded text, it will
automatically be converted to standard UTF-16 Unicode text. If you wish to read the data
without conversion, provide a Byte array as the buffer. This parameter must be passed by
reference.

Length

A numeric value which specifies the number of bytes to read. Its maximum value is 231-1 =
2147483647. This argument is required to be present for string data. If a value is specified for
this argument for other permissible types of data, and it is less than number of bytes that is
determined by the control, then Length will override the internally computed value. If the
argument is omitted, then the maximum number of bytes to read is determined by the size of
the buffer.

Return Value
This method will return True if a line of data has been read. If an error occurs or there is no more
data available to read, then the method will return False. It is possible for data to be returned in
the string buffer even if the return value is False. Applications should check the length of the string
after the method returns to determine if any data was copied into the buffer. For example, if a
timeout occurs while the method is waiting for more data to arrive on the socket, it will return
zero; however, data may have already been copied into the string buffer prior to the error
condition. It is the responsibility of the application to process that data, regardless of the function
return value.

Remarks
The ReadLine method reads data from the socket up to the specified number of bytes or until an
end-of-line character sequence is encountered. Unlike the Read method which reads arbitrary
bytes of data, this function is specifically designed to return a single line of text data in a string
variable. When an end-of-line character sequence is encountered, the function will stop and
return the data up to that point; the string will not contain the carriage-return or linefeed
characters.

If multi-byte 8-bit encoded characters are read from the socket, by default they will automatically
be converted to Unicode according to the value of the CodePage property and returned in the
string buffer provided. To prevent the text from being converted to Unicode, call the Read
method and use a byte array instead of a string variable.

There are some limitations when using the ReadLine method. The method should only be used to
read text, never binary data. In particular, it will discard nulls, linefeed and carriage return control
characters. This method will force the thread to block until an end-of-line character sequence is
processed, the read operation times out or the remote host closes its end of the socket
connection. If the Blocking property is set to False, calling this method will automatically switch

the socket into a blocking mode, read the data and then restore the socket to non-blocking mode.
If another socket operation is attempted while ReadLine is blocked waiting for data from the
remote host, an error will occur. It is recommended that this method only be used with blocking
socket connections.

The Read and ReadLine methods can be intermixed, however be aware that the Read method
will consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

See Also
CodePage Property, IsReadable Property, Read Method, ReadStream Method, StoreStream
Method, Write Method, WriteLine Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ReadStream Method

Read the socket and store the data stream in the specified buffer.

Syntax
object.ReadStream(Buffer, [Length], [Marker], [Options])

Parameters
Buffer

A variable that will contain the data read from the socket when the method returns. If the
variable is a String type, then the data will be stored as a string of characters. This is the most
appropriate data type to use if the server is sending text data that consists of printable
characters. If the remote host is sending binary data, a Byte array should be used instead. This
parameter must be passed by reference.

Length

A numeric variable which specifies the maximum amount of data to be read from the socket.
When the method returns, this variable will be updated with the actual number of bytes read.
Note that because this argument is passed by reference and modified by the method, you must
provide a variable, not a numeric constant. If this argument is omitted or the value is initialized
to zero, this method will read data from the socket until the remote host disconnects or an error
occurs.

Marker

A string or array of bytes which is used to designate the logical end of the data stream. When
this byte sequence is encountered by the method, it will stop reading and return to the caller.
The buffer will contain all of the data read from the socket up to and including the end-of-
stream marker. If this argument is omitted, then the function will continue to read from the
socket until the maximum buffer size is reached, the remote host closes its socket or an error is
encountered.

Options

An optional integer value which specifies any options to be used when reading the data stream.
One or more of the following bit flags may be specified by the caller:

Value Constant Description

0 swStreamDefault The data stream will be returned to the caller unmodified.
This option should always be used with binary data or data
being stored in a byte array. If no options are specified, this
is the default option used by this method.

1 swStreamConvert The data stream is considered to be textual and will be
modified so that end-of-line character sequences are
converted to follow standard Windows conventions. This
will ensure that all lines of text are terminated with a
carriage-return and linefeed sequence. Because this option
modifies the data stream, it should never be used with
binary data. Using this option may result in the amount of
data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line
of text with a single linefeed, this option will have the effect

of inserting a carriage-return character before each
linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is True. If the
function fails, the return value is False. To get extended error information, check the value of the
LastError property.

Remarks
The ReadStream method enables an application to read an arbitrarily large stream of data and
store it in memory, either in a string or a byte array. Unlike the Read method, which will return
immediately when any amount of data has been read, the ReadStream method will only return
when the buffer is full as specified by the Length argument, the logical end-of-stream marker has
been read, the socket closed by the remote host or when an error occurs.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the ReadStream
method. When you provide a String variable as the buffer, the control will process
the data as text. Binary characters may be interpreted as 8-bit ANSI encoding and
embedded null characters will corrupt the data. Reading the data into a byte array
ensures that you receive the data exactly as it was sent by the server.

This method will force the application to wait until the operation completes. If this method is called
and the Blocking property is set to False, it will automatically switch the socket into a blocking
mode, read the data stream and then restore the socket to non-blocking mode when it has
finished. If another socket operation is attempted while ReadStream is blocked waiting for data
from the remote host, an error will occur. It is recommended that this method only be used with
blocking (synchronous) socket connections; if the application needs to establish multiple
simultaneous connections, it should create worker threads to manage each connection.

It is possible for data to be returned in the buffer even if the method returns False. Applications
should also check the value of the Length argument to determine if any data was copied into the
buffer. For example, if a timeout occurs while the method is waiting for more data to arrive on the
socket, it will return zero; however, data may have already been copied into the buffer prior to the
error condition. It is the responsibility of the application to process that data, regardless of the
method return value.

Because ReadStream can potentially cause the application to block for long periods of time as
the data stream is being read, the control will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being read. Note that an
application should never perform a blocking operation inside the event handler.

Example
Dim strBuffer As String
Dim nLength As Long

nLength = 0 ' Read socket until connection is closed
If SocketWrench1.ReadStream(strBuffer, nLength, Options:=swStreamConvert) Then
 TextBox1.Text = strBuffer
End If

See Also
Blocking Property, CodePage Property, Read Method, ReadLine Method, StoreStream Method,
WriteStream Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Reject Method

Rejects a connection request from a remote host.

Syntax
object.Reject

Parameters
None.

Return Value
A value of zero is returned if the rejection was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the
connection being aborted. If there are no pending client connections at the time, this method will
immediately return with an error indicating that the operation would cause the thread to block.

See Also
Accept Method, Listen Method, OnAccept Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Reset Method

Reset the internal state of the control.

Syntax
object.Reset

Parameters
None.

Return Value
None.

Remarks
The Reset method resets the internal state of the control. Property values are initialized to their
internal defaults, open network connections will be closed and any handles allocated by the
control will be released.

See Also
Cancel Method, Initialize Method, Uninitialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Resolve Method

Resolves a host name to a host IP address.

Syntax
object.Resolve(HostName, IpAddress)

Parameters
HostName

A string value that specifies the host name to resolve.

IpAddress

A string that will contain the IP address of the specified host when the method returns. This
parameter must be passed by reference. The value that is returned may be either a dotted-
quad IPv4 address or an IPv6 address, depending on the configuration of the local system and
what addresses are assigned to the host name.

Return Value
A value of zero is returned if the host name could be resolved into an IP address. Otherwise, a
non-zero error code is returned which indicates the cause of the failure.

Remarks
The Resolve method is used to resolve a host name into an IP address. If the host name has both
an IPv4 and IPv6 address associated with it, this method will return the IPv4 address by default. If
the host name only has an IPv6 address, that value will be returned if the local system has an IPv6
TCP/IP stack installed; otherwise, the method will fail with an error indicating that the host name
could not be resolved.

See Also
AutoResolve Property, HostAddress Property, HostFile Property, HostName Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Shutdown Method

Stop sending or receiving data on the socket.

Syntax
object.Shutdown([Option])

Parameters
Option

An optional integer value that specifies the action to be taken. It may be one of the following
values:

Value Constant Description

0 swShutdownRead Disable reception of data. The application will no longer be
able to receive data from the remote host. The application
may continue to send data using the Write or WriteLine
method until the socket is closed.

1 swShutdownWrite Disable transmission of data. The application will no longer
be able to send data to the remote host and the remote
host will consider the socket connection to be closed. The
application may continue to read any remaining data in the
socket's receive buffer using the Read or ReadLine
method until the socket is closed. This is the default value if
this parameter is omitted.

2 swShutdownBoth Disable both reception and transmission of data. If this
value is specified, then the socket handle remains valid,
however the client will not be able to send or receive data.
The application must call the Disconnect method to close
the socket.

Return Value
A value of zero is returned if the request was successful. Otherwise, a non-zero error code is
returned which indicates the cause of the failure.

Remarks
In some asynchronous applications, it may be desirable for a client to inform the server that no
further communication is wanted, while allowing the client to read any residual data that may
reside in internal buffers on the client side. Shutdown accomplishes this because the socket
handle is still valid after it has been called, although some or all communication with the remote
host has ceased.

See Also
Disconnect Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 StoreStream Method

Reads the data stream from the socket and stores it in a specified file.

Syntax
object.StoreStream(FileName, [Length], [Offset], [Options])

Parameters
FileName

A string variable that specifies the name of the file that will contain the data read from the
socket. If the file does not exist, it will be created. If the file does exist, it will be overwritten.

Length

A numeric variable which specifies the maximum amount of data to be read from the socket.
When the method returns, this variable will be updated with the actual number of bytes read.
Note that because this argument is passed by reference and modified by the method, you must
provide a variable, not a numeric constant. If this argument is omitted or the value is initialized
to zero, this method will read data from the socket until the remote host disconnects or an error
occurs.

Offset

A numeric value which specifies the byte offset into the file where the method will start storing
data read from the socket. Note that all data after this offset will be truncated. If this argument is
omitted or a value of zero is specified the file will be completely overwritten if it already exists.

Options

An optional integer value which specifies any options to be used when reading the data stream.
One or more of the following bit flags may be specified by the caller:

Value Constant Description

0 swStreamDefault The data stream will be returned to the caller unmodified.
This option should always be used with binary data or data
being stored in a byte array. If no options are specified, this
is the default option used by this method.

1 swStreamConvert The data stream is considered to be textual and will be
modified so that end-of-line character sequences are
converted to follow standard Windows conventions. This
will ensure that all lines of text are terminated with a
carriage-return and linefeed sequence. Because this option
modifies the data stream, it should never be used with
binary data. Using this option may result in the amount of
data returned in the buffer to be larger than the source
data. For example, if the source data only terminates a line
of text with a single linefeed, this option will have the effect
of inserting a carriage-return character before each
linefeed.

Return Value
This method returns a Boolean value. If the method succeeds, the return value is True. If the
function fails, the return value is False. To get extended error information, check the value of the

LastError property.

Remarks
The StoreStream method enables an application to read an arbitrarily large stream of data from
the socket and store it in a file. This method is essentially a simplified version of the ReadStream
method, designed specifically to be used with files rather than strings or byte arrays.

This method will force the thread to block until the operation completes. If this method is called
with the Blocking property set to False, it will automatically switch the socket into a blocking
mode, read the data stream and then restore the socket to non-blocking mode when it has
finished. If another socket operation is attempted while StoreStream is blocked waiting for data
from the remote host, an error will occur. It is recommended that this function only be used with
blocking (synchronous) socket connections; if the application needs to establish multiple
simultaneous connections, it should create worker threads to manage each connection.

Because StoreStream can potentially cause the application to block for long periods of time as
the data stream is being read, the control will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being read. Note that an
application should never perform a blocking operation inside the event handler.

See Also
Blocking Property, ReadStream Method, WriteStream Method, OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Uninitialize Method

Uninitialize the control and release any system resources that were allocated.

Syntax
object.Uninitialize

Parameters
None.

Return Value
None.

Remarks
The Uninitialize method terminates any connection established by the control and resets the
internal state of the control. This method is not typically used because any resources that have
been allocated by an instance of the control will automatically be released when it is destroyed.

Each time the Initialize method is invoked, it increments an internal counter that keeps track of
the number of times that it has been called by any thread in the current process. The Uninitialize
method decrements this counter, and when the usage count drops to zero, the control will
automatically unload the system libraries that it has dynamically loaded and will destroy the
process heap that was allocated when the first instance of the control was created. An application
should only call the Uninitialize method if it has explicitly called the Initialize method.

See Also
Initialize Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Write Method

Write data to the socket.

Syntax
object.Write(Buffer, [Length], [Options], [RemoteAddress], [RemotePort])

Parameters
Buffer

A buffer variable that contains the data to be written to the server. If the variable is a String
type, then the data will be written as a string of characters. This is the most appropriate data
type to use if the server expects text data that consists of printable characters. If the string
contains Unicode characters, it will be automatically converted to use standard UTF-8 encoding
prior to being sent. If the server is expecting binary data, a Byte array should be used instead.

Length

An optional integer value that specifies the maximum number of bytes to send to the server. Its

maximum value is 231-1 = 2147483647. This argument is not required for string data. If a value
is specified for this argument for other permissible types of data, and it is less than number of
bytes that is determined by the control, then Length will override the internally-computed value.
If the socket is non-blocking and the send fails because it could not write all of the data to the
server, the OnWrite event will be fired when the server can be written to again.

Options

An optional integer value that is reserved for future functionality and should either be omitted,
or specified with a value of zero. Specifying a non-zero value will cause the method to fail and
return an error.

RemoteAddress

An optional string value that specifies the IP address of the remote host that the data will be
sent to. For a TCP connection, it is recommended that this argument be omitted. If it is
specified, the IP address must be the same value that was used to establish the connection.
When writing data to a UDP socket, this is the IP address of the peer that will receive the
datagram. This information can be used in conjunction with the Read method to send a
datagram back to that host.

RemotePort

An optional integer value that specifies the port number on the remote host that the data will
be sent to. For a TCP connection, it is recommended that this argument be omitted. If it is
specified, the port number must be the same value that was used to establish the connection.
When writing data on a UDP socket, this is the port number for the peer who will receive the
datagram. This information can be used in conjunction with the Read method to send a
datagram back to that host.

Return Value
This method returns the number of bytes actually written to the socket, or -1 if an error was
encountered.

Remarks
The Write method sends the data in buffer to the socket. If the connection is buffered, as is
typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the control is non-blocking and is out of buffer space, an error will be generated. If the

control is blocking, the application will wait until the data can be sent.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the Write method.
When you provide a String variable as the buffer, the control will process the data as
text. If the string contains non-ASCII characters, by default they will automatically be
converted to 8-bit ANSI encoded text prior to being written. Using a byte array
ensures that binary data will be sent as-is without being encoded.

If you want to send text to the remote host a line at a time, use the WriteLine method. If you wish
to send a large amount of data using a single method call rather than making multiple calls to the
Write method, use the WriteStream method.

See Also
CodePage Property, IsWritable Property, Timeout Property, Read Method, WriteLine Method,
WriteStream Method, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WriteByte Method

Write a byte of data to the socket.

Syntax
object.WriteByte(Value)

Parameters
Value

A byte or integer value that specifies the data that should be sent to the remote host. If this
parameter is a numeric value, it will be converted to its equivalent byte value and written to the
socket. If the argument is a string, the first character will be written to the socket.

Return Value
This method returns a Boolean value. If the byte of data was successfully written to the socket, the
method will return True. If the data could not be written to the socket, the method will return False
and the application should check the value of the LastError property to determine the exact cause
of the failure.

Remarks
The WriteByte method writes a single byte of data to the socket. If the connection is buffered, as
is typically the case, the data is copied to the send buffer and control immediately returns to the
program. If the socket is non-blocking and is out of buffer space, an error will be generated. If the
socket is blocking, the application will wait until the data can be sent.

If you use the WriteByte method with a datagram socket, the datagram will only be a single byte
in length. You cannot use multiple calls to WriteByte to compose a single datagram.

See Also
IsWritable Property, Timeout Property, Read Method, ReadByte Method, Write Method, OnWrite
Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WriteLine Method

Send a line of text to the remote host, terminated by a carriage-return and linefeed.

Syntax
object.WriteLine([Buffer])

Parameters
Buffer

An optional String value which contains the text that will be sent to the remote host. The data
will always be terminated with a carriage-return and linefeed control character sequence. If this
argument is omitted, then a only a carriage-return and linefeed are written to the socket. If the
string contains Unicode characters, it will be automatically converted to use standard UTF-8
encoding prior to being sent. If the string contains an embedded null character, any data that
follows the null character will be discarded.

Return Value
This method returns True if the contents of the string have been written to the socket. If an error
occurs, the method will return False.

Remarks
The WriteLine method writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the Write method which writes
arbitrary bytes of data to the socket, this method is specifically designed to write a single line of
text data from a string.

If the Buffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the number of characters sent to the remote host will typically
be larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

If the string value passed to the WriteLine method is a Unicode string which contains non-ASCII
characters, it will be internally converted to 8-bit ANSI encoded text before being written to the
socket. The remote host must be able to recognize the encoding and process it appropriately. The
ReadLine method will automatically convert any encoded characters that it reads from the socket
back to their original Unicode encoding. The CodePage property can be used to change the
default code page used when converting the text.

The WriteLine method should only be used to send text, never binary data. In particular, the
function will discard any data that follows a null character and will append linefeed and carriage
return control characters to the data stream. Calling this this method will force the thread to block
until the complete line of text has been written, the write operation times out or the remote host
aborts the connection. If this function is called with the Blocking property set to False, it will
automatically switch the socket into a blocking mode, send the data and then restore the socket to
non-blocking mode. If another socket operation is attempted while the WriteLine method is
blocked sending data to the remote host, an error will occur. It is recommended that this method
only be used with blocking socket connections.

The Write and WriteLine function calls can be safely intermixed.

See Also

CodePage Property, IsWritable Property, Timeout Property, Read Method, ReadLine Method,
Write Method, WriteStream Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 WriteStream Method

Writes data from the stream buffer to the socket.

Syntax
object.WriteStream(Buffer, [Length], [Options])

Parameters
Buffer

A variable that contains the data to be written to the socket. If the variable is a String type, then
the data will be stored as a string of characters. This is the most appropriate data type to use if
the server is expecting text data that consists of printable characters. If the string contains
Unicode characters, it will be automatically converted to use standard UTF-8 encoding prior to
being sent. If the server is expecting binary data, a Byte array should be used instead.

Length

A numeric variable which specifies the maximum amount of data to be written to the socket.
When the method returns, this variable will be updated with the actual number of bytes written.
Note that because this argument is passed by reference and modified by the method, you must
provide a variable, not a numeric constant. If this argument is omitted or the value is initialized
to zero, this method will automatically determine the amount of data based on the length of the
string or the size of the byte array passed to the method.

Options

An optional integer value which specifies any options to be used when writing the data stream
to the socket. Currently this argument is reserved for future expansion and should either be
omitted or always specified with a value of zero.

Return Value
This method returns a Boolean value. If the function succeeds, the return value is True. If the
function fails, the return value is False. To get extended error information, check the value of the
LastError property.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of data from
a string buffer or byte array to the socket. Unlike the Write method, which may not write all of the
data in a single call, the WriteStream method will only return when all of the data has been
written or an error occurs.

If the data contains binary characters, particularly non-printable control characters
and embedded nulls, you should always provide a Byte array to the WriteStream
method. When you provide a String variable as the buffer, the control will process
the data as text. If the string contains Unicode characters, they will automatically be
converted to 8-bit ANSI encoded text prior to being written. Using a byte array
ensures that binary data will be sent as-is without being encoded. You can change
the default code page used to convert the text by setting the CodePage property.

This method will force the application to wait until the operation completes. If this method is called
with the Blocking property set to False, it will automatically switch the socket into a blocking
mode, write the data stream and then restore the socket to non-blocking mode when it has
finished. If another socket operation is attempted while WriteStream is blocked sending data to
the remote host, an error will occur. It is recommended that this function only be used with

blocking (synchronous) socket connections; if the application needs to establish multiple
simultaneous connections, it should create worker threads to manage each connection.

It is possible that some data will have been written to the socket even if the method returns False.
Applications should also check the value of the Length argument to determine if any data was
sent. For example, if a timeout occurs while the function is waiting to write more data, it will return
zero; however, some data may have already been written to the socket prior to the error
condition.

Because WriteStream can potentially cause the application to wait for long periods of time as the
data stream is being written, the control will periodically generate OnProgress events. An
application can use this event to update the user interface as the data is being written. Note that
an application should never perform a blocking operation inside the event handler.

Example
Dim hFile As Long
Dim nLength As Long
Dim dataBuffer() As Byte
Dim bResult As Boolean

' Open the file for binary access
hFile = FreeFile()
Open strFileName For Binary Access Read As hFile

' Determine the size of the file and allocate a byte
' array large enough to store the contents
nLength = LOF(hFile)
ReDim dataBuffer(nLength - 1) As Byte

' Read the file contents into the byte array and
' then close the file
Get hFile, , dataBuffer
Close hFile

' Write the data to the socket
bResult = SocketWrench1.WriteStream(dataBuffer, nLength)

See Also
Blocking Property, CodePage Property, ReadStream Method, StoreStream Method, Write Method,
OnProgress Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Control Events

Event Description

OnAccept This event is generated when a remote host connects to a listening socket

OnCancel This event is generated when a blocking operation is canceled

OnConnect This event is generated when a connection is established

OnDisconnect This event is generated when a connection is terminated

OnError This event is generated when a control error occurs

OnProgress This event is generated as a data stream is being read or written

OnRead This event is generated when data is available to be read

OnTimeout This event is generated when a blocking operation times out

OnTimer This event is generated when the control's preset timer interval expires

OnWrite This event is generated when data can be written to the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnAccept Event

The OnAccept event is generated when a remote host connects to a listening socket.

Syntax
Sub object_OnAccept ([Index As Integer,] ByVal Handle As Variant)

Remarks
This event is generated for sockets that are listening for connections from a remote host. A
connection with the remote system is not actually established until it has been accepted by the
listening server. This event is only generated for asynchronous sockets when the Blocking
property is set to False.

The Handle argument specifies the socket descriptor of the listening socket. To accept the
connection, a socket calls its Accept method with argument Handle.

The PeerAddress or PeerName properties may be used to determine the name of the remote
host that is establishing the connection. Note that this information may not be available until after
the Accept method is called to accept the connection.

See Also
PeerAddress Property, PeerName Property, Accept Method, Reject Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnCancel Event

The OnCancel event is generated when a blocking operation is canceled.

Syntax
Sub object_OnCancel ([Index As Integer])

Remarks
This event is generated when a blocking operation on the socket, such as sending or receiving
data, is canceled with the Cancel method.

To assist in determining which operation was canceled, consult the State property.

See Also
Cancel Method, OnError Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnConnect Event

The OnConnect event is generated when a connection is established.

Syntax
Sub object_OnConnect ([Index As Integer])

Remarks
The OnConnect event is generated when a connection is made with a remote host as a result of a
Connect method call, or when an Accept method call is completed. This event is only generated
for asynchronous sockets when the Blocking property is set to False.

See Also
Accept Method, Connect Method, OnDisconnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnDisconnect Event

The OnDisconnect event is generated when a connection is terminated.

Syntax
Sub object_OnDisconnect ([Index As Integer])

Remarks
The OnDisconnect event is generated when the connection is terminated by the remote host.
This event is only generated for asynchronous sockets when the Blocking property is set to False.

See Also
OnConnect Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnError Event

The OnError event is generated when a control error occurs.

Syntax
Sub object_OnError ([Index As Integer,] ByVal ErrorCode As Variant, ByVal Description As
Variant)

Remarks
This event is generated when an error occurs during a control action. Visual Basic errors do not
generate this event.

The ErrorCode argument specifies the last error that has occurred. If the error is network related,
the error code values returned by the control correspond to those returned by the standard
Windows Sockets library.

The Description argument is a string that describes the error.

See Also
LastError Property, LastErrorString Property, ThrowError Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnProgress Event

The OnProgress event is generated as the data stream is being read or written.

Syntax
Sub object_OnProgress ([Index As Integer], ByVal BytesTotal As Variant, ByVal BytesCopied
As Variant, ByVal Percent As Variant)

Remarks
The OnProgress event is generated as the control reads the data stream from the remote host or
writes a data stream to the remote host. If the data stream contains large amounts of data, this
event can be used to update a progress bar or other user-interface control to provide the user
with some visual feedback. The arguments to this event are:

BytesTotal

The total amount of data being read or written in bytes. This value will be the same as the
maximum size of the data stream specified by the caller. If the size was unknown or unspecified
at the time, then this value will always be the same as the BytesCopied value.

BytesCopied

The number of bytes that have been read or written.

Percent

The percentage of data that's been read or written, expressed as an integer value between 0
and 100, inclusive. If the maximum size of the data stream was not specified by the caller, this
value will always be 100.

Note that this event is only generated by the ReadStream, StoreStream and WriteStream
methods. If the control is reading or writing data using the Read or Write methods the
application is responsible for calculating the completion percentage and updating any user
interface controls.

See Also
Read Method, ReadStream Method, StoreStream Method, Write Method, WriteStream Method

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnRead Event

The OnRead event is generated when data is available to be read.

Syntax
Sub object_OnRead ([Index As Integer])

Remarks
The OnRead event is generated for non-blocking sockets when data is available to be read from
the server. Use the Read method to read the data. This event is only generated for asynchronous
sockets when the Blocking property is set to False.

See Also
IsReadable Property, Peek Method, Read Method, Write Method, OnWrite Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnTimeout Event

The OnTimeout event is fired when a blocking operation times out.

Syntax
Sub object_OnTimeout ([Index As Integer])

Remarks
The OnTimeout event is generated when a blocking socket operation, such as sending or
receiving data, times out. To determine which operation was in progress when the timeout
occurred, consult the State property.

See Also
Timeout Property, OnCancel Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnTimer Event

The OnTimer event is fired when the control's preset timer interval expires.

Syntax
Sub object_OnTimer ([Index As Integer])

Remarks
This event is generated when the control's timer interval has elapsed. The frequency is specified in
milliseconds by setting the Interval property.

See Also
Interval Property

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 OnWrite Event

The OnWrite event is generated when data can be written to the server.

Syntax
Sub object_OnWrite ([Index As Integer])

Remarks
The OnWrite event is generated for non-blocking sockets when data can be written to the server
after a previous attempt failed because it would cause the control to block. This event is only
generated for asynchronous sockets when the Blocking property is set to False.

This event will always be generated at least one time, after the connection to the server is initially
established. It will not fire again unless the Write method fails with the error
swErrorOperationWouldBlock, which indicates that the socket's send buffer is full. When the
socket can accept more data, this event will fire and the application can resume sending data to
the remote host.

See Also
IsWritable Property, Read Method, Write Method, OnRead Event

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Control Error Codes

Value Constant Description

10001 swErrorNotHandleOwner Handle not owned by the current thread

10002 swErrorFileNotFound The specified file or directory does not exist

10003 swErrorFileNotCreated The specified file could not be created

10004 swErrorOperationCanceled The blocking operation has been canceled

10005 swErrorInvalidFileType The specified file is a block or character device, not a regular file

10006 swErrorInvalidDevice The specified device or address does not exist

10007 swErrorTooManyParameters The maximum number of function parameters has been exceeded

10008 swErrorInvalidFileName The specified file name contains invalid characters or is too long

10009 swErrorInvalidFileHandle Invalid file handle passed to function

10010 swErrorFileReadFailed Unable to read data from the specified file

10011 swErrorFileWriteFailed Unable to write data to the specified file

10012 swErrorOutOfMemory Out of memory

10013 swErrorAccessDenied Access denied

10014 swErrorInvalidParameter Invalid argument passed to function

10015 swErrorClipboardUnavailable The system clipboard is currently unavailable

10016 swErrorClipboardEmpty The system clipboard is empty or does not contain any text data

10017 swErrorFileEmpty The specified file does not contain any data

10018 swErrorFileExists The specified file already exists

10019 swErrorEndOfFile End of file

10020 swErrorDeviceNotFound The specified device could not be found

10021 swErrorDirectoryNotFound The specified directory could not be found

10022 swErrorInvalidBuffer Invalid memory address passed to function

10024 swErrorNoHandles No more handles available to this process

10035 swErrorOperationWouldBlock The specified operation would block the current thread

10036 swErrorOperationInProgress A blocking operation is currently in progress

10037 swErrorAlreadyInProgress The specified operation is already in progress

10038 swErrorInvalidHandle Invalid handle passed to function

10039 swErrorInvalidAddress Invalid network address specified

10040 swErrorInvalidSize Datagram is too large to fit in specified buffer

10041 swErrorInvalidProtocol Invalid network protocol specified

10042 swErrorProtocolNotAvailable The specified network protocol is not available

10043 swErrorProtocolNotSupported The specified protocol is not supported

10044 swErrorSocketNotSupported The specified socket type is not supported

10045 swErrorInvalidOption The specified option is invalid

10046 swErrorProtocolFamily The specified protocol family is not supported

10047 swErrorProtocolAddress The specified address is invalid for this protocol family

10048 swErrorAddressInUse The specified address is in use by another process

10049 swErrorAddressUnavailable The specified address cannot be assigned

10050 swErrorNetworkUnavailable The networking subsystem is unavailable

10051 swErrorNetworkUnreachable The specified network is unreachable

10052 swErrorNetworkReset Network dropped connection on reset

10053 swErrorConnectionAborted Connection was aborted due to timeout or other failure

10054 swErrorConnectionReset Connection was reset by remote network

10055 swErrorOutOfBuffers No buffer space is available

10056 swErrorAlreadyConnected Connection already established with remote host

10057 swErrorNotConnected No connection established with remote host

10058 swErrorConnectionShutdown Unable to send or receive data after connection shutdown

10060 swErrorOperationTimeout The specified operation has timed out

10061 swErrorConnectionRefused The connection has been refused by the remote host

10064 swErrorHostUnavailable The specified host is unavailable

10065 swErrorHostUnreachable The specified host is unreachable

10067 swErrorTooManyProcesses Too many processes are using the networking subsystem

10091 swErrorNetworkNotReady Network subsystem is not ready for communication

10092 swErrorInvalidVersion This version of the operating system is not supported

10093 swErrorNetworkNotInitialized The networking subsystem has not been initialized

10101 swErrorRemoteShutdown The remote host has initiated a graceful shutdown sequence

11001 swErrorInvalidHostName The specified hostname is invalid or could not be resolved

11002 swErrorHostNameNotFound The specified hostname could not be found

11003 swErrorHostNameRefused Unable to resolve hostname, request refused

11004 swErrorHostNameNotResolved Unable to resolve hostname, no address for specified host

12001 swErrorInvalidLicense The license for this product is invalid

12002 swErrorProductNotLicensed This product is not licensed to perform this operation

12003 swErrorNotImplemented This function has not been implemented on this platform

12004 swErrorUnknownLocalHost Unable to determine local host name

12005 swErrorInvalidHostAddress Invalid host address specified

12006 swErrorInvalidServicePort Invalid service port number specified

12007 swErrorInvalidServiceName Invalid or unknown service name specified

12008 swErrorInvalidEventId Invalid event identifier specified

12009 swErrorOperationNotBlocking No blocking operation in progress on this socket

12101 swErrorSecurityNotInitialized Unable to initialize security interface for this process

12102 swErrorSecurityContext Unable to establish security context for this session

12103 swErrorSecurityCredentials Unable to open client certificate store or establish client credentials

12104 swErrorSecurityCertificate Unable to validate the certificate chain for this session

12105 swErrorSecurityDecryption Unable to decrypt data stream

12106 swErrorSecurityEncryption Unable to encrypt data stream

12337 swErrorMaximumConnections The maximum number of client connections exceeded

12338 swErrorThreadCreationFailed Unable to create a new thread for the current process

12339 swErrorInvalidThreadHandle The specified thread handle is no longer valid

12340 swErrorThreadTerminated The specified thread has been terminated

12341 swErrorThreadDeadlock The operation would result in the current thread becoming deadlocked

12342 swErrorInvalidClientMoniker The specified moniker is not associated with any client session

12343 swErrorClientMonikerExists The specified moniker has been assigned to another client session

12344 swErrorServerInactive The specified server is not listening for client connections

12345 swErrorServerSuspended The specified server is suspended and not accepting client connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

Internet Server Class Library

A general purpose TCP/IP networking library for developing server applications.

Reference

Data Members
Class Methods
Event Handlers
Data Structures
Error Codes

Library Information

Class Name CInternetServer

File Name CSWSKV11.DLL

Version 11.0.2180.1635

LibID EC6DE93D-FBB8-4928-B2D5-C09758C644EE

Import Library CSWSKV11.LIB

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
The Internet Server class library provides a simplified interface for creating event-driven,
multithreaded server applications using the TCP/IP protocol. Each instance of the Internet Server
class represents a server, and each active client connection is managed internally and referenced
by a handle which uniquely identifies the client session. The class library supports secure
connections using the standard SSL and TLS protocols and can be used to create secure, custom
server programs.

This class is designed to be used as a base class from which your own server class is derived. To
exchange data with the clients that connect to the server, you should override the default events
such as OnConnect and OnRead. Most interaction with the clients occur within these event
handlers. Because the client sessions are managed in worker threads that are separate from the
main UI thread of your application, you may perform a blocking operation in response to an event
without affecting the other clients that are connected to the server.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer Public Data Members

Member Variables Description

m_nBacklog The size of the backlog connection queue for the server

m_nMaxClients The maximum number of active client sessions accepted by the server

m_nMaxClientsPerAddress The maximum number of clients per IP address accepted by the server

m_dwOptions The options specified when creating an instance of the server

m_nPriority The priority specified when creating an instance of the server

m_dwStackSize The initial size of the stack allocated for threads created by the server

m_nTimeout The timeout period in seconds waiting for a blocking operation to complete

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_nBacklog

UINT m_nBacklog;

The size of the backlog connection queue for the server.

Remarks
The m_nBacklog data member is a public variable that specifies the size of the queue allocated
for pending client connections. A value of zero specifies that the queue should be set to a
reasonable default value. On Windows server platforms, the maximum value is large enough to
queue several hundred pending connections. Changing the value of this data member does not
have an effect on an active instance of the server.

See Also
CInternetServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_nMaxClients

UINT m_nMaxClients;

The maximum number of clients that are permitted to connect to the server.

Remarks
The m_nMaxClients data member is a public variable that specifies the maximum number of
clients that are permitted to establish a connection with the server. After this limit is reached, the
server will reject additional connections until the number of active clients drops below this
threshold. A value of zero specifies that there is no fixed limit on the active number of client
connections. Changing the value of this data member does not have an effect on an active
instance of the server. To change the maximum number of clients on an active server, use the
Throttle method.

The actual number of client connections that can be accepted depends on the amount of memory
available to the server process. Sockets are allocated from the non-paged memory pool, so the
actual number of sockets that can be created system-wide depends on the amount of physical
memory that is installed. If the server will be accessible over the Internet, it is recommended that
you limit the maximum number of client connections to a reasonable value.

See Also
CInternetServer, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_nMaxClientsPerAddress

UINT m_nMaxClientsPerAddress;

The maximum number of clients that are permitted to connect to the server from a single IP
address.

Remarks
The m_nMaxClientsPerAddress data member is a public variable that specifies the maximum
number of clients that are permitted to establish a connection with the server from a single IP
address. After this limit is reached, the server will will reject additional connections until the
number of active clients drops below this threshold. A value of zero specifies that there is no limit
on the active number of client connections per IP address. Changing the value of this data
member does not have an effect on an active instance of the server. To change the maximum
number of clients on an active server, use the Throttle method.

See Also
CInternetServer, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_dwOptions

DWORD m_dwOptions;

The default options used when starting an instance of the server.

Remarks
The m_dwOptions data member is a public variable that specifies the default options that should
be used when starting an instance of the server. This variable can be modified directly or by calling
the SetOptions method. For a list of available server options, see Server Option Constants.
Changing the value of this data member does not have an effect on an active instance of the
server.

See Also
CInternetServer, GetOptions, SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/optionconst.html

 CInternetServer::m_nPriority

INT m_nPriority;

The priority specified when creating an instance of the server.

Remarks
The m_nPriority data member is a public variable that specifies the which specifies the priority for
the server and all client sessions. Changing the value of this data member does not have an effect
on an active instance of the server. It may be one of the following values:

Constant Description

INET_PRIORITY_NORMAL The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
client session. It is typically used with lightweight
services running in the background that are designed
for few client connections. The client thread will be
assigned a lower scheduling priority and will be
frequently forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. The client thread will be
assigned a lower scheduling priority and will
occasionally be forced to yield execution to other
threads.

INET_PRIORITY_HIGH This priority increases the overall resource utilization
for the client session and the thread will be given
higher scheduling priority. It can be used when it is
important for the client session thread to be highly
responsive. It is not recommended that this priority be
used on a system with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization. The thread will be
given higher scheduling priority and will be more
responsive to the remote host. It is not recommended
that this priority be used on a system with a single
processor.

See Also
CInternetServer, GetPriority, SetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_dwStackSize

DWORD m_dwStackSize;

The initial size of the stack allocated for threads created by the server.

Remarks
The m_dwStackSize data member is a public variable that specifies the initial amount of memory
that is committed to the stack for each thread created by the server. A value of zero specifies that
the default stack size should be used, which is 256K for 32-bit processes and 512K for 64-bit
processes. This variable can be modified directly or by calling the SetStackSize method. Changing
the value of this data member does not have an effect on an active instance of the server. It is
recommended that most applications use the default stack size.

See Also
CInternetServer, GetStackSize, SetStackSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::m_nTimeout

DWORD m_nTimeout;

The default options used when starting an instance of the server.

Remarks
The m_nTimeout data member is a public variable that specifies the number of seconds the
server should wait for a client to perform a network operation. If the client does not exchange any
information with the server within this period of time, a timeout event will occur. The timeout value
affects all clients that are connected to the server. This variable can be modified directly or by
calling the SetTimeout method. Changing the value of this data member does not have an effect
on an active instance of the server.

See Also
CInternetServer, GetTimeout, SetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer Class Methods

Class Description

CInternetServer Constructor which initializes the current instance of the class

~CInternetServer Destructor which releases resources allocated by the class

Method Description

Abort Abort the connection and immediately close the socket

AsyncNotify Enable or disable asynchronous notification of changes in server status

AttachHandle Attach the specified server handle to this instance of the class

Broadcast Write data to all active clients currently connected to the server

Cancel Cancel a blocking operation for the specified client session

CompareAddress Compare two IP addresses to determine if they are identical

DetachHandle Detach the server handle from the current instance of this class

DisableSecurity Disable secure communication with the client

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect the client, closing the socket handle and terminating the session

EnableSecurity Enable secure communication with the client

EnableTrace Enable logging of network function calls to a file

EnumClients Returns a list of active client connections established with the server

EnumNetworkAddresses Return the list of network addresses that are configured for the local host

FindClient Returns a handle to the client which matches the specified client ID or moniker

FormatAddress Convert an IP address in binary format into a printable string

Flush Flush the send and receive buffers for the specified client session

GetActiveClient Return the socket handle for the active client session

GetAdapterAddress Return the IP or MAC assigned to the specified network adapter

GetAddress Convert an IP address string to a binary format

GetAddressFamily Return the address family for the specified IP address

GetBacklog Return the size of the backlog connection queue for the server

GetClientAddress Return the IP address and port number for the specified client session

GetClientData Returns the application defined data associated with the specified client session

GetClientHandle Returns the handle for a specific client session based on its ID number

GetClientId Returns the unique ID number assigned to the specified client session

GetClientIdleTime Returns the amount of time the specified client session has been idle

GetClientMoniker Returns the string alias associated with the specified client session

GetClientPort Returns the remote port number used by the client to establish the connection

GetClientServer Returns a socket handle to the server for the specified client socket

GetClientServerById Returns a socket handle to the server for the specified session identifier

GetClientThreadId Returns the thread ID for the specified client

GetClientThreads Returns the number of client session threads created by the server

GetErrorString Return a description for the specified error code

GetExternalAddress Return the external IP address assigned to the local system

GetHandle Return the client handle used by this instance of the class

GetHostAddress Return the IP address assigned to the specified hostname

GetHostName Return the hostname assigned to the specified IP address

GetLastError Return the last error code

GetLocalAddress Return the local IP address and port number for the server

GetLocalName Return the hostname assigned to the local system

GetOptions Return the current server options

GetPriority Return the current priority assigned to the server

GetStackSize Return the initial size of the stack allocated for threads created by the server

GetStatus Return the current status of the server

GetStreamInfo Return information about the current stream I/O operation

GetThreadClient Return the handle for the client session that is being managed by the specified thread

GetTimeout Return the timeout interval for blocking operations in seconds

IsActive Determine if the server is currently active

IsAddressNull Determine if the specified IP address is a null address

IsAddressRoutable Determine if the specified IP address is routable over the Internet

IsInitialized Determine if the class has been successfully initialized

IsListening Determine if the server is listening for client connections

IsLocked Determine if the server is currently in a locked state

IsProtocolAvailable Determine if the specified protocol and address family are supported

IsReadable Determine if data is available to be read from the client

IsWritable Determine if data can be sent to the client without causing the thread to block

Lock Lock the server, causing all other client threads to block until it is unlocked

MatchHostName Match a host name against one more strings that may contain wildcards

Peek Read data from the client without removing it from the socket buffer

Read Read data from the client

ReadLine Read a line of data from the client, storing it in a string buffer

ReadStream Read a stream of data from the client and store it in the specified buffer

Reject Reject a pending client connection

Restart Restart the server, terminating all active client sessions

Resume Resume accepting client connections on the specified server

SetBacklog Set the size of the backlog connection queue for the server

SetCertificate Specify the server certificate that should be used with secure connections

SetClientData Associate application defined data with the specified client session

SetClientMoniker Associate a unique string alias with the specified client session

SetLastError Set the last error code

SetOptions Set one or more server options

SetPriority Set the priority assigned to the server

SetTimeout Set the timeout interval used when waiting for a blocking operation to complete

ShowError Display a message box with a description of the specified error

Start Begin listening for client connections on the specified address and port

Stop Stop listening for connections and terminate all client sessions

StoreStream Read a stream of data from the client and store it in a file

Suspend Suspend accepting client connections and optionally reject or disconnect clients

Throttle Limit the number of active client connections, connections per address and connection rate

Unlock Unlock the server, allowing other client threads to resume execution

ValidateCertificate Validate the specified security certificate is installed on the local system

Write Write data to the client

WriteLine Write a line of data to the client, terminated with a carriage-return and linefeed

WriteStream Write a stream of data to the client

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/validatecertificate.html

 CInternetServer::CInternetServer Method

CInternetServer();

The CInternetServer constructor initializes the class library and validates the license key at
runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the InetInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
~CInternetServer, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::~CInternetServer

~CInternetServer();

The CInternetServer destructor releases resources allocated by the current instance of the
CInternetServer object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CInternetServer object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the connection are destroyed. If there are any clients connected to
the server at the time the destructor is called, those client sessions will be immediately terminated.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CInternetServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Abort Method

BOOL Abort(
 SOCKET hSocket
);

BOOL Abort();

Immediately close the socket without waiting for any remaining data to be written out.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Abort method should only be used when the connection must be closed immediately. This
method should only be used to abort client connections and should not be called within an
OnAccept event handler. To reject an incoming client connection, use the Reject method.

In most cases, the server should call the Disconnect method to gracefully close a client
connection. Aborting the connection will discard any buffered data and may cause errors or result
in unpredictable behavior by the client application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Cancel, Disconnect, Reject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::AsyncNotify Method

BOOL AsyncNotify(
 HWND hWnd,
 UINT uMsg
);

Enable or disable asynchronous notification of changes in server status.

Parameters
hWnd

A handle to the window whose window procedure will receive the notification message.

uMsg

The user-defined message that will be sent to the notification window.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The AsyncNotify method is used by an application to enable or disable asynchronous
notifications. The message window is typically the main UI window and these notifications are used
signal to the application that it should update the user interface. If the hWnd parameter is not
NULL, it must specify a valid window handle and the user-defined message must have a value of
WM_USER or higher. The application cannot specify a notification message that is reserved by the
operating system. The pseudo-handle HWND_BROADCAST cannot be specified as the
notification window. If the hWnd parameter is NULL, notifications for the specified server will be
disabled.

When asynchronous notifications are enabled for a server, the server will post the user-defined
message to the window whenever there is a change in status or after a client has connected or
disconnected from the server. The wParam message parameter will contain the notification
message and the lParam message parameter will contain the handle to the server or the client ID.
The following notification messages are defined:

Constant Description

INET_NOTIFY_STARTUP This notification is sent when the server has started and
is preparing to accept client connections. This
notification is only sent once, and only if asynchronous
notifications are enabled immediately after the Start
method is called. This message will not be sent once the
server has begun accepting client connections or when
notification messages are disabled and then
subsequently re-enabled at a later time. The lParam
message parameter will specify the handle to the server.

INET_NOTIFY_LISTEN This notification is sent when the server is listening for
client connections. This notification message may be
sent to the application multiple times over the lifetime of
the server. If the server was suspended, this notification
will be sent after the application calls the Resume

method to resume accepting client connections. The
lParam message parameter will specify the handle to
the server.

INET_NOTIFY_SUSPEND This notification is sent when the server suspends
accepting new connections because the application has
called the Suspend method. This notification message
may be sent to the application multiple times over the
lifetime of the server. The lParam message parameter
will specify the handle to the server.

INET_NOTIFY_RESTART This notification is sent when the server is restarted using
the Restart method. Note that the server socket handle
provided by the lParam message parameter will specify
the new socket handle of the restarted server instance,
not the original socket handle. The lParam message
parameter will specify the handle to the server.

INET_NOTIFY_CONNECT This notification is sent when the server accepts a client
connection and the thread that manages the client
session has begun processing network events for that
client. This message notification will not be sent if the
client connection is rejected by the server. The lParam
message parameter will specify the unique ID of the
client that connected to the server.

INET_NOTIFY_DISCONNECT This notification is sent when the client disconnects from
the server and the client socket has been closed. This
notification message may not occur for each client
session that is forced to terminate as the result of the
server being stopped using the Stop method. The
lParam message parameter will specify the unique ID of
the client that disconnected from the server.

INET_NOTIFY_SHUTDOWN This notification is sent when the server thread is in the
process of terminating. At the time the application
processes this notification message, the server handle in
lParam will reference the defunct server and cannot be
used with other server methods. The lParam message
parameter will specify the handle to the server.

If asynchronous notifications are enabled, you should never use those notifications as a
replacement for an event handler. When an event occurs, the callback function that handles the
event is invoked in the context of the thread that manages the client session. The application
should exchange data with the client within that event handler and not in response to a
notification message. These notification messages should only be used to update the application
UI in response to changes in the status of the server.

The INET_NOTIFY_CONNECT and INET_NOTIFY_DISCONNECT notifications are different from the
other server notifications because the lParam message parameter does not specify the server
handle, but rather the unique client ID associated with the session that connected to or
disconnected from the server. If you need to obtain the handle to the client session using the ID,
call the GetClientHandle method. To obtain the server handle in response to the
INET_NOTIFY_CONNECT message, use the GetClientServerById method. Note that at the time

the application processes the INET_NOTIFY_DISCONNECT notification message, the client session
will have already terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientHandle, GetClientServerById

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::AttachHandle Method

VOID AttachHandle(
 SOCKET hSocket
);

Attach the specified server socket handle to the current instance of the class.

Parameters
hSocket

The socket handle to the server that will be attached to the current instance of the class object.

Return Value
None.

Remarks
This method is used to attach a server handle created outside of the class using the SocketWrench
API. Once the client handle is attached to the class, the other class member functions may be used
with that server.

If a server handle already has been created for the class, that handle will be released when the
new handle is attached to the class object. This will cause the server to stop and all client sessions
will be terminated immediately. If you want to prevent the previous server from being stopped,
you must call the DetachHandle method prior to attaching a new handle to the class instance.

Note that the hSocket parameter is presumed to be a valid server socket handle and no checks
are performed to ensure that the handle references an active server. Specifying an invalid socket
handle will cause subsequent method calls to fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Broadcast Method

INT Broadcast(
 LPBYTE lpBuffer,
 INT cbBuffer
);

Sends data to all clients that are connected to the server.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server clients.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the method succeeds, the return value is the number of clients that the data was sent to. If the
method fails, the return value is INET_ERROR. To get extended error information, call the
GetLastError method.

Remarks
The Broadcast method sends the contents of the buffer to all of the clients that are connected to
the server. This method will block until all clients have been sent a copy of the data. There is no
guarantee in which order the clients will receive and process the data that has been broadcast.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Cancel Method

BOOL Cancel(
 SOCKET hSocket
);

Cancel a blocking operation for the specified client session.

Parameters
hSocket

The handle to a client socket.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation using the same client
socket handle. Instead it must allow the calling stack to unwind, returning back to the blocking
operation before making any further function calls.

Canceling a blocking operation for another client session may yield unpredictable results. If you
wish to terminate the client session, it is preferable to use the Disconnect method rather than
using this method in conjunction with the Abort method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Disconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::CompareAddress Method

BOOL CompareAddress(
 LPINTERNET_ADDRESS lpAddress1,
 LPINTERNET_ADDRESS lpAddress2
);

BOOL CompareAddress(
 LPCTSTR lpszAddress1,
 LPCTSTR lpszAddress2
);

Compare two IP addresses to determine if they are identical.

Parameters
lpAddress1

A pointer to an INTERNET_ADDRESS structure that contains the first IP address to be compared.
An alternate version of this method accepts a string that specifies the IP address to be
compared.

lpAddress2

A pointer to an INTERNET_ADDRESS structure that contains the second IP address to be
compared. An alternate version of this method accepts a string that specifies the IP address to
be compared.

Return Value
If the method succeeds and the two addresses are identical, the return value is non-zero. If the
method fails or the two addresses are not identical, the return value is zero. If either parameter is
NULL, or the address family for the two addresses are not the same, the last error code will be
updated. If the addresses are valid and in the same address family, but are not identical, the last
error code will be set to NO_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientAddress, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::DetachHandle Method

SOCKET DetachHandle();

The DetachHandle method detaches the server socket handle associated with the current
instance of the class.

Parameters
None.

Return Value
This method returns the server socket associated with the current instance of the class object. If
the server is not active, the value INVALID_SOCKET will be returned.

Remarks
This method is used to detach a server handle created by the class for use with the SocketWrench
API. Once the server handle is detached from the class, no other class member functions may be
called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::DisableSecurity Method

BOOL DisableSecurity(
 SOCKET hSocket
);

BOOL DisableSecurity();

Disable secure communication with the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The DisableSecurity method disables a secure session, with subsequent calls to Read and Write
sending and receiving unencrypted data. It is important to note that because this method sends a
shutdown message to terminate the secure session, this may cause connection to be closed by the
remote host.

This method does not close the socket. Use the Disconnect method to close the socket and
release the resources allocated for the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableSecurity, SetCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Disconnect Method

BOOL Disconnect(
 SOCKET hSocket
);

BOOL Disconnect();

Disconnect the client, closing the socket handle and terminating the session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
Once the connection has been terminated, the client socket handle is no longer valid and should
no longer be used. Note that it is possible that the actual handle value may be re-used at a later
point when a new connection is established. An application should always consider the socket
handle to be opaque and never depend on it being a specific value.

This method sends an internal control message that notifies the server that this session should be
terminated. When the session thread is signaled that it should terminate, it will begin to release the
resources allocated for that session. To ensure that the client session terminates gracefully, there
may be a brief period of time where the session thread is still active after this method has
returned.

The Disconnect method should only be used to terminate client sessions and the server handle
should never be provided as the hSocket parameter. To stop the server, use the Stop method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::EnableSecurity Method

BOOL EnableSecurity(
 SOCKET hSocket
);

BOOL EnableSecurity();

Enable secure communication with the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The EnableSecurity method enables a secure communications session with the remote host,
automatically negotiating the encryption algorithm and validating the certificate specified by a
previous call to the SetCertificate method. This method will cause the calling thread to block and
wait for the client to initiate the TLS handshake.

This method is typically used to implement support for explicit TLS connections, where the client
establishes a standard, non-secure connection to the server and then negotiates a secure
connection at a later point. Usually this is done by the client sending a specific command to the
server, and the server calls EnableSecurity from within the OnRead event handler that processes
the command. If the method succeeds, all subsequent calls to Read and Write to receive and
send data will be encrypted.

This method is only used to enable a secure connection for a specific client session. If all client
connections should be secure, then call the SetOptions method to specify the
INET_OPTION_SECURE option prior to starting the server and call the SetCertificate method to
specify the server certificate that should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
DisableSecurity, SetCertificate, SetOptions

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

This method will enable logging for all network function calls made by the server process, not for a
particular client session or socket handle. The TRACE_HEXDUMP flag will include all of the data
exchanged between the server and the clients connected to it. This has the potential to generate
very large log files that can negatively impact the performance of the server. It is recommended
that you only enable trace logging for debugging purposes when absolutely necessary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::EnumClients Method

INT EnumClients(
 INTERNET_ADDRESS& ipAddress,
 SOCKET * lpClients,
 INT nMaxClients
);

INT EnumClients(
 LPCTSTR lpszAddress,
 SOCKET * lpClients,
 INT nMaxClients
);

INT EnumClients(
 SOCKET * lpClients,
 INT nMaxClients
);

Return a list of active client connections established with the server.

Parameters
ipAddress

A reference to an INTERNET_ADDRESS structure that contains the IP address that should be
matched against the clients connected to the server. Only those clients that have connected to
the server from this address will be returned in the lpClients array.

lpszAddress

A string that specifies the IP address that should be matched against the clients connected to
the server. Only those clients that have connected to the server from this address will be
returned in the lpClients array.

lpClients

Pointer to an array which will contain the socket handle for each active client session when the
method returns. If this parameter is NULL, then the method will return the number of active
client connections established with the server.

nMaxClients

Maximum number of socket handles to be returned in the lpClients array. If the lpClients
parameter is NULL, this parameter should have a value of zero.

Return Value
If the method succeeds, the return value is the number of active client connections to the server. A
return value of zero indicates that there are either no active client sessions, or no clients have
connected using the specified IP address. If the method fails, the return value is FTP_ERROR. To
get extended error information, call the GetLastError method.

Remarks
If the nMaxClients parameter is less than the number of active client connections, the method will
fail. To dynamically determine the number of active connections, call the method with the
lpClients parameter with a value of NULL, and the nMaxClients parameter with a value of zero.

This method will not enumerate clients that have disconnected from the server, even if the session
thread is still active. If the server is in the process of shutting down, this method will return zero,
indicating no active client sessions, even though there may be clients that are still in the process of

disconnecting from the server. To determine the actual number of client sessions regardless of
their status, use the GetClientThreads method.

Example
// Populate a listbox with the IP address for each client
pListBox->ResetContent();

INT nClients = pServer->EnumClients();
if (nClients > 0)
{
 SOCKET *phClients = new SOCKET[nClients];

 nClients = pServer->EnumClients(phClients, nClients);
 if (nClients == INET_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nIndex = 0; nIndex < nClients; nIndex++)
 {
 CString strAddress;

 if (pServer->GetClientAddress(phClients[nIndex], strAddress))
 pListBox->AddString(strAddress);
 }

 // Free the memory allocated for the socket handles
 delete phClients;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientAddress, GetClientThreads

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::EnumNetworkAddresses Method

INT EnumNetworkAddresses(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

INT EnumNetworkAddresses(
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

The EnumNetworkAddresses method returns the list of network addresses that are configured
for the local host.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_ANY Return both IPv4 or IPv6 addresses for the local host, depending
on how the system is configured and which network interfaces
are enabled. This option is only recommended for applications
that support IPv6.

INET_ADDRESS_IPV4 Specifies that the addresses should be in IPv4 format. The first
four bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant and an
application should not depend on them having any particular
value, including zero.

INET_ADDRESS_IPV6 Specifies that the addresses should be in IPv6 format. All bytes
in the ipNumber array are significant.

lpAddressList

A pointer to an array of INTERNET_ADDRESS structures that will contain the IP address of each
local network interface.

nMaxAddresses

Maximum number of addresses to be returned.

Return Value
If the function succeeds, the return value is the number of network addresses that are configured
for the local host. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_ANY, the application must be
prepared to handle IPv6 addresses because it is possible that an IPv6 address string has been
specified. For legacy applications that only recognize IPv4 addresses, the nAddressFamily member
should always be specified as INET_ADDRESS_IPV4 to ensure that only IPv4 addresses are

returned.

If this method is called without specifying the address family, the value INET_ADDRESS_IPV4 is
used. This is provided primarily for compatibility with legacy applications and it is recommended
that you explicitly specify the address family.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
FormatAddress, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::FindClient Method

SOCKET FindClient(
 UINT nClientId
);

SOCKET FindClient(
 LPCTSTR lpszMoniker
);

Returns a handle to the client which matches the specified client ID or moniker.

Parameters
nClientId

An unsigned integer the specifies a unique client ID for the session. This value must be greater
than zero.

lpszMoniker

A pointer to a string which specifies the client moniker to search for. This parameter cannot be
NULL and cannot specify an empty string.

Return Value
If the method succeeds, the return value is the handle to the client socket for the session that
matches the specified client ID or moniker. If the method fails, the return value is
INVALID_SOCKET. To get extended error information, call GetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session using the
SetClientMoniker method. This method will search all active client sessions for the server, and
returns the socket handle to the client that matches the specified moniker. If there is no match, an
error will be returned.

The moniker can be any string value, however monikers are not case sensitive and may not
contain embedded null characters. The maximum length of a moniker is 127 characters.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientMoniker, SetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Flush Method

BOOL Flush(
 SOCKET hSocket
);

BOOL Flush();

Flush the send and receive buffers for the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Flush method will flush any data waiting to be read or written to the remote host . It is
important to note that this method is not similar to flushing data to a disk file; it does not ensure
that a specific block of data has been written to the socket. For example, you should never call this
function immediately after calling the Write method or prior to calling the Disconnect method.

An application never needs to use the Flush method under normal circumstances. This method is
only to be used when the application needs to immediately return the socket to an inactive state
with no pending data to be read or written. Calling this function may result in data loss and should
only be used if you understand the implications of discarding any data which has been sent by the
client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::FormatAddress Method

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszAddress,
 INT cchAddress
);

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 CString& strAddress
);

The FormatAddress method converts a numeric IP address to a printable string. The format of
the string depends on whether an IPv4 or IPv6 address is specified.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric IP address that
should be converted to a string.

lpszAddress

A pointer to the buffer that will contain the formatted IP address. This buffer should be at least
46 characters in length. This may also reference a CString object which will contain the
formatted address when the method returns.

cchAddress

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is the length of the IP address string. If the method fails,
the return value is INET_ERROR, meaning that the IP address could not be converted into a string.
Typically this indicates that the pointer to the INTERNET_ADDRESS structure is invalid, or the data
does not specify a valid IP address family.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetLocalAddress, INTERNET_ADDRESS

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetActiveClient Method

SOCKET GetActiveClient();

Return the socket handle for the active client session.

Parameters
None.

Return Value
If the method succeeds, the return value is the socket handle for the active client session. If the
method fails, the return value is INVALID_SOCKET. To get extended error information, call the
GetLastError method.

Remarks
The GetActiveClient method returns a handle to the client socket for the active client session. The
active session is determined by the session thread that is currently executing, and therefore is only
meaningful within the context of a server event handler such as OnConnect or OnRead. The
value returned by the his method is the same as the client socket handle that is passed to the
event handler.

This method will fail within an OnAccept event handler because at that point the connection has
not yet been accepted, therefore there is no active client session. It will also fail if called outside of
an event handler. To obtain the socket handle associated with a particular session thread, use the
GetThreadClient method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientHandle, GetClientThreadId, GetThreadClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetAdapterAddress Method

INT GetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 CString& strAddress
);

Return the IP or MAC assigned to the specified network adapter.

Parameters
nAdapterIndex

An integer value that identifies the network adapter.

nAddressType

An integer value which specifies the type of address that should be returned:

Constant Description

INET_ADAPTER_IPV4 The address string will contain the primary IPv4 unicast address
assigned to the network adapter.

INET_ADAPTER_IPV6 The address string will contain the primary IPv6 unicast address
assigned to the network adapter.

INET_ADAPTER_MAC The address string will contain the media access control (MAC)
address assigned to the network adapter.

lpszAddress

A string buffer that will contain the IP or MAC address assigned to the adapter. This parameter
cannot be NULL and it is recommended that it be at least 64 characters in length to provide
enough space for any address type. An alternate form of the method accepts a CString
argument which will contain the address.

nMaxLength

The maximum number of characters that can be copied into the string buffer, including the
terminating null character. If the buffer is too small to store the complete address, this method
will fail.

Return Value
If the method succeeds, the return value is the number of characters copied to the string buffer,
not including the terminating null character. A return value of zero indicates that the requested
address type has not been assigned to the adapter. If the method fails, the return value is
INET_ERROR and this typically indicates that either the adapter index is invalid or the string buffer
is not large enough to store the complete address. To get extended error information, call
GetLastError.

Remarks

The GetAdapterAddress method will return the IPv4, IPv6 or MAC address assigned to a specific
network adapter. The primary network adapter has an index value of zero, and it increments for
each adapter that is configured on the local system.

The media access control (MAC) address is a 48 bit or 64 bit value that is assigned to each
network interface and is used for identification and access control. All network devices on the
same subnet must be assigned their own unique MAC address. Unlike IP addresses which may be
assigned dynamically and can be frequently changed, MAC addresses are considered to be more
permanent because they are usually assigned by the device manufacturer and stored in firmware.
Note that in some cases it is possible to change the address assigned to a device, and virtual
network interfaces may have configurable MAC addresses.

This method returns the MAC address string as sequence of hexadecimal values separated by a
colon. An example of a 48 bit MAC address would be "01:23:45:67:89:AB". Note that some virtual
network adapters may not have a MAC address assigned to them, in which case this method
would return zero.

This method will ignore network adapters that have been disabled, as well as those that are bound
to a virtual loopback interface. If the system has dial-up networking or virtualization software
installed, this method may also return IP addresses assigned to a virtualized network adapters
installed by that software.

Example
// Display the IPv4 address assigned to each network adapter
for (INT nIndex = 0;; nIndex++)
{
 CString strAddress;

 if (pServer->GetAdapterAddress(nIndex, INET_ADAPTER_IPV4, strAddress) ==
INET_ERROR)
 break;

 _tprintf(_T("Adapter %d: %s\n"), nIndex, szAddress);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnumNetworkAddresses, GetLocalAddress, GetLocalName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetAddress Method

INT GetAddress(
 LPCTSTR lpszAddress,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

INT GetAddress(
 LPCTSTR lpszAddress,
 LPINTERNET_ADDRESS lpAddress
);

The GetAddress method converts an IP address string to binary format.

Parameters
lpszAddress

A pointer to a null terminated string which specifies an IP address. This method recognizes the
format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address specified by the lpszAddress parameter. It may
be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the value of the
lpszAddress parameter.

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not
significant and an application should not depend on
them having any particular value, including zero. If the
lpszAddress parameter does not specify a valid IPv4
address string, this method will fail.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. All
bytes in the ipNumber array are significant. If the
lpszAddress parameter does not specify a valid IPv6
address string, this method will fail.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible that an IPv6 address string has been
specified. For legacy applications that only recognize IPv4 addresses, the nAddressFamily member

should always be specified as INET_ADDRESS_IPV4 to ensure that only IPv4 addresses are
returned and any attempt to specify an IPv6 address string would result in an error.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, IsAddressNull, IsAddressRoutable, IsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetAddressFamily Method

INT GetAddressFamily(
 LPCTSTR lpszAddress,
);

Return the address family for the specified IP address.

Parameters
lpszAddress

A pointer to a string which specifies an IP address. This method recognizes the format for both
IPv4 and IPv6 format addresses.

Return Value
If the method succeeds, the return value is the address family for the specified IP address and may
be one of the values listed below. If the method fails, the return value is
INET_ADDRESS_UNKNOWN. To get extended error information, call the GetLastError method.

Constant Description

INET_ADDRESS_IPV4 The address passed to the method is a valid IPv4 address.

INET_ADDRESS_IPV6 The address passed to the method is a valid IPv6 address.

Remarks
The GetAddressFamily method returns the address family associated with the specified IP
address string. This can be used to determine if a string specifies a valid IPv4 or IPv6 address that
can be passed to other methods such as Connect. Note that this method will not attempt to
resolve hostnames, it will only accept IP addresses.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsAddressNull, IsAddressRoutable, IsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetBacklog Method

UINT GetBacklog();

Return the size of the backlog connection queue for the server.

Parameters
None.

Return Value
The return value is the size of the queue used to accept client connections.

Remarks
The GetBacklog method returns the size of the queue allocated for pending client connections. A
value of zero specifies that the size of the queue should be set to a reasonable default value. On
Windows server platforms, the maximum value is large enough to queue several hundred pending
connections. To change the size of the backlog queue, use the SetBacklog method prior to
starting the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetBacklog, Start, Data Members

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientAddress Method

INT GetClientAddress(
 SOCKET hSocket,
 LPINTERNET_ADDRESS lpAddress,
 UINT * lpnRemotePort
);

INT GetClientAddress(
 SOCKET hSocket,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetClientAddress(
 SOCKET hSocket,
 CString& strAddress
);

Return the IP address and port number for the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to a server or client socket. If this parameter is
omitted, the socket handle for the active client session will be used. If this method is called
outside of a server event handler, the socket handle must be specified.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the client that is
connected to the server. This parameter may be NULL, in which case the IP address will not be
returned to the caller.

lpnRemotePort

A pointer to an unsigned integer that will contain the port number of the client that is
connected to the server. This parameter may be NULL, in which case the port number will not
be returned to the caller.

lpszAddress

A pointer to a string buffer that will contain the formatted IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length.

nMaxLength

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
If this method is called within an OnAccept event handler, passing the server handle as the
hSocket parameter will return the IP address and port number for the client that is attempting to
establish the connection. If the client address is unavailable, the ipFamily member of the
INTERNET_ADDRESS structure will be zero.

The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientPort, OnAccept, OnConnect, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientData Method

BOOL GetClientData(
 SOCKET hSocket,
 LPVOID * lppvData
);

BOOL GetClientData(
 LPVOID * lppvData
);

Returns the application defined data associated with the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpvData

A pointer to a void pointer which will contain an application defined value associated with the
client session.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the client session could not be retrieved. To get extended error
information, call GetLastError.

Remarks
The GetClientData method is used to retrieve the application defined data that was previously
associated with a client session using the SetClientData method. This is typically used to associate
a pointer to a data structure or a class instance with a specific client handle.

This method can only be used with client socket handles created using the server interface. If the
socket handle is invalid, or does not reference a client socket handle created by the server, the
lppvData pointer passed to this method will be initialized to a value of NULL and the method will
return a value of zero.

If this method is called with a valid socket handle and there is no data associated with the socket,
the method will return a non-zero value and the lppvData pointer will be returned with a NULL
value. Before dereferencing the pointer returned by this method, the application should always
check the return value to ensure the method succeeded and make sure that the pointer is not
NULL.

Example
UINT *pnValue1 = new UINT;
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (!pServer->SetClientData(hClient, pnValue1))
{
 // Unable to associate the data with this session
 return;

}

if (!pServer->GetClientData(hClient, (LPVOID *)&pnValue2))
{
 // Unable to retrieve the data associated with this session
 return;
}

// pnValue2 == pnValue1
printf("The value of the user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetClientData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientHandle Method

SOCKET GetClientHandle(
 UINT nClientId
);

Returns the handle for a specific client session based on its ID number.

Parameters
nClientId

An unsigned integer value which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is the socket handle for the specified client session. If the
method fails, the return value is INVALID_SOCKET. To get extended error information, call
GetLastError.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value called the
client ID. The GetClientHandle method will return the socket handle that is associated with the
specified client ID. Unlike socket handles, which are reused by the operating system, the client ID is
guaranteed to be unique throughout the lifetime of the server. To obtain the ID associated with
the client session, use the GetClientId method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientId, GetClientMoniker, SetClientMoniker, GetThreadClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientId Method

UINT GetClientId(
 SOCKET hSocket
);

UINT GetClientId();

Returns the unique ID number assigned to the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is an unsigned integer value which uniquely identifies the
client session. If the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value can be obtained by calling the GetClientId method and used by the application to identify
that client session. The GetClientHandle method can then be used to used to obtain the client
socket handle for the session, based on that client ID. It is important to note that the actual value
of the client ID should be considered opaque. It is only guaranteed that the value will be greater
than zero, and that it will be unique to the client session.

While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientHandle, GetClientMoniker, SetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientIdleTime Method

DWORD GetClientIdleTime(
 SOCKET hSocket
);

DWORD GetClientIdleTime();

Returns the number of milliseconds that the specified client session has been idle.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is an unsigned integer value which specifies the number
of milliseconds the client session has been idle. If the method fails, the return value is INFINITE. To
get extended error information, call GetLastError.

Remarks
The GetClientIdleTime method will return the number of milliseconds that have elapsed since
data was exchanged with the client. The elapsed time is limited to the resolution of the system
timer, which is typically in the range of 10 milliseconds to 16 milliseconds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientHandle, GetClientId, GetClientMoniker, GetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientMoniker Method

INT GetClientMoniker(
 SOCKET hClient,
 LPTSTR lpszMoniker,
 INT nMaxLength
);

INT GetClientMoniker(
 SOCKET hClient,
 CString& strMoniker
);

The GetClientMoniker method returns the moniker associated with the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpszMoniker

Pointer to a string buffer that will contain the moniker for the specified client session when the
method returns. An alternate version of this method accepts a CString object if it is available.

nMaxLength

The maximum number of characters that may be copied into the string buffer. The buffer must
be large enough to store the moniker and a terminating null character. The maximum length of
a moniker is 127 characters.

Return Value
If the method succeeds, the return value is the number of characters in the moniker string. A
return value of zero specifies that no moniker was assigned to the socket. If the method fails, the
return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session using the
SetClientMoniker method. This method will return the moniker that was previously assigned to
the client, if any. To obtain the socket handle associated with a given moniker, use the FindClient
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
FindClient, GetClientId, SetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientPort Method

INT GetClientPort(
 SOCKET hSocket
);

INT GetClientPort();

Returns the remote port number used by the client to establish the connection.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is the port number. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The GetClientPort method returns the remote port number that the client is bound to. Note that
this is not the port number that the server is using to listen for connections, it is the port number
that the client is bound to on the remote host. Typically this is an ephemeral port, either in the
range of 1025 through 5000, or greater than 32768, depending on the client operating system.

If this method is called within the OnAccept event handler, providing the server socket handle as
the hSocket parameter will return the port number of the client that is attempting to establish the
connection.

It is not recommended that you use the client port number for anything other than informational
and logging purposes. Do not make any assumptions about the specific port number or range of
port numbers that a client is using when establishing a connection to the server. The ephemeral
port number that a client is bound to can vary based on the client operating system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientAddress, OnAccept, OnConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientServer Method

SOCKET HttpGetClientServer(
 UINT nClientId
);

The GetClientServer method returns a handle to the server that created the specified client
session.

Parameters
nClientId

An unsigned integer which uniquely identifies the client session.

Return Value
If the method succeeds, the return value is the handle to the server that created the client session.
If the method fails, the return value is INVALID_SOCKET. To get extended error information, call
the GetLastError method.

Remarks
The GetClientServer method returns the handle to the server that created the client session and
is typically used within a notification message handler. If the server is in the process of shutting
down, or the client session thread is terminating, this method will fail and return INVALID_SOCKET
indicating that the session ID is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AsyncNotify

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientServerById Method

SOCKET GetClientServerById(
 UINT nClientId
);

The GetClientServerById method returns a socket handle to the server for the specified client
session identifier.

Parameters
nClientId

Client session identifier.

Return Value
If the method succeeds, the return value is the handle to the server that created the client session.
If the method fails, the return value is INVALID_SOCKET. To get extended error information, call
the GetLastError method.

Remarks
The GetClientServerById method returns the handle to the server that created the client session
using the client's unique identifier. The GetClientServer method can be used to obtain the server
handle using the client socket handle rather than the client session ID. This method is typically
used in conjunction with the INET_NOTIFY_CONNECT notification message to obtain the handle
to the server that generated the event using the client ID passed in the wParam message
parameter.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AsyncNotify, GetClientHandle, GetClientId, GetClientServer

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientThreadId Method

DWORD GetClientThreadId(
 SOCKET hSocket
);

DWORD GetClientThreadId();

Returns the thread ID associated with the specified client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

Return Value
If the method succeeds, the return value is a thread ID. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The GetClientThreadId method returns a thread ID that can be used to identify the thread that is
managing the client session. The thread ID can be used with other Windows API functions such as
OpenThread. Exercise caution when using thread-related functions, interfering with the normal
operation of the thread can have unexpected results. You should never use this method to obtain
a thread handle and then call the TerminateThread function to terminate a client session. This will
prevent the thread from releasing the resources that were allocated for the session and can leave
the server in an unstable state. To terminate a client session, use the Disconnect method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
EnumClients, GetActiveClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetClientThreads Method

INT GetClientThreads();

Returns the number of client session threads created by the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the number of client session threads that have been
created by the server. If the method fails, the return value is INET_ERROR. To get extended error
information, call the GetLastError method.

Remarks
The InetGetClientThreads function returns the number of threads that are managing client
sessions for the specified server. If there are no clients connected to the server, this function will
return a value of zero. Because this function returns the number of session threads, the value
returned will include those clients that are in the process of disconnecting from the server but their
session thread has not yet terminated. This differs from the InetEnumServerClients function
which will only enumerate active clients.

If you wish to determine when the last client has disconnected from the server, call this function
within an event handler for the INET_EVENT_DISCONNECT event. If the function returns a value
greater than one, then there are other client sessions that are either connected or in the process
of terminating.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnumClients

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetExternalAddress Method

INT GetExternalAddress(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress,
 INT nMaxLength
);

INT GetExternalAddress(
 INT nAddressFamily,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetExternalAddress(
 INT nAddressFamily,
 CString& strAddress
);

The GetExternalAddress method returns the external IP address for the local system.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The method
will attempt to determine the external IP address using an IPv4
network connection.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. The method
will attempt to determine the external IP address using an IPv6
network connection and requires that the local host have an
IPv6 network interface installed and enabled.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the external IP address of the
local host in binary form.

lpszAddress

A pointer to a string buffer that will contain the external IP address of the local host.

nMaxLength

The maximum length of the string that will contain the IP address when the method returns.

Return Value
In the first form of the method, if it succeeds, the return value is the IP address of the local system
in numeric form. If the method fails, the return value is INET_ADDRESS_NONE. In the second form,
the return value is the length of the IP address string and an error is indicated by the return value
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The GetExternalAddress method returns the IP address assigned to the router that connects the

local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the GetLocalAddress method will only return the IP address for the local system on
the LAN side of the network unless a connection has already been established to a remote host.
The GetExternalAddress function can be used to determine the IP address assigned to the router
on the Internet side of the connection and can be particularly useful for servers running on a
system behind a NAT router.

This method requires that you have an active connection to the Internet and calling this function
on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. An application should always check the return value in
case there is an error; never assume that the return value is always a valid address. The function
may be unable to determine the external IP address for the local host for a number of reasons,
particularly if the system is behind a firewall or uses a proxy server that restricts access to external
sites on the Internet. If the function is able to obtain a valid external address for the local host, that
address will be cached by the library for sixty minutes. Because dial-up connections typically have
different IP addresses assigned to them each time the system is connected to the Internet, it is
recommended that this function only be used with broadband connections where a NAT router is
being used.

Calling this function may cause the current thread to block until the external IP address can be
resolved and should never be used in conjunction with asynchronous socket connections. If you
need to call this function in an application which uses asynchronous sockets, it is recommended
that you create a new thread and call this function from within that thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetHostAddress, GetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetHandle Method

SOCKET GetHandle();

The GetHandle method returns the socket handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the socket handle associated with the current instance of the class object. If
there is no active connection, the value INVALID_SOCKET will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketWrench
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetHostAddress Method

INT GetHostAddress(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

INT GetHostAddress(
 LPCTSTR lpszHostName,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetHostAddress method resolves the specified host name into an IP address in binary
format.

Parameters
lpszHostName

A pointer to the name of the host to resolve; this may be a fully-qualified domain name or an IP
address. This method recognizes the format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on how the host name can be
resolved. By default, a preference will be given for
returning an IPv4 address. However, if the host only has
an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the specified
host.

Return Value
If the method succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This method can also be used to convert an address in dot notation to a binary format. If the
method must perform a DNS lookup to resolve the hostname, the calling thread will block. To
ensure future compatibility with IPv6 networks, it is important that the application does not make
any assumptions about the format of the address. If the function returns successfully, the ipFamily
member of the INTERNET_ADDRESS structure should always be checked to determine the type
of address.

The nAddressFamily parameter is used to specify a preference for the type of address returned,
however it is possible that a host may not have an IPv4 or IPv6 address record, in which case this
function will fail. Although IPv4 is still the most common address used at this time, an application
should not assume that because a given host name does not have an IPv4 address, that the host
name is invalid.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for a host name to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszHostName parameter specifies an host that only has an IPv6 (AAAA) DNS record.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetHostName, GetLocalAddress, GetLocalName, IsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetHostName Method

INT GetHostName(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszHostName,
 INT cchHostName
);

INT GetHostName(
 LPINTERNET_ADDRESS lpAddress,
 CString& strHostName
);

The GetHostName method performs a reverse lookup, returning the host name associated with a
given IP address.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the IP address that should be
resolved into a host name.

lpszHostName

A pointer to the buffer that will contain the host name. It is recommended that this buffer be at
least 256 characters in length to accommodate the longest possible fully qualified domain
name. This parameter cannot be NULL. An alternate form of the method accepts a CString
argument which will contain the hostname.

cchHostName

The maximum number of characters that can be copied into the buffer.

Return Value
If the method succeeds, the return value is the length of the hostname. If the method fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the method must perform a reverse DNS lookup to resolve the IP address into a host name, the
calling thread will block. This method requires that the host have a PTR record, otherwise it will fail.
Because many hosts do not have a PTR record, calling this method frequently may have a
negative impact on the overall performance of the application.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetHostAddress, GetLocalAddress, GetLocalName, IsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_SOCKET or INET_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetLocalAddress Method

INT GetLocalAddress(
 LPINTERNET_ADDRESS lpAddress,
 UINT * lpnPort
);

INT GetLocalAddress(
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetLocalAddress(
 CString& strAddress
 UINT * lpnPort
);

Return the local IP address and port number for the server.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the local host. If
the server is not active, this function will attempt to determine the IP address of the local host
assigned by the system. If the address is not required, this parameter may be NULL.

lpszAddress

A pointer to a null terminated string that will contain the IP address of the local host. If this
version of the method is used, the IP address is converted to a string format using the
FormatAddress method. The string should be able to store at least 46 characters to ensure
that both IPv4 and IPv6 formatted addresses can be returned without the possibility of a buffer
overrun. An alternate form of the method accepts a CString argument which will contain the
line of text returned by the server.

lpnPort

A pointer to an unsigned integer that will contain the local port number. If the server is active,
this parameter will be set to the local port that the listening socket was bound to. If the server is
not active, this parameter is ignored. If the port number is not required, this parameter may be
NULL.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
To ensure future compatibility with IPv6 networks, it is important that the application does not
make any assumptions about the format of the address. If the function returns successfully, the
ipFamily member of the INTERNET_ADDRESS structure should always be checked to determine
the type of address.

If the system is connected to the Internet through a local network and/or uses a router that
performs Network Address Translation (NAT), the GetLocalAddress method will return the local,
non-routable IP address assigned to the local system. To determine the public IP address has
been assigned to the system, you should use the GetExternalAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetExternalAddress, GetHostAddress, GetHostName, GetLocalName,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetLocalName Method

INT GetLocalName(
 LPTSTR lpszHostName,
 INT cchHostName
);

INT GetLocalName(
 CString& strHostName
);

The GetLocalName method returns the hostname assigned to the local system.

Parameters
lpszHostName

A pointer to the buffer that will contain the hostname. This parameter cannot be NULL. An
alternate form of the method accepts a CString argument which will contain the local
hostname.

cchHostName

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is the length of the hostname. If the method fails, the
return value is INET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientAddress, GetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetOptions Method

DWORD GetOptions();

Return the current server options.

Parameters
None.

Return Value
This method returns an unsigned integer value that specifies the server options that are currently
enabled for the class instance. For a list of the available options, see Server Option Constants. This
method returns the value of the m_dwOptions class member variable.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetOptions, Data Members

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/optionconst.html

 CInternetServer::GetPriority Method

INT GetPriority();

Return the current priority assigned to the specified server.

Parameters
None.

Return Value
If the method succeeds, the return value is the priority for the specified server. If the method fails,
the return value is INET_PRIORITY_INVALID. To get extended error information, call the
GetLastError method.

Remarks
The GetPriority method can be used to determine the current priority assigned to the server. It
will return one of the following values:

Constant Description

INET_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory, processor and
network resource utilization for the server. It is typically used
with lightweight services running in the background that are
designed for few client connections. The server thread will be
assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for the
server and meters the processor utilization for the server
thread. The server thread will be assigned a lower scheduling
priority and will occasionally be forced to yield execution to
other threads.

INET_PRIORITY_NORMAL
(2)

The default priority which balances resource and processor
utilization. This is the priority that is initially assigned to the
server when it is started, and it is recommended that most
applications use this priority.

INET_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization for the
server and the thread will be given higher scheduling priority.
It is not recommended that this priority be used on a system
with a single processor.

INET_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor, memory and
network utilization. The server thread will be given higher
scheduling priority and will be more responsive to client
connection requests. It is not recommended that this priority
be used on a system with a single processor.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetStackSize Method

DWORD GetStackSize();

Return the initial size of the stack allocated for threads created by the server.

Parameters
None.

Return Value
If the method succeeds, the return value is the amount of memory that will be allocated for the
stack in bytes. If the method fails, the return value is zero. To get extended error information, call
GetLastError.

Remarks
The GetStackSize method returns the initial amount of memory that is committed to the stack for
each thread created by the server. By default, the stack size for each thread is set to 256K for 32-
bit processes and 512K for 64-bit processes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetStackSize, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetStatus Method

INT GetStatus();

Return the current status of the server.

Parameters
None.

Return Value
An integer value that specifies the server status.

Remarks
The return value is one of the following values:

Constant Description

INET_SERVER_INACTIVE The server is currently inactive.

INET_SERVER_STARTED The server has initialized and is preparing to listen for client
connections.

INET_SERVER_LISTENING The server is actively listening for incoming client connections.

INET_SERVER_SUSPENDED The server has been suspended and is no longer accepting client
connections.

INET_SERVER_SHUTDOWN The server has been stopped and is in the process of terminating
all active client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsInitialized, IsListening, IsLocked

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetStreamInfo Method

BOOL GetStreamInfo(
 SOCKET hSocket
 LPINETSTREAMINFO lpStreamInfo
);

BOOL GetStreamInfo(
 LPINETSTREAMINFO lpStreamInfo
);

The GetStreamInfo function fills a structure with information about the current stream I/O
operation.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpSecurityInfo

A pointer to an INETSTREAMINFO structure which contains information about the status of the
current operation.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetStreamInfo method returns information about the current streaming socket operation,
including the average number of bytes transferred per second and the estimated amount of time
until the operation completes. If there is no operation currently in progress, this method will return
the status of the last successful streaming read or write performed by the client.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
ReadStream, StoreStream, WriteStream, INETSTREAMINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetThreadClient Method

SOCKET WINAPI InetGetThreadClient(
 DWORD dwThreadId
);

The GetThreadClient method returns the socket handle for the client session that is being
managed by the specified thread.

Parameters
dwThreadId

An unsigned integer value which identifies the thread managing the client session. If this
parameter has a value of zero, then the client handle for the current thread is returned.

Return Value
If the method succeeds, the return value is the socket handle for the specified client session. If the
method fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The GetThreadClient is used to obtain the socket handle for the client session that is being
managed by the specified thread. If the specified thread ID is zero, then the method will return the
client socket for the current thread, otherwise it will search the internal table of all active client
sessions and return the handle to the session that is being managed by that thread.

This method will fail if the thread ID does not specify an active client session thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetActiveClient GetClientHandle, GetClientId, GetClientThreadId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::GetTimeout Method

INT GetTimeout();

Return the timeout interval for blocking network operations in seconds.

Parameters
None.

Return Value
The return value is the timeout period in seconds. If there is no active server, this will return the
timeout period that will be used when the server is started. A value of zero specifies that a
reasonable default timeout period will be automatically selected.

Remarks
The GetTimeout method returns the number of seconds the server will wait for a blocking
network operation to complete, such as sending or receiving data. This value also determines the
amount of time that the server will wait for the client to send data before invoking the OnTimeout
event handler for that session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, SetTimeout, OnTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsActive Method

BOOL IsActive();

Determine if the server has been started.

Return Value
This method returns a non-zero value if the server has been started. If the server is stopped this
method will return zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
CInternetServer, IsListening, Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsAddressNull Method

BOOL IsAddressNull(
 LPCTSTR lpszAddress
);

BOOL IsAddressNull(
 LPINTERNET_ADDRESS lpAddress
);

The IsAddressNull method determines if the IP address is null.

Parameters
lpszAddress

A string that specifies the IP address.

lpAddress

A pointer to an INTERNET_ADDRESS structure that specifies the IP address.

Return Value
If the method succeeds and the IP address is null, or the parameter is a NULL pointer, the return
value is non-zero. If the method fails or the address is not null, the return value is zero. If the
address family is not supported, the last error code will be updated. If the address is valid but not
null, the last error code will be set to NO_ERROR.

Remarks
A null IP address is one where all bits for the address (32 bits for IPv4 or 128 bits for IPv6) are zero.
This is a special address that is typically used when creating a passive socket that should listen for
connections on all available network interfaces.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, IsAddressRoutable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsAddressRoutable Method

BOOL IsAddressRoutable(
 LPCTSTR lpszAddress
);

BOOL IsAddressRoutable(
 LPINTERNET_ADDRESS lpAddress
);

The IsAddressRoutable method determines if the IP address is routable over the Internet.

Parameters
lpszAddress

A string that specifies the IP address.

lpAddress

A pointer to an INTERNET_ADDRESS structure that specifies the IP address.

Return Value
If the method succeeds and the IP address is routable over the Internet, the return value is non-
zero. If the method fails or the address is not routable, the return value is zero. If the parameter is
NULL, or the address family is not supported, the last error code will be updated. If the address is
valid but not routable, the last error code will be set to NO_ERROR.

Remarks
A routable IP address is one that can be reached by anyone over the public Internet. These are
also commonly referred to as "public addresses" which are typically assigned to networks and
individual hosts by an Internet service provider. There are also certain addresses that are not
routable over the Internet, and used to address systems over a local network or private intranet.
This function can be used to determine if a given IP address is public (routable) or private.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, GetExternalAddress, IsAddressNull, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CInternetServer, IsListening, IsLocked

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsListening Method

BOOL IsListening();

Determine if the server is listening for client connections.

Parameters
None.

Return Value
If the server has started and is listening for client connections, the method returns a non-zero
value. If the server is not listening for connections, the return value is zero.

Remarks
The IsListening method determines if the server has been started and is actively listening for
incoming connection requests from client applications. This method will return zero if the server is
not active, if it has been suspended using the Suspend method or if the Stop method has been
called to shutdown the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsActive, Start, Stop, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsLocked Method

BOOL IsLocked();

Determine if the server is currently in a locked state.

Parameters
None.

Return Value
If the server is locked, the method returns a non-zero value. If the server is not locked, the return
value is zero.

Remarks
The IsLocked method determines if a server has been locked using the Lock method. Only the
thread that has locked the server may interact with it and all other threads will block when they
attempt to perform a network operation. After the server is unlocked, the blocked threads will
resume normal execution. If the application has created multiple instances of the CInternetServer
class, this method will return a non-zero value if any of those servers have been locked, not only
the current instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Lock, Unlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsProtocolAvailable Method

BOOL IsProtocolAvailable(
 INT nAddressFamily,
 INT nProtocol
);

The IsProtocolAvailable method determines if the operating system supports creating a socket
for the specified address family and protocol.

Parameters
nAddressFamily

An integer which identifies the address family that should be checked. It should be one of the
following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the function should determine if it can create an
Internet Protocol version 4 (IPv4) socket. This requires that the
system have an IPv4 TCP/IP stack bound to at least one network
adapter on the local system. All Windows systems include
support for IPv4 by default.

INET_ADDRESS_IPV6 Specifies that the function should determine if it can create an
Internet Protocol version 6 (IPv6) socket. This requires that the
system have an IPv6 TCP/IP stack bound to at least one network
adapter on the local system. Windows XP and Windows Server
2003 includes support for IPv6, however it is not installed by
default. Windows Vista and later versions include support for
IPv6 and enable it by default.

nProtocol

An integer which identifies the protocol that should be checked. It should be one of the
following values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This requires
that the system be capable of creating a stream socket using
the specified address family.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. This
requires that the system be capable of creating a datagram
socket using the specified address family.

Return Value
If the the system is capable of creating a socket using the specified address family and protocol,
this method will return a non-zero value. If the combination of address family and protocol is not
supported, this method will return a value of zero.

Remarks

The IsProtocolAvailable method is used to determine if the operating system supports creating a
particular type of socket. Typically it is used by an application to determine if the system has an
IPv6 TCP/IP stack installed and configured. By default, all Windows systems will have an IPv4 stack
installed if the system has a network adapter. However, not all systems may have an IPv6 stack
installed, particularly older Windows XP and Windows Server 2003 systems. Note that if an IPv6
stack is not installed, the library will not recognize IPv6 addresses and cannot resolve host names
that only have an IPv6 (AAAA) record, even if the address or host name is valid.

Example
if (!pSocket->IsProtocolAvailable(INET_ADDRESS_IPV6, INET_PROTOCOL_TCP))
{
 AfxMessageBox(_T("This system does not support IPv6"), MB_ICONEXCLAMATION);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsReadable Method

BOOL IsReadable();

BOOL IsReadable(
 SOCKET hSocket
);

BOOL IsReadable(
 SOCKET hSocket,
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

nTimeout

Timeout for remote host response, in seconds. A value of zero specifies that the connection
should be polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the server can read data from the client within the specified timeout period, the method returns
a non-zero value. If there is no data available to be read, the method returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

If the connection is secure, the value returned in lpdwAvail will reflect the number of bytes
available in the encrypted data stream. The actual amount of data available to the application after
it has been decrypted will vary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsWritable, Peek, Read, ReadLine, ReadStream

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the remote host.

Parameters
nTimeout

Timeout for remote host response, in seconds. A value of zero specifies that the connection
should be polled without blocking the current thread.

Return Value
If data can be sent to the client within the specified timeout period, the method returns a non-
zero value. The method will return zero if the socket send buffer is full.

Remarks
The IsWritable method cannot be used to determine the amount of data that can be sent to the
client without blocking the current thread. A non-zero return value only indicates that the send
buffer is not full and can accept some data. In most cases, it is recommended that larger blocks of
data be broken into smaller logical blocks rather than attempting to send it all of the data at once.
For very large streams of data, it is recommended that you use the WriteStream method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Lock Method

BOOL Lock();

Lock the server, causing other client threads to block until it is unlocked.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The Lock method causes the specified server to enter a locked state where only the current thread
may interact with the server and the clients that are connected to it. While a server is locked, all
other threads will block when they attempt to perform a network operation. When the server is
unlocked, the blocked threads will resume normal execution.

This method should be used carefully, and a server should never be left in a locked state for an
extended period of time. It is meant to be used when the server process updates a global data
structure and it must prevent any other threads from performing a network operation during the
update. Only one server can be locked at any one time, and once a server has been locked, it can
only be unlocked by the same thread.

The program should always check the return value from this method, and should never assume
that the lock has been established. If more than one thread attempts to lock a server at the same
time, there is no guarantee as to which thread will actually establish the lock. If a potential
deadlock situation is detected, this method will fail and return a value of zero.

Every time the Lock method is called, an internal lock counter is incremented, and the lock will not
be released until the lock count drops to zero. This means that each call to the Lock method must
be matched by an equal number of calls to the Unlock method. Failure to do so will result in the
server becoming non-responsive as it remains in a locked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsLocked, Unlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::MatchHostName Method

BOOL MatchHostName(
 LPCTSTR lpszHostName,
 LPCTSTR lpszHostMask
 BOOL bResolve
);

The MatchHostName method matches a host name against one more strings that may contain
wildcards.

Parameters
lpszHostName

A pointer to a string which specifies the host name or IP address to match.

lpszHostMask

A pointer to a string which specifies one or more values to match against the host name. The
asterisk character can be used to match any number of characters in the host name, and the
question mark can be used to match any single character. Multiple values may be specified by
separating them with a semicolon.

bResolve

A boolean value which specifies if the host name or IP address should be resolved when
matching the host against the mask string. If this parameter is non-zero, two checks against the
host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is zero, then the match is made only against the host name string
provided.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The MatchHostName method provides a convenient way for an application to determine if a
given host name matches one or more mask strings which may contain wildcard characters. For
example, the host name could be "www.microsoft.com" and the host mask string could be
"*.microsoft.com". In this example, the method would return a non-zero value indicating the host
name matched the mask. However, if the mask string was "*.net" then the method would return
zero, indicating that there was no match. Multiple mask values can be combined by separating
them with a semicolon; for example, the mask "*.com;*.org" would match any host name in either
the .com or .org top-level domains.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Peek Method

INT Peek(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Peek(
 LPBYTE lpBuffer,
 INT cbBuffer
);

Read data from the client without removing it from the socket buffer.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpBuffer

Pointer to the buffer in which the data will be stored. This argument may be NULL, in which
case no data is copied from the socket buffers, however the function will return the number of
bytes available to read.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. If the lpBuffer
parameter is not NULL, this value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes available to read from the socket.
A return value of zero indicates that there is no data available to read at that time. If the function
fails, the return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be
consumed by a subsequent call to the Read method. The return value indicates the number of
bytes that can be read in a single operation, up to the specified buffer size. However, it is
important to note that it may not indicate the total amount of data available to be read from the
socket at that time.

If no data is available to be read, the method will return a value of zero. To determine if there is
data available to be read, use the IsReadable method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Read, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::PreProcessEvent Method

virtual LONG PreProcessEvent(
 SOCKET hServer,
 UINT nClientId,
 UINT nEventId,
 DWORD dwError,
 BOOL& bHandled
);

A virtual method that is invoked for each event generated by the server.

Parameters
hServer

The server handle. The application should treat this as an opaque value that is only valid as long
as the server is active. This value should not be stored by the application and the handle value
will change if the server is restarted.

nClientId

An unsigned integer which uniquely identifies the client that has issued a request to the server.
This value is guaranteed to be unique to the client session throughout the life of the server and
is never reused. The application should never make assumptions about the order in which IDs
are allocated to the client sessions.

nEventId

An unsigned integer which specifies which event occurred. For a list of events, see Server Event
Constants.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

bHandled

An integer which specifies if the event has been handled by the application. If this parameter is
set to a non-zero value, the default event handler will not be invoked for the event.

Return Value
The method should return a value of zero to indicate that the default event handler should be
invoked for the event. If the method returns a non-zero value, this value is passed back to the
event dispatcher and the default handler will not be invoked.

Remarks
The PreProcessEvent method is invoked for each event that is generated, prior to the default
handler for that event. To implement an event handler, the application should create a class
derived from the CInternetServer class, and then override this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

file:///C|/Projects/cstools11/pdf/tcpsrv/class/eventconst.html
file:///C|/Projects/cstools11/pdf/tcpsrv/class/eventconst.html

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Read Method

INT Read(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

Read data from the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpBuffer

Pointer to the buffer in which the data will be stored. This parameter cannot be NULL.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes read. A return value of zero
indicates that the client has closed the connection and there is no more data available to be read.
If the method fails, the return value is INET_ERROR. To get extended error information, call the
GetLastError method.

Remarks
The Read method will read up to the specified number of bytes and store the data in the buffer
provided by the caller. If there is no data available to be read at the time this method is invoked,
the session thread will block until at least one byte of data becomes available, the timeout period
elapses or an error occurs. This method will return if any amount of data is sent by the client, and
will not block until the entire buffer has been filled.

The application should never make an assumption about the amount of data that will be available
to read. TCP considers all data to be an arbitrary stream of bytes and does not impose any
structure on the data itself. For example, if the client is sending data to the server in fixed 512 byte
blocks of data, it is possible that a single call to the Read method will return only a partial block of
data, or it may return multiple blocks combined together. It is the responsibility of the application
to buffer and process this data appropriately.

For applications that are built using the Unicode character set, it is important to note that the
buffer is an array of bytes, not characters. If the client is sending string data to the server, it must
be read as a stream of bytes and converted using the MultiByteToWideChar function. If the
client is sending lines of text terminated with a linefeed or carriage return and linefeed pair, the
ReadLine method will return a line of text at a time and perform this conversion for you.

To determine if there is data available to be read without causing the session thread to block, call
the IsReadable method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Peek, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::ReadLine Method

BOOL ReadLine(
 SOCKET hSocket,
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL ReadLine(
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL ReadLine(
 SOCKET hSocket,
 CString& strBuffer,
 INT nMaxLength
);

BOOL ReadLine(
 CString& strBuffer,
 INT nMaxLength
);

Read up to a line of data from the socket and return it in a string buffer.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpszBuffer

Pointer to the string buffer that will contain the data when the method returns. The string will be
terminated with a null character, and will not contain the end-of-line characters. An alternate
form of the method accepts a CString argument which will contain the line of text returned by
the server.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the method returns, its value will updated with
the actual length of the string.

nMaxLength

An integer value which specifies the maximum length of the buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ReadLine method reads data from the socket and copies into a specified string buffer. Unlike
the Read method which reads arbitrary bytes of data, this method is specifically designed to
return a single line of text data in a string. When an end-of-line character sequence is

encountered, the method will stop and return the data up to that point. The string buffer is
guaranteed to be null-terminated and will not contain the end-of-line characters. This method will
force the thread to block until an end-of-line character sequence is processed, the read operation
times out or the remote host closes its end of the socket connection.

There are some limitations when using ReadLine. The method should only be used to read text,
never binary data. In particular, the method will discard nulls, linefeed and carriage return control
characters. The Unicode version of this method will return a Unicode string, however it does not
support reading raw Unicode data from the socket. Any data read from the socket is internally
buffered as octets (eight-bit bytes) and converted to Unicode using the MultiByteToWideChar
function.

The Read and ReadLine method calls can be intermixed, however be aware that Read will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

Unlike the Read method, it is possible for data to be returned in the string buffer even if the return
value is zero. Applications should check the length of the string to determine if any data was
copied into the buffer. For example, if a timeout occurs while the method is waiting for more data
to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that
data, regardless of the return value.

Example
CString strBuffer;
BOOL bResult;

do
{
 bResult = pServer->ReadLine(strBuffer);

 if (strBuffer.GetLength() > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = pServer->GetLastError();

if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The remote host has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsReadable, Peek, Read, ReadStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::ReadStream Method

BOOL ReadStream(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 LPBYTE lpMarker,
 DWORD cbMarker
);

BOOL ReadStream(
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 LPBYTE lpMarker,
 DWORD cbMarker
);

Read a stream of data from the client and store it in the specified buffer.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpvBuffer

Pointer to the buffer that will contain or reference the data when the method returns. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be stored.

lpdwLength

A pointer to an unsigned integer value which specifies the maximum length of the buffer and
contains the number of bytes read when the method returns. This argument should should
always point to an initialized value. If the lpvBuffer argument specifies a memory buffer, then
this argument cannot point to an initialized value of zero; if any other type of stream buffer is
used and the initialized value is zero, that indicates that all available data from the socket should
be returned until the end-of-stream marker is encountered or the remote host disconnects.

dwOptions

An unsigned integer value which specifies both the stream buffer type and any options to be
used when reading the data stream. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a pointer to a global memory
handle initialized to NULL, then the method will
return a handle which references the data;
otherwise, the method will consider the parameter
a pointer to a block of pre-allocated memory
which will contain the stream data when the

method returns. In most cases, it is recommended
that an application explicitly specify the stream
buffer type rather than using the default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
pre-allocated block of memory which will contain
the data read from the socket when the method
returns. If this stream buffer type is used, the
lpdwLength argument must point to an unsigned
integer which has been initialized with the
maximum length of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a pointer to a
global memory handle. When the method returns,
the handle will reference a block of memory that
contains the stream data. The application should
take care to make sure that the handle passed to
the method does not currently reference a valid
block of memory; it is recommended that the
handle be initialized to NULL prior to calling this
method.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read from the socket will be written to this handle
using the WriteFile function.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by the
hSocket argument will be written to this socket.
The socket handle passed to this method must
have been created by this library; if it is a socket
created by an third-party library or directly by the
Windows Sockets API, you should either create
another instance of the class and attach the socket
using the AttachHandle method or use the
INET_STREAM_HANDLE stream buffer type instead.

In addition to the stream buffer types listed above, the dwOptions parameter may also
have one or more of the following bit flags set. Programs should use a bitwise operator
to combine values.

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the

amount of data returned in the buffer to be larger
than the source data. For example, if the source
data only terminates a line of text with a single
linefeed, this option will have the effect of inserting
a carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being returned as 16-
bit wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream; if the
application is using a pre-allocated memory buffer,
this must be considered before calling this method.

lpMarker

A pointer to an array of bytes which marks the end of the data stream. When this byte
sequence is encountered by the method, it will stop reading and return to the caller.
The buffer will contain all of the data read from the socket up to and including the
end-of-stream marker. If this argument is NULL, then the method will continue to read
from the socket until the maximum buffer size is reached, the remote host closes its
socket or an error is encountered.

cbMarker

An unsigned integer value which specifies the length of the end-of-stream marker in
bytes. If the lpMarker parameter is NULL, then this value must be zero.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The ReadStream method enables an application to read an arbitrarily large stream of
data and store it in memory, write it to a file or even another socket. Unlike the Read
method, which will return immediately when any amount of data has been read,
ReadStream will only return when the buffer is full as specified by the lpdwLength
parameter, the logical end-of-stream marker has been read, the socket closed by the
remote host or when an error occurs. This method will force the session thread to block
until the operation completes.

It is possible for data to be returned in the buffer even if the method returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was copied into the buffer. For example, if a timeout occurs while the method
is waiting for more data to arrive on the socket, it will return zero; however, data may
have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the method return
value.

Example
HGLOBAL hgblBuffer = NULL; // Return data in a global memory buffer
DWORD cbBuffer = 102400; // Read up to 100K bytes
BOOL bResult;

bResult = pServer->ReadStream(&hgblBuffer, &cbBuffer,
 INET_STREAM_HGLOBAL | INET_STREAM_CONVERT);

if (bResult && cbBuffer > 0)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Use data in the stream buffer

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStreamInfo, Read, ReadLine, StoreStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Reject Method

BOOL Reject();

Reject a pending client connection.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the
connection being aborted. If there are no pending client connections at the time, this method will
immediately return with an error indicating that the operation would cause the server thread to
block. This method should only be invoked from within an OnAccept event handler if the
application wishes to reject the incoming connection before a client session is created.

To determine the IP address of a client that is attempting to connect to the server from within the
OnAccept event, use the GetClientAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientAddress, OnAccept

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Restart Method

BOOL Restart();

Restart the server, terminating all active client sessions.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Restart method will restart the specified server, terminating all active client sessions. If the
method is unable to restart the server for any reason, the server thread is terminated. The server
retains all of the options specified for the previous instance.

If an application calls this method from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this method only be called by the same thread that created the server using
the Start method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Start, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Resume Method

BOOL Resume();

Resume accepting client connections.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Resume method instructs the server to resume accepting new client connections after the
Suspend method has been called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Restart, Start, Stop, Suspend, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetBacklog Method

BOOL SetBacklog(
 UINT nBacklog
);

Set the size of the backlog connection queue for the server.

Parameters
nBacklog

An integer value that specifies the size of the connection backlog queue.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

Remarks
The SetBacklog method specifies the size of the queue allocated for pending client connections.
A value of zero specifies that the queue should be set to a reasonable default value. On Windows
server platforms, the maximum value is large enough to queue several hundred pending
connections. This method should only be called prior to invoking the Start method, it does not
have any effect on an active server. To get the current size of the backlog queue, use the
GetBacklog method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetBacklog, Start, Data Members

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetClientData Method

BOOL SetClientData(
 SOCKET hClient,
 VOID lpvData
);

BOOL SetClientData(
 VOID lpvData
);

Associate application defined data with the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lppvData

Pointer to the application defined data associated with the specified client session.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the client session could not be modified. To get extended error
information, call the GetLastError method.

Remarks
The SetClientData method is used to associate application defined data with a specific client
session. This is typically used to associate a pointer to a data structure or a class instance with the
client socket. A pointer to the data can be retrieved using the GetClientData method.

You should never specify a pointer to a local variable or data structure that will go out of scope
when the calling method exits. If you do this, the pointer will no longer be valid after the method
exits and attempting to dereference that pointer at some later time can cause an exception to be
thrown and terminate the program. You should always allocate a block of memory for the data
using a method such as HeapAlloc or LocalAlloc. If you specify the address of a static or global
data structure, you must use thread synchronization methods when dereferencing and modifying
that structure.

Example
UINT *pnValue1 = new UINT;
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (!pServer->SetClientData(hClient, pnValue1))
{
 // Unable to associate the data with this session
 return;
}

if (!pServer->GetClientData(hClient, (LPVOID *)&pnValue2))
{

 // Unable to retrieve the data associated with this session
 return;
}

// pnValue2 == pnValue1
printf("The value of the user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetClientData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetClientMoniker Method

INT SetClientMoniker(
 SOCKET hSocket,
 LPCTSTR lpszMoniker
);

INT SetClientMoniker(
 LPCTSTR lpszMoniker
);

Associate a unique string alias with the specified client session.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpszMoniker

Pointer to a string which specifies the moniker for the specified client socket. If this parameter is
NULL or specifies an empty string, a moniker will no longer be associated with the client session.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call the GetLastError method.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. The GetClientMoniker method will return the moniker that was previously
assigned to the client, if any. To obtain the socket handle associated with a given moniker, use the
FindClient method.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular
server can have the same moniker. The maximum length for a moniker is 127 characters.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
FindClient, GetClientHandle, GetClientId, GetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SOCKET or
INET_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetOptions Method

BOOL SetOptions(
 DWORD dwOptions
);

Set one or more server options.

Parameters
dwOptions

An unsigned integer that specifies one or more option bitflags.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

Remarks
The SetOptions method sets the server options for the class instance. For a list of the available
options, see Server Option Constants. This method should only be called prior to invoking the
Start method, it does not have any effect on an active server. The GetOptions method returns
the options that are currently specified for the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetOptions, Data Members

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/optionconst.html

 CInternetServer::SetCertificate Method

BOOL SetCertificate(
 DWORD dwProtocol,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

BOOL SetCertificate(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

BOOL SetCertificate(
 LPCTSTR lpszCertName,
 LPCTSTR lpszPassword
);

Specify the server certificate that should be used with secure connections.

Parameters
dwProtocol

An optional bitmask of supported security protocols. If this parameter is not specified, then a
default set of security protocols will be automatically selected. This parameter is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default selection of security protocols will be
used when establishing a connection. The TLS 1.2,
TLS 1.1 and TLS 1.0 protocols will be negotiated
with the client, in that order of preference. This
option will always request the latest version of the
preferred security protocols and is the
recommended value.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the client. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Note
that SSL 2.0 has been deprecated and will never be
used by default.

SECURITY_PROTOCOL_TLS The TLS 1.0, 1.1 or 1.2 protocol should be used
when establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the client. If
this is the only protocol specified, SSL will be
excluded from the list of supported protocols. This
may be necessary for some clients that reject any

attempt to use the older SSL protocol and require
that only TLS be used.

lpszCertStore

An optional string value that specifies the name of the certificate store that contains the server
certificate. If the certificate is stored in the registry, this parameter must specify a valid local
certificate store name. If the certificate is stored in a file, this parameter should specify the full
path to the file that contains the certificate. If this parameter is omitted, the personal certificate
store for the current process will be used.

lpszCertName

A string value that specifies the name of the certificate. This parameter is required and cannot
be NULL. Either the common name or the name assigned to the certificate may be specified. In
most cases, this will be the fully qualified domain name of the host that the server is running on.

lpszPassword

An optional string value that specifies a password associated with the server certificate. This
parameter is usually only required when the lpszCertStore parameter specifies a certificate
stored in a file. If the server certificate does not have a password associated with it, this
parameter or omitted.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableSecurity, SetOptions, Start, ValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/validatecertificate.html

 CInternetServer::SetPriority Method

INT SetPriority(
 INT nPriority
);

Set the priority assigned to the specified server.

Parameters
nPriority

An integer that specifies the server priority. It may be one of the following values:

Constant Description

INET_PRIORITY_BACKGROUND
(0)

This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. The server thread will be assigned
a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW
(1)

This priority lowers the overall resource utilization for
the server and meters the processor utilization for the
server thread. The server thread will be assigned a
lower scheduling priority and will occasionally be
forced to yield execution to other threads.

INET_PRIORITY_NORMAL
(2)

The default priority which balances resource and
processor utilization. This is the priority that is initially
assigned to the server when it is started, and it is
recommended that most applications use this priority.

INET_PRIORITY_HIGH
(3)

This priority increases the overall resource utilization
for the server and the thread will be given higher
scheduling priority. It is not recommended that this
priority be used on a system with a single processor.

INET_PRIORITY_CRITICAL
(4)

This priority can significantly increase processor,
memory and network utilization. The server thread
will be given higher scheduling priority and will be
more responsive to client connection requests. It is
not recommended that this priority be used on a
system with a single processor.

Return Value
If the method succeeds, the return value is the previous priority assigned to the server. If the
method fails, the return value is INET_ERROR.

Remarks
The SetPriority method changes the current priority assigned to the specified server. Client
connections that are accepted after this method is called will inherit the new priority as their
default priority. Previously existing client connections will not be affected by this function.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetStackSize Method

BOOL SetStackSize(
 DWORD dwStackSize
);

Change the initial size of the stack allocated for threads created by the server.

Parameters
dwStackSize

The amount of memory that will be committed to the stack for each thread created by the
server. If this value is zero, a default stack size will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The SetStackSize method changes the initial amount of memory that is committed to the stack
for each thread created by the server. By default, the stack size for each thread is set to 256K for
32-bit processes and 512K for 64-bit processes. Increasing or decreasing the stack size will only
affect new threads that are created by the server, it will not affect those threads that have already
been created to manage active client sessions. It is recommended that most applications use the
default stack size.

You should not change this value unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStackSize, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

Set the timeout interval used when waiting for a blocking operation to complete.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The SetTimeout method sets the amount of time that the server will wait for data to become
available to read, and the default timeout for blocking network operations for each client session.
If this method is invoked before the server has started, it will change the default timeout period for
the entire server. If this method is invoked within a server event handler, it will change the timeout
period for the active client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetTimeout, IsReadable, IsWritable, OnTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

Display a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Remarks
The ShowError method will display a modal message box with an error message that corresponds
to the specified error code. All top-level windows belonging to the current thread will be disabled
until the user responds to the message box. An application should only invoke this method from
within the main UI thread, never from within a server event handler such as OnConnect.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Start Method

BOOL Start(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 UINT nMaxClients,
 DWORD dwOptions
);

BOOL Start(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 DWORD dwOptions
);

BOOL Start(
 UINT nLocalPort,
 DWORD dwOptions
);

BOOL Start(
 UINT nLocalPort
);

The Start method begins listening for client connections on the specified local address and port
number. The server is started in its own thread and manages the client sessions independently of
the calling thread. All interaction with the server and its client sessions takes place inside the class
event handlers.

Parameters
lpszLocalHost

A pointer to a string which specifies the local hostname or IP address address that the server
should be bound to. If this parameter is omitted or specifies a NULL pointer an appropriate
address will automatically be used. If a specific address is used, the server will only accept client
connections on the network interface that is bound to that address.

nLocalPort

The port number the server should use to listen for client connections. The port number used
by the application must be unique and multiple instances of a server cannot use the same port
number. It is recommended that a port number greater than 5000 be used for private,
application-specific implementations.

nMaxClients

The maximum number of client connections that can be established with the server. A value of
zero specifies that there should not be any fixed limit on the number of active client
connections. This value can be adjusted after the server has been created by calling the
Throttle method.

dwOptions

An unsigned integer value that specifies one or more options to be used when creating an
instance of the server. For a list of the available options, see Server Option Constants. If this
parameter is omitted, the default options for the server instance will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/optionconst.html

To get extended error information, call GetLastError.

Remarks
In most cases, the lpszLocalHost parameter should be omitted or a NULL pointer. On a
multihomed system, this will enable the server to accept connections on any appropriately
configured network adapter. Specifying a hostname or IP address will limit client connections to
that particular address. Note that the hostname or address must be one that is assigned to the
local system, otherwise an error will occur.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the method will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The server instance is managed in another thread, and all interaction with the server and active
client connections are performed inside the event handlers. To disconnect all active connections,
close the listening socket and terminate the server thread, call the Stop method.

Example
// EchoServer implementation
class CEchoServer : public CInternetServer
{
 void OnRead(SOCKET hSocket)
 {
 // Read data sent by the client to the server
 BYTE ioBuffer[1024];
 INT nBytesRead = Read(hSocket, ioBuffer, sizeof(ioBuffer));

 // Send a copy of the data back to the client
 if (nBytesRead > 0)
 Write(hSocket, ioBuffer, nBytesRead);
 }
};

int _tmain(int argc, _TCHAR* argv[])
{
 CEchoServer myServer;

 // Start the server listening for connections on port 7000
 if (myServer.Start(7000))
 {
 TCHAR szCommand[128], *pszCommand;

 // Process commands entered by the user at the console
 while (TRUE)
 {
 if ((pszCommand = _fgetts(szCommand, 128, stdin)) == NULL)
 break;

 if (_tcsicmp(pszCommand, _T("quit")) == 0)
 break;
 }

 // Stop the server and terminate all clients
 myServer.Stop();
 }

 return 0;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumClients, Restart, Stop

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Stop Method

BOOL Stop();

Stop the server, terminating all active client sessions and releasing the resources that were
allocated for the server.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, it will return a value of
zero.

Remarks
The Stop method instructs the server to stop accepting client connections, disconnects all active
client connections and terminates the thread that is managing the server session. The handle is no
longer valid after the server has been stopped and should no longer be used. Note that it is
possible that the actual handle value may be re-used at a later point when a new server is started.
An application should always consider the server handle to be opaque and never depend on it
being a specific value.

If an application calls this method from within an event handler, the active client session (the client
for which the event handler was invoked) may not get a disconnect notification. It is
recommended that this method only be called by the same thread that created the server using
the Start method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Restart, Start

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::StoreStream Method

BOOL StoreStream(
 LPCTSTR lpszFileName,
 DWORD dwLength,
 LPDWORD lpdwCopied
 DWORD dwOffset,
 DWORD dwOptions
);

The StoreStream method reads the socket data stream and stores the contents in the specified
file.

Parameters
lpszFileName

Pointer to a string which specifies the name of the file to create or overwrite.

dwLength

An unsigned integer which specifies the maximum number of bytes to read from the socket and
write to the file. If this value is zero, then the method will continue to read data from the socket
until the remote host disconnects or an error occurs.

lpdwCopied

A pointer to an unsigned integer value which will contain the number of bytes written to the file
when the method returns.

dwOffset

An unsigned integer which specifies the byte offset into the file where the method will start
storing data read from the socket. Note that all data after this offset will be truncated. A value of
zero specifies that the file should be completely overwritten if it already exists.

dwOptions

An unsigned integer value which specifies one or more options. Programs can use a bitwise
operator to combine any of the following values:

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data written to the file to be larger than
the source data. For example, if the source data
only terminates a line of text with a single linefeed,
this option will have the effect of inserting a
carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being written as 16-bit

wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream. If the dwOffset
parameter has a value of zero, the Unicode byte
order mark (BOM) will be written to the beginning
of the file.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The StoreStream method enables an application to read an arbitrarily large stream of
data and store it in a file. This method is essentially a simplified version of the
ReadStream method, designed specifically to be used with files rather than memory
buffers or handles.

Example
// Store all data sent by the client in a file
DWORD dwCopied = 0;
BOOL bResult = pServer->StoreStream(lpszFileName, 0, &dwCopied, 0,
INET_STREAM_CONVERT);

// Close the client connection to the server
pServer->Disconnect();

if (bResult && dwCopied > 0)
{
 // Process the data has been written to the file
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Read, ReadLine, ReadStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Suspend Method

BOOL Suspend();

Suspend the server and reject new client connections.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Suspend method instructs the server to suspend accepting new client connections. Any
incoming client connections will be rejected with an error message indicating that the server is
currently unavailable. To resume accepting client connections, call the Resume method.
Suspending the server will have no effect on clients that have already established a connection
with the server.

It is recommended that you only suspend a server if absolutely necessary, and only for brief
periods of time. If you want to limit the number of active client connections or control the
connection rate for clients, use the Throttle method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Restart, Resume, Start, Stop, Throttle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Throttle Method

BOOL Throttle(
 UINT nMaxClients,
 UINT nMaxClientsPerAddress,
 DWORD dwConnectionRate
);

The Throttle method limits the number of active client connections, connections per address and
connection rate.

Parameters
nMaxClients

A value which specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections. A value of -1
specifies that the maximum number of clients should not be changed.

nMaxClientsPerAddress

A value which specifies the maximum number of clients that may connect to the server from the
same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is a limit of four client connections per address. A
value of -1 specifies that the maximum number of clients should not be changed.

dwConnectionRate

A value which specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there
is no restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on
the client connection rate. A value of -1 specifies that the connection rate should not be
changed.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Throttle method is used to limit the number of connections and the connection rate to
minimize the potential impact of a large number of client connections over a short period of time.
This can be used to protect the server from a client application that is malfunctioning or a
deliberate denial-of-service attack in which the attacker attempts to flood the server with
connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the Start method is called with the maximum number of clients set to 100, and then
Throttle is called lowering that value to 75, no existing client connections will be affected by the
change. However, the server will not accept any new connections until the number of active clients
drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000

would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

It is recommended that you always specify conservative connection limits for your server
application based on expected usage. Allowing an unlimited number of client connections can
potentially expose the system to denial-of-service attacks and should never be done for servers
that are accessible over the Internet.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
Restart, Resume, Start, Suspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Unlock Method

BOOL Unlock();

Unlock the server, allowing other client threads to resume execution.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The Unlock method releases the lock on the specified server and allows any blocked threads to
resume execution. Only one server may be locked at any one time, and only the thread which
established the lock can unlock the server.

Every time the Lock method is called, an internal lock counter is incremented, and the lock will not
be released until the lock count drops to zero. This means that each call to the Lock method must
be matched by an equal number of calls to the Unlock method. Failure to do so will result in the
server becoming non-responsive as it remains in a locked state.

The program should always check the return value from this method, and should never assume
that the lock has been released. If a potential deadlock situation is detected, this method will fail
and return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsLocked, Lock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::Write Method

INT Write(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

Send the contents of the specified buffer to to the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the client.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is INET_ERROR. To get extended error information, call the GetLastError
method.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Read, ReadLine, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::WriteLine Method

BOOL WriteLine(
 SOCKET hSocket,
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL WriteLine(
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

Write a line of data to the client, terminated with a carriage-return and linefeed.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the remote host. All
characters up to, but not including, the terminating null character will be written to the socket.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the socket.

lpnLength

A pointer to an integer value which will contain the number of characters written to the socket,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The WriteLine method writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the Write method which writes
arbitrary bytes of data to the socket, the WriteLine method is specifically designed to write a
single line of text data from a null-terminated string. This method will force the session thread to
block until the complete line of text has been written, the write operation times out or the remote
host aborts the connection.

There are some limitations when using WriteLine. This method should only be used to send text,
never binary data. In particular, it will discard nulls and append linefeed and carriage return control
characters to the data stream. The Unicode version of this method will accept a Unicode string,
however it does not support writing raw Unicode data to the socket. Unicode strings will be
automatically converted to UTF-8 encoding using the WideCharToMultiByte function and then
written to the socket as a stream of bytes.

The Write and WriteLine methods can be safely intermixed.

Unlike the Write method, it is possible for data to have been written to the socket if the return
value is zero. For example, if a timeout occurs while the method is waiting to send more data to
the remote host, it will return zero; however, some data may have already been written prior to
the error condition. If this is the case, the lpnLength argument will specify the number of
characters actually written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsWritable, Read, ReadLine, ReadStream, Write, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::WriteStream Method

BOOL WriteStream(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

BOOL WriteStream(
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

Write a stream of data to the client.

Parameters
hSocket

An optional parameter that specifies the handle to the client socket. If this parameter is omitted,
the socket handle for the active client session will be used. If this method is called outside of a
server event handler, the socket handle must be specified.

lpvBuffer

Pointer to the buffer that contains or references the data to be written to the socket. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be accessed.

lpdwLength

A pointer to an unsigned integer value which specifies the size of the buffer and contains the
number of bytes written when the method returns. This argument should should always point to
an initialized value. If the lpvBuffer argument specifies a memory buffer or global memory
handle, then this argument cannot point to an initialized value of zero.

dwOptions

An unsigned integer value which specifies the stream buffer type to be used when writing the
data stream to the socket. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a a global memory handle,
then the method will write the data referenced by
that handle; otherwise, the method will consider
the parameter a pointer to a block of memory
which contains data to be written. In most cases, it
is recommended that an application explicitly
specify the stream buffer type rather than using the
default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
block of memory which contains the data to be
written to the socket. If this stream buffer type is

used, the lpdwLength argument must point to an
unsigned integer which has been initialized with
the size of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a global memory
handle that references the data to be written to the
socket. The handle must have been created by a
call to the GlobalAlloc or GlobalReAlloc function. If
this stream buffer type is used, the lpdwLength
argument must point to an unsigned integer which
has been initialized with the size of the buffer.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read using the ReadFile function with this handle
will be written to the socket.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by this
handle will be written to the socket specified by the
hSocket parameter. The socket handle passed to
this method must have been created by this library;
if it is a socket created by an third-party library or
directly by the Windows Sockets API, you should
either create another instance of the class and
attach the socket using the AttachHandle method
or use the INET_STREAM_HANDLE stream buffer
type instead.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of
data from memory or a file to the specified socket. Unlike the Write method, which may
not write all of the data in a single method call, WriteStream will only return when all of
the data has been written or an error occurs. This method will force the thread to block
until the operation completes.

It is possible for some data to have been written even if the method returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was sent. For example, if a timeout occurs while the method is waiting to write
more data, it will return zero; however, some data may have already been written to the
socket prior to the error condition.

Example
CFile *pFile = new CFile();
DWORD dwLength = 0;

if (!pFile->Open(strFileName, CFile::modeRead | CFile::shareDenyWrite))

 return;

dwLength = pFile->GetLength();

if (dwLength > 0)
{
 BOOL bResult = pServer->WriteStream(
 pFile->m_hFile,
 &dwLength,
 INET_STREAM_HANDLE);
}

delete pFile;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Read, ReadLine, ReadStream, StoreStream, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer Event Handlers

Method Description

OnAccept The client is attempting to establish a connection to the server

OnConnect The client has established a connection to the server

OnDisconnect The client has disconnected from the server

OnError The event handler encountered an error when processing a client event

OnRead The client has sent data to the server

OnTimeout The client has not sent data within the specified timeout period

OnWrite The client is ready to receive data from the server

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnAccept Method

virtual void OnAccept(
 SOCKET hSocket
);

A virtual method that is invoked when a client attempts to connect to the server.

Parameters
hSocket

A handle to the server socket.

Return Value
None.

Remarks
The OnAccept event handler is invoked when a client attempts to connect to the server, but prior
to the connection being accepted. To implement an event handler, the application should create a
class derived from the CInternetServer class, and then override this method.

This event only occurs before the server has checked the active client limits. This event is typically
used to reject a connection based on some criteria established by the server, such as the IP
address of the client attempting to make the connection. To obtain the IP address of the client
that is attempting to connect to the server, use the GetClientAddress method using the server
handle.

If this event handler is not implemented, the server will permit the client connection to complete.
To reject the connection attempt, call the Reject method using the handle to the server socket.
Rejecting the client connection within the OnAccept event handler may cause unexpected
behavior by the client application because the connection process will not complete normally.
Instead of rejecting the client connection within the OnAccept handler, it is recommended that
most server applications implement an OnConnect event handler, perform any required checks
and then gracefully disconnect the client using the Disconnect method if needed.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, OnConnect, OnDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnConnect Method

virtual void OnConnect(
 SOCKET hSocket,
 UINT nClientId,
 LPCTSTR lpszAddress,
 UINT nPort
);

A virtual method that is invoked after the client has connected to the server.

Parameters
hSocket

A handle to the client socket.

nClientId

An unsigned integer which uniquely identifies the client session.

lpszAddress

A string that specifies the IP address of the client. This address may either be in IPv4 or IPv6
format, depending on how the server was configured and the address the client used to
establish the connection.

nPort

An integer that specifies the port number that the client socket is bound to.

Return Value
None.

Remarks
The OnConnect event handler is invoked after the client has connected to the server. To
implement an event handler, the application should create a class derived from the
CInternetServer class, and then override this method.

This event only occurs after the server has checked the active client limits and the TLS handshake
has been performed, if security has been enabled. If the server has been suspended, or the limit
on the maximum number of client sessions has been exceeded, the server will reject the
connection prior to this event handler being invoked.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, OnAccept, OnDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnDisconnect Method

virtual void OnDisconnect(
 SOCKET hSocket
);

A virtual method that is invoked when a client disconnects from the server.

Parameters
hSocket

A handle to the client socket.

Return Value
None.

Remarks
The OnDisconnect event handler is invoked when a client disconnects from the server,
immediately before the client session is terminated. To implement an event handler, the
application should create a class derived from the CInternetServer class, and then override this
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Disconnect, OnConnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnError Method

virtual void OnConnect(
 SOCKET hSocket,
 UINT nEventId,
 DWORD dwError
);

A virtual method that is invoked when the server encounters an error while handling a client
request.

Parameters
hSocket

An unsigned integer which uniquely identifies the client session.

nEventId

An unsigned integer which identifies the client event that was being processed when the error
occurred. For a list of event identifiers, see Server Event Constants.

dwError

An unsigned integer value that specifies the error code.

Return Value
None.

Remarks
The OnError event handler is invoked whenever an error occurs while an event is being processed
by the server. To implement an event handler, the application should create a class derived from
the CInternetServer class, and then override this method.

It is important to note that this event is not raised for every error that occurs. The event only
occurs when another event is being processed and an unhandled error occurs that must be
reported back to the server application. The following are some common situations in which this
event handler may be invoked:

A network error occurs when the client connection is being accepted by the server. This
could be the result of an aborted connection or some other lower-level failure reported by
the networking subsystem on the server.

The server is configured to use implicit SSL but cannot obtain the security credentials
required to create the security context for the session. Usually this indicates that the server
certificate cannot be found, or the certificate does not have a private key associated with it.
It could also indicate a general problem with the cryptographic subsystem where the client
and server could not successfully negotiate a cipher suite.

Network errors that may occur when attempting to buffer data sent by the client. This
usually indicates that the connection to the client has been aborted, either because the
client is not acknowledging the data that has been exchanged with the server, or the client
has terminated abnormally. This event will not occur if the client terminates the connection
normally.

In most situations where this event handler is invoked, the error is not recoverable and the only
action that can be taken is to terminate the client session.

file:///C|/Projects/cstools11/pdf/tcpsrv/class/eventconst.html

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib

See Also
OnConnect, OnDisconnect, OnTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnRead Method

virtual void OnRead(
 SOCKET hSocket
);

A virtual method that is invoked when a client sends data to the server.

Parameters
hSocket

A handle to the client socket.

Return Value
None.

Remarks
The OnRead event handler is invoked when a client sends data to the server. To implement an
event handler, the application should create a class derived from the CInternetServer class, and
then override this method. All server applications must implement an OnRead event handler to
process the data sent by the client.

This event occurs whenever there is data available to be read from the client. The server
application reads the data using the Read or ReadLine method, and can then send data back to
the client using the Write or WriteLine method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Read, ReadLine, Write, WriteLine, OnWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnTimeout Method

virtual void OnTimeout(
 SOCKET hSocket
);

A virtual method that is invoked when the client has not sent any data to the server within the
timeout period.

Parameters
hSocket

A handle to the client socket.

Return Value
None.

Remarks
The OnTimeout event handler is invoked when a client has not sent any data to the server within
the timeout period specified when the server was started. To implement an event handler, the
application should create a class derived from the CInternetServer class, and then override this
method.

This event handler is typically used to monitor the amount of time that a client is idle. The default
timeout period for the server is 20 seconds, which would cause this event handler to be invoked
whenever a client has not sent any data to the server in the last 20 seconds. The server may take
no action, or it may disconnect the client after it has been idle for an extended period of time. To
get the total amount of time that the client has been idle, call the GetClientIdleTime method.
Note that while the server timeout period is specified in seconds, the GetClientIdleTime method
returns the client idle time in milliseconds.

The default implementation for this event handler is to take no action. It is recommended that
most server applications disconnect clients that are inactive. For typical client-server
implementations that use transitory connections (where the client sends a single request to the
server, the server responds and the connection is terminated) the amount of time that a client
should be permitted to remain idle should be relatively low, usually 60 seconds or less. For
persistent connections where there are multiple requests issued by the client over the lifetime of
the session, a longer idle timeout period may be preferable.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetClientIdleTime

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CInternetServer::OnWrite Method

virtual void OnWrite(
 SOCKET hSocket
);

A virtual method that is invoked when the client is ready to receive data.

Parameters
hSocket

A handle to the client socket.

Return Value
None.

Remarks
The OnWrite event handler is invoked when a client is ready to receive data. To implement an
event handler, the application should create a class derived from the CInternetServer class, and
then override this method. All server applications must implement an OnRead event handler to
process the data sent by the client.

This event occurs immediately after the OnConnect event and if security is enabled, after the TLS
handshake has completed. It is used to notify the server application that the client is ready to
receive data, and may be used to send an initial message to the client, typically identifying the
server that it has connected to. In most cases, the OnWrite event handler will only be invoked
once over the lifetime of the client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Write, WriteLine, OnRead

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 Internet Server Data Structures

INETSTREAMINFO
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INETSTREAMINFO Structure

This structure contains information about the data stream being currently read or written.

typedef struct _INETSTREAMINFO
{
 DWORD dwStreamThread;
 DWORD dwStreamSize;
 DWORD dwStreamCopied;
 DWORD dwStreamMode;
 DWORD dwStreamError;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} INETSTREAMINFO, *LPINETSTREAMINFO;

Members
dwStreamThread

Specifies the numeric ID for the thread that created the socket.

dwStreamSize

The maximum number of bytes that will be read or written. This is the same value as the buffer
length specified by the caller, and may be zero which indicates that no maximum size was
specified. Note that if this value is zero, the application will be unable to calculate a completion
percentage or estimate the amount of time for the operation to complete.

dwStreamCopied

The total number of bytes that have been copied to or from the stream buffer.

dwStreamMode

A numeric value which specifies the stream operation that is current being performed. It may be
one of the following values:

Constant Description

INET_STREAM_READ Data is being read from the socket and stored in the specified
stream buffer.

INET_STREAM_WRITE Data is being written from the specified stream buffer to the
socket.

dwStreamError

The last error that occurred when reading or writing the data stream. If no error has occurred,
this value will be zero.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the operation is completed. This is based on the
average number of bytes transferred per second and requires that a maximum stream buffer
size be specified by the caller.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h

See Also
ReadStream, StoreStream, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketTools Library Error Codes

Value Constant Description

0x80042711 ST_ERROR_NOT_HANDLE_OWNER Handle not owned by the current
thread

0x80042712 ST_ERROR_FILE_NOT_FOUND The specified file or directory does
not exist

0x80042713 ST_ERROR_FILE_NOT_CREATED The specified file could not be created

0x80042714 ST_ERROR_OPERATION_CANCELED The blocking operation has been
canceled

0x80042715 ST_ERROR_INVALID_FILE_TYPE The specified file is a block or
character device, not a regular file

0x80042716 ST_ERROR_INVALID_DEVICE The specified device or address does
not exist

0x80042717 ST_ERROR_TOO_MANY_PARAMETERS The maximum number of function
parameters has been exceeded

0x80042718 ST_ERROR_INVALID_FILE_NAME The specified file name contains
invalid characters or is too long

0x80042719 ST_ERROR_INVALID_FILE_HANDLE Invalid file handle passed to function

0x8004271A ST_ERROR_FILE_READ_FAILED Unable to read data from the
specified file

0x8004271B ST_ERROR_FILE_WRITE_FAILED Unable to write data to the specified
file

0x8004271C ST_ERROR_OUT_OF_MEMORY Out of memory

0x8004271D ST_ERROR_ACCESS_DENIED Access denied

0x8004271E ST_ERROR_INVALID_PARAMETER Invalid argument passed to function

0x8004271F ST_ERROR_CLIPBOARD_UNAVAILABLE The system clipboard is currently
unavailable

0x80042720 ST_ERROR_CLIPBOARD_EMPTY The system clipboard is empty or
does not contain any text data

0x80042721 ST_ERROR_FILE_EMPTY The specified file does not contain
any data

0x80042722 ST_ERROR_FILE_EXISTS The specified file already exists

0x80042723 ST_ERROR_END_OF_FILE End of file

0x80042724 ST_ERROR_DEVICE_NOT_FOUND The specified device could not be
found

0x80042725 ST_ERROR_DIRECTORY_NOT_FOUND The specified directory could not be
found

0x80042726 ST_ERROR_INVALID_BUFFER Invalid memory address passed to

function

0x80042728 ST_ERROR_NO_HANDLES No more handles available to this
process

0x80042733 ST_ERROR_OPERATION_WOULD_BLOCK The specified operation would block
the current thread

0x80042734 ST_ERROR_OPERATION_IN_PROGRESS A blocking operation is currently in
progress

0x80042735 ST_ERROR_ALREADY_IN_PROGRESS The specified operation is already in
progress

0x80042736 ST_ERROR_INVALID_HANDLE Invalid handle passed to function

0x80042737 ST_ERROR_INVALID_ADDRESS Invalid network address specified

0x80042738 ST_ERROR_INVALID_SIZE Datagram is too large to fit in
specified buffer

0x80042739 ST_ERROR_INVALID_PROTOCOL Invalid network protocol specified

0x8004273A ST_ERROR_PROTOCOL_NOT_AVAILABLE The specified network protocol is not
available

0x8004273B ST_ERROR_PROTOCOL_NOT_SUPPORTED The specified protocol is not
supported

0x8004273C ST_ERROR_SOCKET_NOT_SUPPORTED The specified socket type is not
supported

0x8004273D ST_ERROR_INVALID_OPTION The specified option is invalid

0x8004273E ST_ERROR_PROTOCOL_FAMILY Specified protocol family is not
supported

0x8004273F ST_ERROR_PROTOCOL_ADDRESS The specified address is invalid for this
protocol family

0x80042740 ST_ERROR_ADDRESS_IN_USE The specified address is in use by
another process

0x80042741 ST_ERROR_ADDRESS_UNAVAILABLE The specified address cannot be
assigned

0x80042742 ST_ERROR_NETWORK_UNAVAILABLE The networking subsystem is
unavailable

0x80042743 ST_ERROR_NETWORK_UNREACHABLE The specified network is unreachable

0x80042744 ST_ERROR_NETWORK_RESET Network dropped connection on
remote reset

0x80042745 ST_ERROR_CONNECTION_ABORTED Connection was aborted due to
timeout or other failure

0x80042746 ST_ERROR_CONNECTION_RESET Connection was reset by remote
network

0x80042747 ST_ERROR_OUT_OF_BUFFERS No buffer space is available

0x80042748 ST_ERROR_ALREADY_CONNECTED Connection already established with

remote host

0x80042749 ST_ERROR_NOT_CONNECTED No connection established with
remote host

0x8004274A ST_ERROR_CONNECTION_SHUTDOWN Unable to send or receive data after
connection shutdown

0x8004274C ST_ERROR_OPERATION_TIMEOUT The specified operation has timed out

0x8004274D ST_ERROR_CONNECTION_REFUSED The connection has been refused by
the remote host

0x80042750 ST_ERROR_HOST_UNAVAILABLE The specified host is unavailable

0x80042751 ST_ERROR_HOST_UNREACHABLE Remote host is unreachable

0x80042753 ST_ERROR_TOO_MANY_PROCESSES Too many processes are using the
networking subsystem

0x80042755 ST_ERROR_TOO_MANY_THREADS Too many threads have been created
by the current process

0x80042756 ST_ERROR_TOO_MANY_SESSIONS Too many client sessions have been
created by the current process

0x80042762 ST_ERROR_INTERNAL_FAILURE An unexpected internal error has
occurred

0x8004276B ST_ERROR_NETWORK_NOT_READY Network subsystem is not ready for
communication

0x8004276C ST_ERROR_INVALID_VERSION This version of the operating system is
not supported

0x8004276D ST_ERROR_NETWORK_NOT_INITIALIZED The networking subsystem has not
been initialized

0x80042775 ST_ERROR_REMOTE_SHUTDOWN The remote host has initiated a
graceful shutdown sequence

0x80042AF9 ST_ERROR_INVALID_HOSTNAME The specified hostname is invalid or
could not be resolved

0x80042AFA ST_ERROR_HOSTNAME_NOT_FOUND The specified hostname could not be
found

0x80042AFB ST_ERROR_HOSTNAME_REFUSED Unable to resolve hostname, request
refused

0x80042AFC ST_ERROR_HOSTNAME_NOT_RESOLVED Unable to resolve hostname, no
address for specified host

0x80042EE1 ST_ERROR_INVALID_LICENSE The license for this product is invalid

0x80042EE2 ST_ERROR_PRODUCT_NOT_LICENSED This product is not licensed to
perform this operation

0x80042EE3 ST_ERROR_NOT_IMPLEMENTED This function has not been
implemented on this platform

0x80042EE4 ST_ERROR_UNKNOWN_LOCALHOST Unable to determine local host name

0x80042EE5 ST_ERROR_INVALID_HOSTADDRESS Invalid host address specified

0x80042EE6 ST_ERROR_INVALID_SERVICE_PORT Invalid service port number specified

0x80042EE7 ST_ERROR_INVALID_SERVICE_NAME Invalid or unknown service name
specified

0x80042EE8 ST_ERROR_INVALID_EVENTID Invalid event identifier specified

0x80042EE9 ST_ERROR_OPERATION_NOT_BLOCKING No blocking operation in progress on
this socket

0x80042F45 ST_ERROR_SECURITY_NOT_INITIALIZED Unable to initialize security interface
for this process

0x80042F46 ST_ERROR_SECURITY_CONTEXT Unable to establish security context
for this session

0x80042F47 ST_ERROR_SECURITY_CREDENTIALS Unable to open client certificate store
or establish client credentials

0x80042F48 ST_ERROR_SECURITY_CERTIFICATE Unable to validate the certificate
chain for this session

0x80042F49 ST_ERROR_SECURITY_DECRYPTION Unable to decrypt data stream

0x80042F4A ST_ERROR_SECURITY_ENCRYPTION Unable to encrypt data stream

0x80042FA9 ST_ERROR_OPERATION_NOT_SUPPORTED The specified operation is not
supported

0x80042FAA ST_ERROR_INVALID_PROTOCOL_VERSION Invalid application protocol version
specified

0x80042FAB ST_ERROR_NO_SERVER_RESPONSE No data returned from server

0x80042FAC ST_ERROR_INVALID_SERVER_RESPONSE Invalid data returned from server

0x80042FAD ST_ERROR_UNEXPECTED_SERVER_RESPONSE Unexpected response code returned
from server

0x80042FAE ST_ERROR_SERVER_TRANSACTION_FAILED Server transaction failed

0x80042FAF ST_ERROR_SERVICE_UNAVAILABLE The service is currently unavailable

0x80042FB0 ST_ERROR_SERVICE_NOT_READY The service is not ready, try again
later

0x80042FB1 ST_ERROR_SERVER_RESYNC_FAILED Unable to resynchronize with server

0x80042FB2 ST_ERROR_INVALID_PROXY_TYPE Invalid proxy server type specified

0x80042FB3 ST_ERROR_PROXY_REQUIRED Resource must be accessed through
specified proxy

0x80042FB4 ST_ERROR_INVALID_PROXY_LOGIN Unable to login to proxy server using
specified credentials

0x80042FB5 ST_ERROR_PROXY_RESYNC_FAILED Unable to resynchronize with proxy
server

0x80042FB6 ST_ERROR_INVALID_COMMAND Invalid command specified

0x80042FB7 ST_ERROR_INVALID_COMMAND_PARAMETER Invalid command parameter specified

0x80042FB8 ST_ERROR_INVALID_COMMAND_SEQUENCE Invalid command sequence specified

0x80042FB9 ST_ERROR_COMMAND_NOT_IMPLEMENTED Specified command not implemented
on this server

0x80042FBA ST_ERROR_COMMAND_NOT_AUTHORIZED Specified command not authorized
for the current user

0x80042FBB ST_ERROR_COMMAND_ABORTED Specified command was aborted by
the remote host

0x80042FBC ST_ERROR_OPTION_NOT_SUPPORTED The specified option is not supported
on this server

0x80042FBD ST_ERROR_REQUEST_NOT_COMPLETED The current client request has not
been completed

0x80042FBE ST_ERROR_INVALID_USERNAME The specified username is invalid

0x80042FBF ST_ERROR_INVALID_PASSWORD The specified password is invalid

0x80042FC0 ST_ERROR_INVALID_ACCOUNT The specified account name is invalid

0x80042FC1 ST_ERROR_ACCOUNT_REQUIRED Account name has not been specified

0x80042FC2 ST_ERROR_INVALID_AUTHENTICATION_TYPE Invalid authentication protocol
specified

0x80042FC3 ST_ERROR_AUTHENTICATION_REQUIRED User authentication is required

0x80042FC4 ST_ERROR_PROXY_AUTHENTICATION_REQUIRED Proxy authentication required

0x80042FC5 ST_ERROR_ALREADY_AUTHENTICATED User has already been authenticated

0x80042FC6 ST_ERROR_AUTHENTICATION_FAILED Unable to authenticate the specified
user

0x80042FDB ST_ERROR_NETWORK_ADAPTER Unable to determine network adapter
configuration

0x80042FDC ST_ERROR_INVALID_RECORD_TYPE Invalid record type specified

0x80042FDD ST_ERROR_INVALID_RECORD_NAME Invalid record name specified

0x80042FDE ST_ERROR_INVALID_RECORD_DATA Invalid record data specified

0x80042FDF ST_ERROR_CONNECTION_OPEN Data connection already established

0x80042FE0 ST_ERROR_CONNECTION_CLOSED Server closed data connection

0x80042FE1 ST_ERROR_CONNECTION_PASSIVE Data connection is passive

0x80042FE2 ST_ERROR_CONNECTION_FAILED Unable to open data connection to
server

0x80042FE3 ST_ERROR_INVALID_SECURITY_LEVEL Data connection cannot be opened
with this security setting

0x80042FE4 ST_ERROR_CACHED_TLS_REQUIRED Data connection requires cached TLS
session

0x80042FE5 ST_ERROR_DATA_READ_ONLY Data connection is read-only

0x80042FE6 ST_ERROR_DATA_WRITE_ONLY Data connection is write-only

0x80042FE7 ST_ERROR_END_OF_DATA End of data

0x80042FE8 ST_ERROR_REMOTE_FILE_UNAVAILABLE Remote file is unavailable

0x80042FE9 ST_ERROR_INSUFFICIENT_STORAGE Insufficient storage on server

0x80042FEA ST_ERROR_STORAGE_ALLOCATION File exceeded storage allocation on
server

0x80042FEB ST_ERROR_DIRECTORY_EXISTS The specified directory already exists

0x80042FEC ST_ERROR_DIRECTORY_EMPTY No files returned by the server for the
specified directory

0x80042FED ST_ERROR_END_OF_DIRECTORY End of directory listing

0x80042FEE ST_ERROR_UNKNOWN_DIRECTORY_FORMAT Unknown directory format

0x80042FEF ST_ERROR_INVALID_RESOURCE Invalid resource name specified

0x80042FF0 ST_ERROR_RESOURCE_REDIRECTED The specified resource has been
redirected

0x80042FF1 ST_ERROR_RESOURCE_RESTRICTED Access to this resource has been
restricted

0x80042FF2 ST_ERROR_RESOURCE_NOT_MODIFIED The specified resource has not been
modified

0x80042FF3 ST_ERROR_RESOURCE_NOT_FOUND The specified resource cannot be
found

0x80042FF4 ST_ERROR_RESOURCE_CONFLICT Request could not be completed due
to the current state of the resource

0x80042FF5 ST_ERROR_RESOURCE_REMOVED The specified resource has been
permanently removed from this
server

0x80042FF6 ST_ERROR_CONTENT_LENGTH_REQUIRED Request must include the content
length

0x80042FF7 ST_ERROR_REQUEST_PRECONDITION Request could not be completed due
to server precondition

0x80042FF8 ST_ERROR_UNSUPPORTED_MEDIA_TYPE Request specified an unsupported
media type

0x80042FF9 ST_ERROR_INVALID_CONTENT_RANGE Content range specified for this
resource is invalid

0x80042FFA ST_ERROR_INVALID_MESSAGE_PART Message is not multipart or an invalid
message part was specified

0x80042FFB ST_ERROR_INVALID_MESSAGE_HEADER The specified message header is
invalid or has not been defined

0x80042FFC ST_ERROR_INVALID_MESSAGE_BOUNDARY The multipart message boundary has
not been defined

0x80042FFD ST_ERROR_NO_FILE_ATTACHMENT The current message part does not
contain a file attachment

0x80042FFE ST_ERROR_UNKNOWN_FILE_TYPE The specified file type could not be
determined

0x80042FFF ST_ERROR_DATA_NOT_ENCODED The specified data block could not be
encoded

0x80043000 ST_ERROR_DATA_NOT_DECODED The specified data block could not be
decoded

0x80043001 ST_ERROR_FILE_NOT_ENCODED The specified file could not be
encoded

0x80043002 ST_ERROR_FILE_NOT_DECODED The specified file could not be
decoded

0x80043003 ST_ERROR_NO_MESSAGE_TEXT No message text

0x80043004 ST_ERROR_INVALID_CHARACTER_SET Invalid character set specified

0x80043005 ST_ERROR_INVALID_ENCODING_TYPE Invalid encoding type specified

0x80043006 ST_ERROR_INVALID_MESSAGE_NUMBER Invalid message number specified

0x80043007 ST_ERROR_NO_RETURN_ADDRESS No valid return address specified

0x80043008 ST_ERROR_NO_VALID_RECIPIENTS No valid recipients specified

0x80043009 ST_ERROR_INVALID_RECIPIENT The specified recipient address is
invalid

0x8004300A ST_ERROR_RELAY_NOT_AUTHORIZED The specified domain is invalid or
server will not relay messages

0x8004300B ST_ERROR_MAILBOX_UNAVAILABLE Specified mailbox is currently
unavailable

0x8004300C ST_ERROR_MAILBOX_READONLY The selected mailbox cannot be
modified

0x8004300D ST_ERROR_MAILBOX_NOT_SELECTED No mailbox has been selected

0x8004300E ST_ERROR_INVALID_MAILBOX Specified mailbox is invalid

0x8004300F ST_ERROR_INVALID_DOMAIN The specified domain name is invalid
or not recognized

0x80043010 ST_ERROR_INVALID_SENDER The specified sender address is invalid
or not recognized

0x80043011 ST_ERROR_MESSAGE_NOT_DELIVERED Message not delivered to any of the
specified recipients

0x80043012 ST_ERROR_END_OF_MESSAGE_DATA No more message data available to
be read

0x80043013 ST_ERROR_INVALID_MESSAGE_SIZE The specified message size is invalid

0x80043014 ST_ERROR_MESSAGE_NOT_CREATED The message could not be created in
the specified mailbox

0x80043015 ST_ERROR_NO_MORE_MAILBOXES No more mailboxes exist on this
server

0x80043016 ST_ERROR_INVALID_EMULATION_TYPE The specified terminal emulation type
is invalid

0x80043017 ST_ERROR_INVALID_FONT_HANDLE The specified font handle is invalid

0x80043018 ST_ERROR_INVALID_FONT_NAME The specified font name is invalid or
unavailable

0x80043019 ST_ERROR_INVALID_PACKET_SIZE The specified packet size is invalid

0x8004301A ST_ERROR_INVALID_PACKET_DATA The specified packet data is invalid

0x8004301B ST_ERROR_INVALID_PACKET_ID The unique packet identifier is invalid

0x8004301C ST_ERROR_PACKET_TTL_EXPIRED The specified packet time-to-live
period has expired

0x8004301D ST_ERROR_INVALID_NEWSGROUP Invalid newsgroup specified

0x8004301E ST_ERROR_NO_NEWSGROUP_SELECTED No newsgroup selected

0x8004301F ST_ERROR_EMPTY_NEWSGROUP No articles in specified newsgroup

0x80043020 ST_ERROR_INVALID_ARTICLE Invalid article number specified

0x80043021 ST_ERROR_NO_ARTICLE_SELECTED No article selected in the current
newsgroup

0x80043022 ST_ERROR_FIRST_ARTICLE First article in current newsgroup

0x80043023 ST_ERROR_LAST_ARTICLE Last article in current newsgroup

0x80043024 ST_ERROR_ARTICLE_EXISTS Unable to transfer article, article
already exists

0x80043025 ST_ERROR_ARTICLE_REJECTED Unable to transfer article, article
rejected

0x80043026 ST_ERROR_ARTICLE_TRANSFER_FAILED Article transfer failed

0x80043027 ST_ERROR_ARTICLE_POSTING_DENIED Posting is not permitted on this server

0x80043028 ST_ERROR_ARTICLE_POSTING_FAILED Posting is not permitted on this server

0x80043029 ST_ERROR_INVALID_DATE_FORMAT The specified date format is not
recognized

0x8004302A ST_ERROR_FEATURE_NOT_SUPPORTED The specified feature is not supported
on this server

0x8004302B ST_ERROR_INVALID_FORM_HANDLE The specified form handle is invalid or
a form has not been created

0x8004302C ST_ERROR_INVALID_FORM_ACTION The specified form action is invalid or
has not been specified

0x8004302D ST_ERROR_INVALID_FORM_METHOD The specified form method is invalid
or not supported

0x8004302E ST_ERROR_INVALID_FORM_TYPE The specified form type is invalid or
not supported

0x8004302F ST_ERROR_INVALID_FORM_FIELD The specified form field name is
invalid or does not exist

0x80043030 ST_ERROR_EMPTY_FORM The specified form does not contain
any field values

0x80043031 ST_ERROR_MAXIMUM_CONNECTIONS The maximum number of client
connections exceeded

0x80043032 ST_ERROR_THREAD_CREATION_FAILED Unable to create a new thread for the
current process

0x80043033 ST_ERROR_INVALID_THREAD_HANDLE The specified thread handle is no
longer valid

0x80043034 ST_ERROR_THREAD_TERMINATED The specified thread has been
terminated

0x80043035 ST_ERROR_THREAD_DEADLOCK The operation would result in the
current thread becoming deadlocked

0x80043036 ST_ERROR_INVALID_CLIENT_MONIKER The specified moniker is not
associated with any client session

0x80043037 ST_ERROR_CLIENT_MONIKER_EXISTS The specified moniker has been
assigned to another client session

0x80043038 ST_ERROR_SERVER_INACTIVE The specified server is not listening
for client connections

0x80043039 ST_ERROR_SERVER_SUSPENDED The specified server is suspended and
not accepting client connections

0x8004303A ST_ERROR_NO_MESSAGE_STORE No message store has been specified

0x8004303B ST_ERROR_MESSAGE_STORE_CHANGED The message store has changed since
it was last accessed

0x8004303C ST_ERROR_MESSAGE_NOT_FOUND No message was found that matches
the specified criteria

0x8004303D ST_ERROR_MESSAGE_DELETED The specified message has been
deleted

0x8004303E ST_ERROR_FILE_CHECKSUM_MISMATCH The local and remote file checksums
do not match

0x8004303F ST_ERROR_FILE_SIZE_MISMATCH The local and remote file sizes do not
match

0x80043040 ST_ERROR_INVALID_FEED_URL The news feed URL is invalid or
specifies an unsupported protocol

0x80043041 ST_ERROR_INVALID_FEED_FORMAT The internal format of the news feed
is invalid

0x80043042 ST_ERROR_INVALID_FEED_VERSION This version of the news feed is not
supported

0x80043043 ST_ERROR_CHANNEL_EMPTY There are no valid items found in this
news feed

0x80043044 ST_ERROR_INVALID_ITEM_NUMBER The specified channel item identifier is
invalid

0x80043045 ST_ERROR_ITEM_NOT_FOUND The specified channel item could not
be found

0x80043046 ST_ERROR_ITEM_EMPTY The specified channel item does not
contain any data

0x80043047 ST_ERROR_INVALID_ITEM_PROPERTY The specified item property name is
invalid

0x80043048 ST_ERROR_ITEM_PROPERTY_NOT_FOUND The specified item property has not
been defined

0x80043049 ST_ERROR_INVALID_CHANNEL_TITLE The channel title is invalid or has not
been defined

0x8004304A ST_ERROR_INVALID_CHANNEL_LINK The channel hyperlink is invalid or has
not been defined

0x8004304B ST_ERROR_INVALID_CHANNEL_DESCRIPTION The channel description is invalid or
has not been defined

0x8004304C ST_ERROR_INVALID_ITEM_TEXT The description for an item is invalid
or has not been defined

0x8004304D ST_ERROR_INVALID_ITEM_LINK The hyperlink for an item is invalid or
has not been defined

0x8004304E ST_ERROR_INVALID_SERVICE_TYPE The specified service type is invalid

0x8004304F ST_ERROR_SERVICE_SUSPENDED Access to the specified service has
been suspended

0x80043050 ST_ERROR_SERVICE_RESTRICTED Access to the specified service has
been restricted

0x80043051 ST_ERROR_INVALID_PROVIDER_NAME The specified provider name is invalid
or unknown

0x80043052 ST_ERROR_INVALID_PHONE_NUMBER The specified phone number is invalid
or not supported in this region

0x80043053 ST_ERROR_GATEWAY_NOT_FOUND A message gateway cannot be found
for the specified provider

0x80043054 ST_ERROR_MESSAGE_TOO_LONG The message exceeds the maximum
number of characters permitted

0x80043055 ST_ERROR_INVALID_PROVIDER_DATA The request returned invalid or
incomplete service provider data

0x80043056 ST_ERROR_INVALID_GATEWAY_DATA The request returned invalid or
incomplete message gateway data

0x80043057 ST_ERROR_MULTIPLE_PROVIDERS The request has returned multiple
service providers

0x80043058 ST_ERROR_PROVIDER_NOT_FOUND The specified service provider could
not be found

0x80043059 ST_ERROR_INVALID_MESSAGE_SERVICE The specified message is not
supported with this service type

0x8004305A ST_ERROR_INVALID_MESSAGE_FORMAT The specified message format is
invalid

0x8004305B ST_ERROR_INVALID_CONFIGURATION The specified configuration options
are invalid

0x8004305C ST_ERROR_SERVER_ACTIVE The requested action is not permitted
while the server is active

0x8004305D ST_ERROR_SERVER_PORT_BOUND Unable to obtain exclusive use of the
specified local port

0x8004305E ST_ERROR_INVALID_CLIENT_SESSION The specified client identifier is invalid
for this session

0x8004305F ST_ERROR_CLIENT_NOT_IDENTIFIED The specified client has not provided
user credentials

0x80043060 ST_ERROR_INVALID_CLIENT_STATE The requested action cannot be
performed at this time

0x80043061 ST_ERROR_INVALID_RESULT_CODE The specified result code is not valid
for this protocol

0x80043062 ST_ERROR_COMMAND_REQUIRED The specified command is required
and cannot be disabled

0x80043063 ST_ERROR_COMMAND_DISABLED The specified command has been
disabled

0x80043064 ST_ERROR_COMMAND_SEQUENCE The command cannot be processed
at this time

0x80043065 ST_ERROR_COMMAND_COMPLETED The previous command has
completed

0x80043066 ST_ERROR_INVALID_PROGRAM_NAME The specified program name is invalid
or unrecognized

0x80043067 ST_ERROR_INVALID_REQUEST_HEADER The request header contains one or
more invalid values

0x80043068 ST_ERROR_INVALID_VIRTUAL_HOST The specified virtual host name is
invalid

0x80043069 ST_ERROR_VIRTUAL_HOST_NOT_FOUND The specified virtual host does not
exist

0x8004306A ST_ERROR_TOO_MANY_VIRTUAL_HOSTS Too many virtual hosts created for
this server

0x8004306B ST_ERROR_INVALID_VIRTUAL_PATH The specified virtual path name is
invalid

0x8004306C ST_ERROR_VIRTUAL_PATH_NOT_FOUND The specified virtual path does not
exist

0x8004306D ST_ERROR_TOO_MANY_VIRTUAL_PATHS Too many virtual paths created for
this server

0x8004306E ST_ERROR_INVALID_TASK The asynchronous task identifier is

invalid

0x8004306F ST_ERROR_TASK_ACTIVE The asynchronous task has not
finished

0x80043070 ST_ERROR_TASK_QUEUED The asynchronous task has been
queued

0x80043071 ST_ERROR_TASK_SUSPENDED The asynchronous task has been
suspended

0x80043072 ST_ERROR_TASK_FINISHED The asynchronous task has finished

0x80043073 ST_ERROR_INVALID_ACCOUNT_UUID The account unique identifier is
invalid

0x80043074 ST_ERROR_INVALID_ACCOUNT_ID The application account identifier is
invalid

0x80043075 ST_ERROR_INVALID_PRODUCT_ID The product identifier identifier is
invalid

0x80043076 ST_ERROR_INVALID_SERIAL_NUMBER The product serial number is invalid

0x80043077 ST_ERROR_INVALID_APPID The application identifier is invalid

0x80043078 ST_ERROR_INVALID_APIKEY The application key is invalid

0x80043079 ST_ERROR_ACCOUNT_EXISTS The application account identifier
already exists

0x8004307A ST_ERROR_ACCOUNT_NOT_CREATED The application account identifier was
not created

0x8004307B ST_ERROR_ACCOUNT_NOT_FOUND The application account identifier was
not found

0x8004307C ST_ERROR_ACCOUNT_NOT_EXPIRED Access to this account has not expired

0x8004307D ST_ERROR_ACCOUNT_NOT_UPDATED The application account could not be
updated

0x8004307E ST_ERROR_ACCOUNT_EXPIRED Access to this account has expired

0x8004307F ST_ERROR_ACCOUNT_REVOKED Access to this account has been
revoked

0x80043080 ST_ERROR_APIKEY_NOT_CREATED The application key could not be
created

0x80043081 ST_ERROR_APIKEY_NOT_FOUND The application key could not be
found

0x80043082 ST_ERROR_APIKEY_NOT_EXPIRED The application key has not expired

0x80043083 ST_ERROR_APIKEY_NOT_UNIQUE The application key identifier is not
unique

0x80043084 ST_ERROR_APIKEY_NOT_UPDATED They application key could not be
updated

0x80043085 ST_ERROR_APIKEY_NOT_DELETED The application key could not be
deleted

0x80043086 ST_ERROR_APIKEY_EXISTS The application key already exists

0x80043087 ST_ERROR_APIKEY_EXPIRED The application key has expired and
must be refreshed

0x80043088 ST_ERROR_APIKEY_REVOKED The application key has been revoked

0x80043089 ST_ERROR_APIKEY_APPID The application was not found or was
not specified

0x8004308A ST_ERROR_INVALID_TOKEN The access token is invalid or was not
specified

0x8004308B ST_ERROR_TOKEN_NOT_CREATED The access token could not be
created

0x8004308C ST_ERROR_TOKEN_NOT_FOUND The access token could not be found

0x8004308D ST_ERROR_TOKEN_NOT_EXPIRED The access token has not expired

0x8004308E ST_ERROR_TOKEN_NOT_UPDATED The access token was not updated

0x8004308F ST_ERROR_TOKEN_NOT_DELETED The access token could not be
deleted

0x80043090 ST_ERROR_TOKEN_EXPIRED The access token has expired and
must be refreshed

0x80043091 ST_ERROR_TOKEN_REVOKED The access token has been revoked

0x80043092 ST_ERROR_NO_APIKEYS_FOUND No application keys found for this
account

0x80043093 ST_ERROR_NO_TOKENS_FOUND No access tokens found for this
application key

0x80043094 ST_ERROR_NO_TOKENS_REVOKED No access tokens have been revoked

0x80043095 ST_ERROR_INVALID_STORAGE_OBJECT Invalid storage object identifier

0x80043096 ST_ERROR_STORAGE_OBJECT_READONLY The storage object is read-only

0x80043097 ST_ERROR_STORAGE_OBJECT_EXPIRED Access to the storage object has
expired

0x80043098 ST_ERROR_STORAGE_OBJECT_SIZE The storage object size exceeds
storage limits

0x80043099 ST_ERROR_STORAGE_OBJECT_DIGEST The storage object digest is invalid or
cannot be computed

0x8004309A ST_ERROR_STORAGE_OBJECT_EXISTS A storage object with this label
already exists

0x8004309B ST_ERROR_STORAGE_OBJECT_MODIFIED A storage object with this label has
been modified

0x8004309C ST_ERROR_STORAGE_OBJECT_NOT_OWNER The current user is not the storage
object owner

0x8004309D ST_ERROR_STORAGE_OBJECT_NOT_FOUND The specified storage object does not
exist

0x8004309E ST_ERROR_STORAGE_OBJECT_NOT_CREATED The storage object was not created

0x8004309F ST_ERROR_STORAGE_OBJECT_NOT_MODIFIED The storage object was not modified

0x800430A0 ST_ERROR_STORAGE_OBJECT_NOT_RENAMED The storage object was not renamed

0x800430A1 ST_ERROR_STORAGE_FOLDER_EMPTY The storage folder does not contain
any objects

0x800430A2 ST_ERROR_STORAGE_ACCOUNT_QUOTA The storage account has exceeded its
quota

0x800430A3 ST_ERROR_STORAGE_ACCOUNT_LIMIT The storage account has exceeded its
object limit

0x800430A4 ST_ERROR_INVALID_STORAGE_TYPE The specified storage type is invalid

0x800430A5 ST_ERROR_INVALID_STORAGE_PROVIDER The specified storage provider is not
available

0x800430A6 ST_ERROR_INVALID_STORAGE_REGION The specified storage region is not
available

0x800430A7 ST_ERROR_INVALID_STORAGE_FOLDER The storage folder does not exist or
cannot be accessed

0x800430A8 ST_ERROR_INVALID_STORAGE_LABEL The storage object label is invalid or
undefined

0x800430A9 ST_ERROR_INVALID_QUEUE_HANDLE The specified queue handle is invalid
or the queue has been deleted

0x800430AA ST_ERROR_INVALID_QUEUE_FILE The specified file identifier is not valid
for this queue

0x800430AB ST_ERROR_QUEUE_RUNNING The operation cannot be performed
while the queue is running

0x800430AC ST_ERROR_QUEUE_STOPPED The operation cannot be performed
when the queue has stopped

0x800430AD ST_ERROR_QUEUE_EMPTY There are no files in the specified
queue

0x800430AE ST_ERROR_QUEUE_PAUSED The operation cannot be performed
while the queue is paused

0x800430AF ST_ERROR_QUEUE_LOCKED The operation cannot be performed
while the queue is locked

0x800430B0 ST_ERROR_FILE_NOT_QUEUED The specified file cannot be found in
the queue

0x800430B1 ST_ERROR_END_OF_QUEUE There are no more files in the
specified queue

0x800430B2 ST_ERROR_TOO_MANY_FILES The maximum number of files have
been queued for transfer

0x800430B3 ST_ERROR_NO_QUEUED_TRANSFER No queued file transfer is currently in
progress

0x800430B4 ST_ERROR_INVALID_X509_CERTIFICATE The specified X.509 format certificate
is invalid

0x800430B5 ST_ERROR_INVALID_PKCS12_CERTIFICIATE The specified PKCS 12 format
certificate is invalid

0x800430B6 ST_ERROR_INVALID_CIPHER_SUITE The specified cipher suite is invalid or
unavailable

0x800430B7 ST_ERROR_DEPRECATED_CIPHER_SUITE The specified cipher suite is insecure
and has been deprecated

0x800430B8 ST_ERROR_INVALID_CERTIFICATE_CHAIN The certificate chain could not be
validated

0x800430B9 ST_ERROR_INVALID_PRIVATE_KEY The private key for the certificate is
invalid

0x800430BA ST_ERROR_INVALID_API_SESSION The application session identifier is
invalid

0x800430BB ST_ERROR_EXPIRED_API_SESSION The application session identifier has
expired

0x800430BC ST_ERROR_INVALID_API_TOKEN The application token for this session
is invalid

0x800430BD ST_ERROR_EXPIRED_API_TOKEN The application token for this session
has expired

0x800430BE ST_ERROR_INVALID_API_AUTHID The authorization token for this
session is invalid

0x800430BF ST_ERROR_INVALID_API_ENDPOINT The endpoint for the specified
request is invalid

0x800430C0 ST_ERROR_INVALID_API_PAYLOAD The data submitted with the specified
request is invalid

0x800430C1 ST_ERROR_UNKNOWN_SESSION_OWNER The current session owner is unknown
or no longer valid

0x800430C2 ST_ERROR_REVOKED_SESSION_AUTH The authorization token for this
session has been revoked

0x800430C3 ST_ERROR_INVALID_URL_SCHEME The scheme for the specified URL is
invalid or unsupported

0x800430C4 ST_ERROR_INVALID_URL_HOST The host name for the specified URL
is invalid

0x800430C5 ST_ERROR_INVALID_URL_PORT The port number for the specified
URL is invalid

0x800430C6 ST_ERROR_INVALID_URL_PATH The resource path for the specified
URL is invalid

0x800430C7 ST_ERROR_INVALID_CONTENT_TYPE The content type is invalid or not
supported

0x800430C8 ST_ERROR_UNKNOWN_CONTENT_TYPE The content type cannot be

determined

0x800430C9 ST_ERROR_INVALID_CHARSET The specified character set is invalid
or not supported

0x800430CA ST_ERROR_INVALID_CODEPAGE The specified ANSI code page is
invalid or not supported

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Class Library

A general purpose TCP/IP networking library for developing client and server applications.

Reference

Class Methods
Data Structures
Error Codes

Library Information

Class Name CSocketWrench

File Name CSWSKV11.DLL

Version 11.0.2180.1635

LibID EC6DE93D-FBB8-4928-B2D5-C09758C644EE

Import Library CSWSKV11.LIB

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
At the core of all of the SocketTools networking libraries is the Windows Sockets API. This provides
a low level interface for sending and receiving data over the Internet or a local intranet using the
Transmission Control Protocol (TCP) and/or User Datagram Protocol (UDP). The SocketWrench
class library provides a simpler interface to the Windows Sockets API, without sacrificing features
or functionality. Using SocketWrench, you can easily create client and server applications while
avoiding many of the mundane tasks and common problems that developers face when building
Internet applications.

This class library supports secure connections using the TLS 1.2 protocol and can also be used to
create secure, customized server applications. Both implicit and explicit SSL connections are
supported, enabling the class to work with a wide variety of client and server applications without
requiring that you use third-party libraries or Microsoft's CryptoAPI.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This class provides an implementation of a multithreaded server which should only be used with
languages that support the creation of multithreaded applications. It is important that you do not
link against static libraries which were not built with support for threading.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-
bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Class Methods

Class Description

CSocketWrench Constructor which initializes the current instance of the class

~CSocketWrench Destructor which releases resources allocated by the class

Method Description

Abort Abort the connection and immediately close the socket

Accept Accept a connection request from a remote host

AttachHandle Attach the specified client handle to this instance of the class

AttachThread Attach the specified socket to another thread

Cancel Cancel a blocking operation

CompareAddress Compare two IP addresses to determine if they are identical

Connect Connect to the specified server

ConnectUrl Connect to the specified server using a URL

CreateSecurityCredentials Create a new security credentials structure

DeleteSecurityCredentials Delete a previously created security credentials structure

DetachHandle Detach the handle for the current instance of this class

DisableEvents Disable asynchronous event notification

DisableSecurity Disable secure communication with the remote host

DisableTrace Disable logging of network function calls to the trace log

Disconnect Disconnect from the current server

EnableEvents Enable asynchronous event notification

EnableSecurity Enable secure communication with the remote host

EnableTrace Enable logging of network function calls to a file

EnumNetworkAddresses Return the list of network addresses that are configured for the local host

Flush Flush the send and receive buffers

FormatAddress Convert an IP address in binary format into a printable string

FreezeEvents Suspend or resume event handling by the application

GetAdapterAddress Return the IP or MAC assigned to the specified network adapter

GetAddress Convert an IP address string to a binary format

GetAddressFamily Return the address family for the specified IP address

GetDefaultHostFile Return the fully qualified path name of the host file on the local system

GetErrorString Return a description for the specified error code

GetExternalAddress Return the external IP address assigned to the local system

GetFirstAlias Return the first alias for the specified host name

file:///C|/Projects/cstools11/pdf/winsock/class/getaddressfamily.html

GetHandle Return the client handle used by this instance of the class

GetHostAddress Return the IP address assigned to the specified hostname

GetHostFile Return the name of the host file

GetHostName Return the hostname assigned to the specified IP address

GetLastError Return the last error code

GetLocalAddress Return the local IP address and port number for a socket

GetLocalName Return the hostname assigned to the local system

GetNextAlias Return the next alias for the specified host name

GetOption Return the current socket options

GetPeerAddress Return the IP address of the peer that the socket is connected to

GetPeerPort Returns the remote port number used by the client to establish the connection

GetPhysicalAddress Return the media access control (MAC) address for the primary network adapter

GetSecurityInformation Return information about the security characteristics of a connection

GetServiceName Return the service name associated with a specified port number

GetServicePort Return the port number associated with a service name

GetStatus Report what sort of socket operation is in progress

GetStreamInfo Return information about the current stream read or write operation

GetTimeout Return the timeout interval for blocking operations, in seconds

GetUrlHostName Return the host name and port number specified in a URL

HostNameToUnicode Converts the canonical form of a host name to its Unicode version

InetEventProc Callback method that processes events generated on the socket

IsAddressNull Determine if the specified IP address is a null address

IsAddressRoutable Determine if the specified IP address is routable over the Internet

IsBlocking Determine if the socket is performing a blocking operation

IsClosed Determine if the remote host has closed its socket

IsConnected Determine if the socket is connected to a remote host

IsInitialized Determine if the class has been successfully initialized

IsListening Determine if the socket is listening for a connection

IsProtocolAvailable Determine if the specified protocol and address family are supported

IsReadable Determine if data can read from the socket without blocking

IsUrgent Determine if there is any out-of-band data available to be read

IsWritable Determine if data can be written to to the socket without blocking

Listen Listen for client connections on the specified socket

MatchHostName Match a host name against of list of addresses including wildcards

NormalizeHostName Return the canonical form of a host name

Peek Read data from the socket without removing it from the socket buffer

file:///C|/Projects/cstools11/pdf/winsock/class/getpeerport.html
file:///C|/Projects/cstools11/pdf/winsock/class/ineteventproc.html

Read Read data from the socket

ReadLine Read a line of data from the socket, storing it in a string buffer

ReadStream Read a stream of data from the socket

RegisterEvent Register an event callback function

Reject Reject a pending client connection

SetHostFile Specify the name of an alternate host table

SetLastError Set the last error code

SetOption Set one or more options for the current socket

SetTimeout Set the interval used when waiting for a blocking operation to complete

ShowError Display a message box with a description of the specified error

Shutdown Disable reception or transmission of data

StoreStream Read a stream of data from the socket and store it in a file

ValidateCertificate Validate the specified security certificate is installed on the local system

ValidateHostName Validate the specified host name and return the resolved IP address

Write Write data to the socket

WriteLine Write a line of data to the socket, terminated with a carriage-return and linefeed

WriteStream Write a stream of data to the socket

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::~CSocketWrench

~CSocketWrench();

The CSocketWrench destructor releases resources allocated by the current instance of the
CSocketWrench object. It also uninitializes the library if there are no other concurrent uses of the
class.

Remarks
When a CSocketWrench object goes out of scope, the destructor is automatically called to allow
the library to free any resources allocated on behalf of the process. Any pending blocking or
asynchronous calls in this process are canceled without posting any notification messages, and all
handles that were created for the connection are destroyed.

The destructor is not called explicitly by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CSocketWrench

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Abort Method

BOOL Abort();

Immediately close the socket without waiting for any remaining data to be written out.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Abort method should only be used when the connection must be closed immediately before
the application terminates. This method should only be used to abort client connections and
should not be used with passive (listening) sockets. Server applications that need to abort an
incoming client connection should use the Reject method.

In most cases, the application should call the Disconnect method to gracefully close the
connection to the remote host. Aborting the connection will discard any buffered data and may
cause errors or result in unpredictable behavior.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Cancel, Disconnect, Reject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Accept Method

BOOL Accept(
 SOCKET hServer,
 UINT nTimeout,
 DWORD dwOptions
);

BOOL Accept(
 CSocketWrench& swServer,
 UINT nTimeout,
 DWORD dwOptions
);

The Accept method is used to accept a pending client connection.

This method has been deprecated and is included for backwards compatibility. Use the
CInternetServer class to create a server application.

Parameters
hServer

Handle to the listening socket. This argument may also reference a CSocketWrench object
which is listening for connections. In either case, the server socket must have been created by
calling the Listen method.

nTimeout

The number of seconds that the server will wait for a client connection before failing the
operation. This value is used only for blocking connections.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be
reused. This option is commonly used by server
applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a
full-size packet can be sent to the remote host.

INET_OPTION_INLINE This option controls how urgent (out-of-band)
data is handled when reading data from the
socket. If set, urgent data is placed in the data
stream along with non-urgent data.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate

situations in which a child process does not close
the handle, leaving it open after the parent
process has stopped the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option determines if a secure connection is
established with the remote host.

INET_OPTION_SECURE_FALLBACK This option specifies the server should permit the
use of less secure cipher suites for compatibility
with legacy clients. If this option is specified, the
server will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. If no event notification window is specified, then Accept will block until a client
attempts to connect to the server or the timeout period expires.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread
that created it. From that point on, until the it is released, only the owner may call methods using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Accept, Connect, Disconnect, Listen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::AttachHandle Method

VOID AttachHandle(
 SOCKET hSocket
);

VOID AttachHandle(
 SOCKET hSocket,
 DWORD dwProcessId
);

The AttachHandle method attaches the specified socket handle to the current instance of the
class.

Parameters
hSocket

The socket handle that will be attached to the current instance of the class object.

dwProcessId

The process ID for the process that currently owns the socket handle. This value may be zero to
specify the current process.

Return Value
None.

Remarks
This method is used to attach a socket handle created outside of the class using the SocketWrench
API. Once the socket handle is attached to the class, the other class member functions may be
used with that socket. If the socket was created by a third-party library or the Windows Sockets
API, then the handle will be automatically inherited by the library.

If a socket handle already has been created for the class, that handle will be released when the
new handle is attached to the class object. If you want to prevent the previous socket connection
from being terminated, you must call the DetachHandle method. Failure to release the detached
handle may result in a resource leak in your application.

If the dwProcessId parameter specifies another process, the socket will be duplicated into the
current process, attached to the current thread and the original socket handle will be closed in the
other process. This enables an application to effectively take control of a connection created by
another process. The original socket handle must be inheritable by the by the current process and
must be an actual Windows socket handle, not a pseudo-handle. This functionality is only
supported on Windows NT 4.0 and later versions of the operating system with the Microsoft
TCP/IP stack. Note that Layered Service Providers (LSPs) may interfere with the ability to inherit
handles across processes.

If the socket was created by another process, it is initialized by the library in a blocking state, even
if was originally using asynchronous socket events. If the application requires that the socket use
events, it must explicitly call EnableEvents. A program should never try to attach to a secure
connection created by another process because the attached socket will not have the security
context required to encrypt and decrypt the data exchanged with the remote host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachThread, DetachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::AttachThread Method

DWORD AttachThread(
 DWORD dwThreadId
);

The AttachThread method attaches the specified client handle to another thread.

Parameters
dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the client handle.

Return Value
If the method succeeds, the return value is the thread ID of the previous owner. If the method fails,
the return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
When a client handle is created, it is associated with the current thread that created it. Normally, if
another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in a client application to create the client handle, and then pass that handle to another
worker thread. The AttachThread method can be used to change the ownership of the handle to
the new worker thread. By preserving the return value from the method, the original owner of the
handle can be restored before the worker thread terminates.

This method should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should AttachThread be used to
forcibly release a handle allocated by another thread while a blocking operation is in progress. To
cancel an operation, use the Cancel method and then release the handle after the blocking
method exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
client handle used by the class until the destructor is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, Cancel, Connect, DetachHandle, Disconnect, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Cancel Method

BOOL Cancel(
 SOCKET hSocket
);

BOOL Cancel();

The Cancel method cancels any outstanding blocking socket operation, causing the blocking
method to fail. The application may then retry the operation or terminate the connection.

Parameters
hSocket

An optional parameter that specifies the handle to the socket. If this parameter is omitted, the
socket handle for the current class instance will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
When the Cancel method is called, the blocking method will not immediately fail. An internal flag
is set which causes the blocking operation to exit with an error. This means that the application
cannot cancel an operation and immediately perform some other operation. Instead it must allow
the calling stack to unwind, returning back to the blocking operation before making any further
function calls.

This method is typically called from within an event handler to signal that the current blocking
operation should stop. It may also be used to cancel a blocking operation that is occurring on
another thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Disconnect, IsBlocking

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::CompareAddress Method

BOOL CompareAddress(
 LPINTERNET_ADDRESS lpAddress1,
 LPINTERNET_ADDRESS lpAddress2
);

BOOL CompareAddress(
 LPCTSTR lpszAddress1,
 LPCTSTR lpszAddress2
);

Compare two IP addresses to determine if they are identical.

Parameters
lpAddress1

A pointer to an INTERNET_ADDRESS structure that contains the first IP address to be compared.
An alternate version of this method accepts a string that specifies the IP address to be
compared.

lpAddress2

A pointer to an INTERNET_ADDRESS structure that contains the second IP address to be
compared. An alternate version of this method accepts a string that specifies the IP address to
be compared.

Return Value
If the method succeeds and the two addresses are identical, the return value is non-zero. If the
method fails or the two addresses are not identical, the return value is zero. If either parameter is
NULL, or the address family for the two addresses are not the same, the last error code will be
updated. If the addresses are valid and in the same address family, but are not identical, the last
error code will be set to NO_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetHostAddress, GetLocalAddress, GetPeerAddress, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Connect Method

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort
);

BOOL Connect(
 LPCTSTR lpszRemoteHost,
 UINT nRemotePort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort
);

The Connect method is used to establish a connection with a server.

Parameters
lpszHostName

A pointer to a null-terminated string which specifies the host name or IP address of the system
you want to connect with. This parameter cannot be a URL and must only specify the name of
the remote host. If this parameter is NULL or an empty string, the method will fail with an error
indicating the host name is invalid.

nRemotePort

The port number used to establish the connection. Valid port numbers range in value from 1
through 65535 and a value outside if this range will cause the function to fail. Port numbers in
the range of 49152 and 65535 are referred to as dynamic ports and are generally reserved for
private use by client applications. You cannot specify a port number of zero when establishing
an outbound connection.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for a response before failing the current operation.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_DONTROUTE This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 or later
and the strongest cipher suites available.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6

enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies that this instance of the class
may be used by any thread, and is not limited to
the thread which created it. The application is
responsible for ensuring that access to the class
instance is synchronized across multiple threads.

lpszLocalAddress

A pointer to a null terminated string that specifies the local IP address that the socket should be
bound to. If this parameter is NULL, then an appropriate address will automatically be used. A
specific address should only be used if it is required by the application.

nLocalPort

The local port number that the socket should be bound to. If this parameter is set to zero, then
an appropriate port number will automatically be used. A specific port number should only be
used if it is required by the application.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The lpszHostName parameter must specify a valid host name or IP address. Host names are
resolved into an IP address by first checking the local hosts file and if the name is not found, a
name server query will be performed to determine the IP address. If the Unicode version of this
function is called and the host name includes non-ASCII characters, the host name will be
automatically converted to an ASCII compatible format. Refer to the NormalizeHostName
method for more information. To establish a connection using a URL rather than a host name, use
the ConnectUrl method.

This method will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and establish a connection by calling the Connect
method in that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the EnableSecurity method when you are
ready to initiate the TLS handshake.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the class instance is initially attached to the thread

that created it. From that point on, until the it is released, only the owner may call methods using
that instance of the class. The ownership of the class instance may be transferred from one thread
to another using the AttachThread method.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any method in that
instance of the class, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the class instance is synchronized. If one thread calls a
function in the library, it must ensure that no other thread will call another function at the same
time using the same instance.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, Disconnect, EnableSecurity, Read, ReadLine, RegisterEvent, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ConnectUrl Method

BOOL ConnectUrl(
 LPCTSTR lpszUrl,
 UINT nTimeout,
 DWORD dwOptions
);

The ConnectUrl method is used to establish a TCP connection with a server using the information
provided in a URL.

Parameters
lpszUrl

A pointer to a null-terminated string which specifies a URL used when establishing the
connection. This parameter cannot be NULL or point to an empty string. If a non-standard URI
scheme is used, the port number must be explicitly specified or the method will fail. See the
remarks below for more information on the format supported by this method.

nTimeout

The number of seconds to wait for the connection to complete before failing the current
operation. This parameter is optional and if omitted or the value is zero, a default timeout
period will be used.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is optional and
if omitted, no additional options will be specified. This parameter value is constructed by using
the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This
option is not necessary for most connections,
particularly when the client will not be connected
to the server for an extended period of time.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The

server certificate will not be validated and the
connection will always be permitted. This option
only affects secure connections using the TLS
protocol.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
connection will always default to using TLS 1.2 or
later and the strongest cipher suites available on
the client platform. This option may be
automatically enabled if the URL scheme specifies
a service which requires a secure connection. See
the remarks below for more information.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

Return Value
If the method succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call the GetLastError method.

Remarks
The ConnectUrl method provides a simplified interface which can be used to establish a
connection using a URL. This method can only be used to establish connections using TCP and
does not currently support the use of URLs to connect with a service which uses UDP. The general
format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This method recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the

following:

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. The host name www.example.com would be resolved
into an IP address and the connection established on port 443. This method will also recognize a
simpler format which only includes the host name and port number without a URI scheme, such
as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an
explicit port number, the method cannot determine what port number should be used when
establishing the connection. The same also applies if a custom, non-standard URI scheme is
provided which is not recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this method will
automatically enable the INET_OPTION_SECURE option. For example, providing a URL which uses
the https:// scheme will automatically enable a secure connection regardless if the dwOptions
parameter includes that option. If a URI scheme is used in conjunction with a port number
associated with a secure service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since
port 443 is the standard port designated for a secure HTTP connection, a secure connection will
be enabled by default, even if INET_OPTION_SECURE has not been specified by the caller.
Alternatively, if a custom port number is specified in the URL or the scheme is not recognized as
one which requires implicit TLS, security options will not be automatically enabled for the
connection.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, this method will return an error indicating the port number
is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address
and this would be considered valid. Without the brackets, this URL would not be accepted.

Important: The URL provided to this method will only be used to establish a connection with a
server. This is a general purpose method which does not enable support for any particular
application protocol and all implementation details are the responsibility of your application. If you
require higher-level support for a specific Internet protocol, the SocketTools API provides
comprehensive collection of higher-level classes which can be used to access those services.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the InetEnableSecurity method when you are
ready to initiate the TLS handshake.

To prevent this method from blocking the main user interface thread, the application should
create a background worker thread and establish a connection by calling InetConnectUrl in that
thread. If the application requires multiple simultaneous connections, it is recommended you

create a worker thread for each client session.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call methods using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread method.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any method using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a method in
the library, it must ensure that no other thread will call another method at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, Disconnect, EnableSecurity, GetUrlHostName, Read, RegisterEvent, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::CreateSecurityCredentials Method

BOOL CreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

BOOL CreateSecurityCredentials(
 LPCTSTR lpszCertName
);

The CreateSecurityCredentials method establishes the security credentials for the connection.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.

This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the

store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example

pSocket->CreateSecurityCredentials(lpszCertName);

bConnected = pSocket->Connect(lpszHostName,
 INET_PORT_HTTP,
 INET_PROTOCOL_TCP,
 INET_TIMEOUT,
 INET_OPTION_SECURE);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, DeleteSecurityCredentials, GetSecurityInformation, ValidateCertificate,
SECURITYCREDENTIALS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::CSocketWrench Method

CSocketWrench();

The CSocketWrench constructor initializes the class library and validates the license key at
runtime.

Remarks
If the constructor fails to validate the runtime license, subsequent methods in this class will fail. If
the product is installed with an evaluation license, then the application will only function on the
development system and cannot be redistributed.

The constructor calls the InetInitialize function to initialize the library, which dynamically loads
other system libraries and allocates thread local storage. If you are using this class within another
DLL, it is important that you do not create or destroy an instance of the class from within the
DllMain function because it can result in deadlocks or access violation errors. You should not
declare static or global instances of this class within another DLL if it is linked with the C runtime
library (CRT) because it will automatically call the constructors and destructors for static and global
C++ objects and has the same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
~CSocketWrench, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::DeleteSecurityCredentials Method

VOID DeleteSecurityCredentials();

The DeleteSecurityCredentials method releases the security credentials for the current
connection.

Parameters
None.

Return Value
None.

Remarks
This method can be used to release the memory allocated to the client or server credentials after
a secure connection has been terminated. The security credentials are released when the class
destructor is called, so it is normally not required that the application explicitly call this method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials, ValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/class/validatecertifcate.html

 CSocketWrench::DetachHandle Method

SOCKET DetachHandle();

The DetachHandle method detaches the socket handle associated with the current instance of
the class.

Parameters
None.

Return Value
This method returns the client handle associated with the current instance of the class object. If
there is no active connection, the value INVALID_SOCKET will be returned.

Remarks
This method is used to detach a socket handle created by the class for use with the SocketWrench
API. Once the socket handle is detached from the class, no other class member functions may be
called. Note that the handle must be explicitly closed at some later point by the process or a
resource leak will occur.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, GetHandle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::DisableEvents Method

BOOL DisableEvents();

The DisableEvents method disables the event notification mechanism, preventing subsequent
event notification messages from being posted to the application's message queue.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The DisableEvents method is used to disable event message posting for the specified socket
handle. Although this will immediately prevent any new events from being generated, it is possible
that messages could be waiting in the message queue. Therefore, an application must be
prepared to handle client event messages after this method has been called.

This method is automatically called if the socket has event notification enabled, and the
Disconnect method is called. The same issues regarding outstanding event messages also applies
in this situation, requiring that the application handle event messages that may reference a socket
handle that is no longer valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::DisableSecurity Method

INT DisableSecurity();

The DisableSecurity method disables a secure session with the remote host.

Parameters
None.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The DisableSecurity method disables a secure session, with subsequent calls to Read and Write
sending and receiving unencrypted data. It is important to note that because this method sends a
shutdown message to terminate the secure session, this may cause connection to be closed by the
remote host.

This method does not close the socket. Use the Disconnect method to close the socket and
release the resources allocated for the current session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CreateSecurityCredentials, DeleteSecurityCredentials, EnableSecurity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::DisableTrace Method

BOOL DisableTrace();

The DisableTrace method disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, a value of zero is
returned.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Disconnect Method

BOOL Disconnect();

Terminate the connection, closing the socket and releasing the memory allocated for the session.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
Once the connection has been terminated, the class instance socket handle is no longer valid and
should no longer be used. Note that it is possible that the actual handle value may be re-used at a
later point when a new connection is established. An application should always consider the socket
handle to be opaque and never depend on it being a specific value.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Accept, Connect, DisableEvents, EnableEvents, Listen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::EnableEvents Method

BOOL EnableEvents(
 HWND hEventWnd,
 UINT uEventMsg
);

The EnableEvents method enables event notifications using Windows messages.

This method has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the RegisterEvent method to register an event handler which is invoked
when an event occurs.

Parameters
hEventWnd

Handle to the window which will receive the socket notification messages. This parameter must
specify a valid window handle. If a NULL handle is specified, event notification will be disabled.

uEventMsg

The message that is received when a network event occurs. This value must be greater than
1024.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The EnableEvents method is used to request that notification messages be posted to the
specified window whenever a network event occurs. This allows an application to monitor the
status of different socket operations.

The wParam argument will contain the client handle, the low word of the lParam argument will
contain the event ID, and the high word will contain any error code. If no error has occurred, the
high word will always have a value of zero. The following events may be generated:

Constant Description

INET_EVENT_CONNECT The connection to the remote host has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

INET_EVENT_DISCONNECT The remote host has closed the connection to the client. The client
should read any remaining data and disconnect.

INET_EVENT_READ Data is available to be read by the calling process. No additional
messages will be posted until the client has read at least some of
the data. This event is only generated if the client is in
asynchronous mode.

INET_EVENT_WRITE The application can now send data to the remote host. This
notification is sent after a connection has been established, or

after a previous attempt to write data has failed because it would
result in a blocking operation. This event is only generated if the
client is in asynchronous mode.

INET_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The application may attempt to retry the operation, or may
disconnect from the remote host and report an error to the user.

INET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

To disable event notification, call the DisableEvents method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
DisableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::EnableSecurity Method

BOOL EnableSecurity();

BOOL EnableSecurity(
 LPCTSTR lpszCertName
);

BOOL EnableSecurity(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName
);

The EnableSecurity method enables a secure session with the remote host.

Parameters
lpszCertStore

A pointer to a string which specifies the name of certificate store.

lpszCertName

A pointer to a string which specifies the common name for the certificate that will be used.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The EnableSecurity method enables a secure communications session with the remote host,
automatically negotiating the encryption algorithm and validating the certificate. If the socket was
created using the Connect method to establish a client connection, then EnableSecurity will
initiate the handshake with the remote host to establish a secure session. If the Accept method
was used to accept a connection from a client, then the method will block and wait for the remote
host to initiate the handshake.

This method is useful if the application needs to establish an initial, non-secure connection to the
remote host and then negotiate a secure connection at a later point. If the method succeeds, all
subsequent calls to Read and Write to receive and send data will be encrypted.

If no arguments are specified, then the security credentials established with a previous call to
CreateSecurityCredentials will be used. If a certificate name is specified, then the current security
credentials will be updated to use that certificate.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CreateSecurityCredentials, DeleteSecurityCredentials, DisableSecurity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::EnableTrace Method

BOOL EnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The EnableTrace method enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

A pointer to a string which specifies the name of the trace log file. If this parameter is NULL or
an empty string, the default file name cstrace.log is used. The file is stored in the directory
specified by the TEMP environment variable, if it is defined; otherwise, the current working
directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

TRACE_INFO All function calls are written to the trace file. This is the default
value.

TRACE_ERROR Only those function calls which fail are recorded in the trace file.

TRACE_WARNING Only those function calls which fail or return values which indicate
a warning are recorded in the trace file.

TRACE_HEXDUMP All functions calls are written to the trace file, plus all the data that
is sent or received is displayed, in both ASCII and hexadecimal
format.

TRACE_PROCESS All function calls in the current process are logged, rather than
only those functions in the current thread. This option is useful for
multithreaded applications that are using worker threads.

Return Value
If the method succeeds, the return value is non-zero. A return value of zero indicates an error.
Failure typically indicates that the tracing library cstrcv11.dll cannot be loaded on the local
system.

Remarks
When trace logging is enabled, the file is opened, appended to and closed for each socket
function call. This makes it possible for an application to append its own logging information,
however care should be taken to ensure that the file is closed before the next network operation is
performed. To limit the size of the log files, enable and disable logging only around those sections
of code that you wish to trace.

Note that the TRACE_HEXDUMP trace level generates very large log files since it includes all of the
data exchanged between your application and the remote host.

Trace method logging is managed on a per-thread basis, not for each client handle. This means
that all SocketTools libraries and components share the same settings in the current thread. If you

are using multiple SocketTools libraries or components in your application, you only need to
enable logging once.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::EnumNetworkAddresses Method

INT EnumNetworkAddresses(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

INT EnumNetworkAddresses(
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

The EnumNetworkAddresses method returns the list of network addresses that are configured
for the local host.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this method. It may
be one of the following values:

Constant Description

INET_ADDRESS_ANY Return both IPv4 or IPv6 addresses assigned to the local host,
depending on how the system is configured and which network
interfaces are enabled. This option is only recommended for
applications that require support for IPv6 connections.

INET_ADDRESS_IPV4 Return only the IPv4 addresses assigned to the local host. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not significant
and an application should not depend on them having any
particular value, including zero.

INET_ADDRESS_IPV6 Return only the IPv6 addresses assigned to the local host. All
bytes in the ipNumber array are significant. This option is only
recommended for those applications that require support for
IPv6 connections.

lpAddressList

A pointer to an array of INTERNET_ADDRESS structures that will contain the IP address of each
local network interface. This parameter may be NULL, in which case the method will only return
the number of available addresses.

nMaxAddresses

Maximum number of addresses to be returned. If the lpAddressList parameter is NULL, this
value must be zero.

Return Value
If the method succeeds, the return value is the number of network addresses that are configured
for the local host. If the method fails, the return value is INET_ERROR. To get extended error
information, call the GetLastError method.

Remarks

If the nAddressFamily parameter is specified as INET_ADDRESS_ANY, the application must be
prepared to accept IPv6 addresses returned by this method. On Windows Vista and later versions
of the operating system, IPv6 support is enabled and the local network adapter will have IPv6
addresses assigned to them by default. For legacy applications that only recognize IPv4 addresses,
the nAddressFamily parameter should always be specified as INET_ADDRESS_IPV4 to ensure that
only IPv4 addresses are returned.

This method will ignore addresses that are bound to a disabled interface, as well as those
addresses bound to a virtual loopback interface. For example, although the loopback address
127.0.0.1 is a valid network address, it will not be included in list of addresses returned by this
method.

The first IPv4 or IPv6 address returned by this method is typically the address assigned to the
primary network adapter on the local system. However, your application should not depend on
addresses being returned in any particular order. If the system has virtualization software installed,
this method may also include the IP addresses assigned to any virtualized network adapters
installed by that software.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAdapterAddress, GetHostAddress, GetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Flush Method

BOOL Flush();

The Flush method flushes the internal send and receive buffers used by the socket.

Parameters
None.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Flush method will flush any data waiting to be read or written to the remote host . It is
important to note that this method is not similar to flushing data to a disk file; it does not ensure
that a specific block of data has been written to the socket. For example, you should never call this
function immediately after calling the Write method or prior to calling the Disconnect method.

An application never needs to use the Flush method under normal circumstances. This method is
only to be used when the application needs to immediately return the socket to an inactive state
with no pending data to be read or written. Calling this function may result in data loss and should
only be used if you understand the implications of discarding any data which has been sent by the
remote host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::FormatAddress Method

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszAddress,
 INT cchAddress
);

INT FormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 CString& strAddress
);

The FormatAddress method converts a numeric IP address to a printable string. The format of
the string depends on whether an IPv4 or IPv6 address is specified.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric IP address that
should be converted to a string.

lpszAddress

A pointer to the buffer that will contain the formatted IP address. This buffer should be at least
46 characters in length. This may also reference a CString object which will contain the
formatted address when the method returns.

cchAddress

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is the length of the IP address string. If the method fails,
the return value is INET_ERROR, meaning that the IP address could not be converted into a string.
Typically this indicates that the pointer to the INTERNET_ADDRESS structure is invalid, or the data
does not specify a valid IP address family.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetLocalAddress, GetPeerAddress, INTERNET_ADDRESS

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::FreezeEvents Method

INT FreezeEvents(
 BOOL bFreeze
);

The FreezeEvents method is used to suspend and resume event handling by the application.

Parameters
bFreeze

A non-zero value specifies that event handling should be suspended by the client. A zero value
specifies that event handling should be resumed.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
This method should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all socket events are queued. If
events are re-enabled at a later point, those queued events will be sent to the application for
processing. Note that only one of each event will be generated. For example, if the program has
suspended event handling, and four read events occur, once event handling is resumed only one
of those read events will be posted to the client. This prevents the application from being flooded
by a potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
DisableEvents, EnableEvents, RegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetAdapterAddress Method

INT GetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 CString& strAddress
);

Return the IP or MAC assigned to the specified network adapter.

Parameters
nAdapterIndex

An integer value that identifies the network adapter.

nAddressType

An integer value which specifies the type of address that should be returned:

Constant Description

INET_ADAPTER_IPV4 The address string will contain the primary IPv4 unicast address
assigned to the network adapter.

INET_ADAPTER_IPV6 The address string will contain the primary IPv6 unicast address
assigned to the network adapter.

INET_ADAPTER_MAC The address string will contain the media access control (MAC)
address assigned to the network adapter.

lpszAddress

A string buffer that will contain the IP or MAC address assigned to the adapter. This parameter
cannot be NULL and it is recommended that it be at least 64 characters in length to provide
enough space for any address type. An alternate form of the method accepts a CString
argument which will contain the hostname.

nMaxLength

The maximum number of characters that can be copied into the string buffer, including the
terminating null character. If the buffer is too small to store the complete address, this method
will fail.

Return Value
If the method succeeds, the return value is the number of characters copied to the string buffer,
not including the terminating null character. A return value of zero indicates that the requested
address type has not been assigned to the adapter. If the method fails, the return value is
INET_ERROR and this typically indicates that either the adapter index is invalid or the string buffer
is not large enough to store the complete address. To get extended error information, call
GetLastError.

Remarks

The GetAdapterAddress method will return the IPv4, IPv6 or MAC address assigned to a specific
network adapter. The primary network adapter has an index value of zero, and it increments for
each adapter that is configured on the local system.

The media access control (MAC) address is a 48 bit or 64 bit value that is assigned to each
network interface and is used for identification and access control. All network devices on the
same subnet must be assigned their own unique MAC address. Unlike IP addresses which may be
assigned dynamically and can be frequently changed, MAC addresses are considered to be more
permanent because they are usually assigned by the device manufacturer and stored in firmware.
Note that in some cases it is possible to change the address assigned to a device, and virtual
network interfaces may have configurable MAC addresses.

This method returns the MAC address string as sequence of hexadecimal values separated by a
colon. An example of a 48 bit MAC address would be "01:23:45:67:89:AB". Note that some virtual
network adapters may not have a MAC address assigned to them, in which case this method
would return zero.

This method will ignore network adapters that have been disabled, as well as those that are bound
to a virtual loopback interface. If the system has dial-up networking or virtualization software
installed, this method may also return IP addresses assigned to a virtualized network adapters
installed by that software.

Example
// Display the IPv4 address assigned to each network adapter
for (INT nIndex = 0;; nIndex++)
{
 CString strAddress;

 if (pSocket->GetAdapterAddress(nIndex, INET_ADAPTER_IPV4, strAddress) ==
INET_ERROR)
 break;

 _tprintf(_T("Adapter %d: %s\n"), nIndex, szAddress);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnumNetworkAddresses, GetLocalAddress, GetLocalName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetAddress Method

INT GetAddress(
 LPCTSTR lpszAddress,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

INT GetAddress(
 LPCTSTR lpszAddress,
 LPINTERNET_ADDRESS lpAddress
);

The GetAddress method converts an IP address string to binary format.

Parameters
lpszAddress

A pointer to a null terminated string which specifies an IP address. This method recognizes the
format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address specified by the lpszAddress parameter. It may
be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the value of the
lpszAddress parameter.

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not
significant and an application should not depend on
them having any particular value, including zero. If the
lpszAddress parameter does not specify a valid IPv4
address string, this method will fail.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. All
bytes in the ipNumber array are significant. If the
lpszAddress parameter does not specify a valid IPv6
address string, this method will fail.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible that an IPv6 address string has been
specified. For legacy applications that only recognize IPv4 addresses, the nAddressFamily member

should always be specified as INET_ADDRESS_IPV4 to ensure that only IPv4 addresses are
returned and any attempt to specify an IPv6 address string would result in an error.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, IsAddressNull, IsAddressRoutable, IsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetDefaultHostFile Method

INT GetDefaultHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetDefaultHostFile(
 CString& lpszFileName
);

The GetDefaultHostFile method returns the fully qualified path name of the host file on the local
system. The host file is used as a database that maps an IP address to one or more hostnames,
and is used by the GetHostAddress and GetHostNames method. The file is a plain text file, with
each line in the file specifying a record, and each field separated by spaces or tabs. The format of
the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

The location of the default host file depends on the operating system. For Windows 95/98 and
Windows Me the file is stored in C:\Windows\hosts and for Windows NT and later versions the file
is stored in C:\Windows\system32\drivers\etc\hosts. Regardless of platform, there is no filename
extension and this file may or may not exist on a given system.

Parameters
lpszFileName

Pointer to a string buffer that will contain the fully qualified file name to the default host file. It is
recommended that this buffer be at least MAX_PATH characters in size. This parameter may be
NULL, in which case the method will return the length of the string, not including the
terminating null byte.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the method succeeds, the return value is length of the string. A return value of zero indicates
that the default host file could not be determined for the current platform. To get extended error
information, call GetLastError.

Remarks
This method only returns the default location of the host file and does not determine if the file
actually exists. It is not required that a host file be present on the system.

The default host file is processed before performing a nameserver lookup when resolving a
hostname into an IP address, or an IP address into a hostname.

To specify an alternate local host file, use the SetHostFile method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostFile, GetHostName, SetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetErrorString Method

INT GetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

INT GetErrorString(
 DWORD dwErrorCode,
 CString& strDescription
);

The GetErrorString method is used to return a description of a specific error code. Typically this is
used in conjunction with the GetLastError method for use with warning dialogs or as diagnostic
messages.

Parameters
dwErrorCode

The error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length. An alternate form of the method accepts a CString
variable which will contain the error description.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the method succeeds, the return value is the length of the description string. If the method fails,
the return value is zero, meaning that no description exists for the specified error code. Typically
this indicates that the error code passed to the method is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetLastError, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetExternalAddress Method

INT GetExternalAddress(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress,
 INT nMaxLength
);

INT GetExternalAddress(
 INT nAddressFamily,
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetExternalAddress(
 INT nAddressFamily,
 CString& strAddress
);

The GetExternalAddress method returns the external IP address for the local system.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The method
will attempt to determine the external IP address using an IPv4
network connection.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. The method
will attempt to determine the external IP address using an IPv6
network connection and requires that the local host have an
IPv6 network interface installed and enabled.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the external IP address of the
local host in binary form.

lpszAddress

A pointer to a string buffer that will contain the external IP address of the local host.

nMaxLength

The maximum length of the string that will contain the IP address when the method returns.

Return Value
In the first form of the method, if it succeeds, the return value is the IP address of the local system
in numeric form. If the method fails, the return value is INET_ADDRESS_NONE. In the second form,
the return value is the length of the IP address string and an error is indicated by the return value
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The GetExternalAddress method returns the IP address assigned to the router that connects the

local host to the Internet. This is typically used by an application executing on a system in a local
network that uses a router which performs Network Address Translation (NAT). In that network
configuration, the GetLocalAddress method will only return the IP address for the local system on
the LAN side of the network unless a connection has already been established to a remote host.
The GetExternalAddress function can be used to determine the IP address assigned to the router
on the Internet side of the connection and can be particularly useful for servers running on a
system behind a NAT router.

This method requires that you have an active connection to the Internet and calling this function
on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. An application should always check the return value in
case there is an error; never assume that the return value is always a valid address. The function
may be unable to determine the external IP address for the local host for a number of reasons,
particularly if the system is behind a firewall or uses a proxy server that restricts access to external
sites on the Internet. If the function is able to obtain a valid external address for the local host, that
address will be cached by the library for sixty minutes. Because dial-up connections typically have
different IP addresses assigned to them each time the system is connected to the Internet, it is
recommended that this function only be used with broadband connections where a NAT router is
being used.

Calling this function may cause the current thread to block until the external IP address can be
resolved and should never be used in conjunction with asynchronous socket connections. If you
need to call this function in an application which uses asynchronous sockets, it is recommended
that you create a new thread and call this function from within that thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetLocalAddress, GetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetFirstAlias Method

BOOL GetFirstAlias(
 LPCTSTR lpszHostName,
 LPTSTR lpszHostAlias,
 INT nMaxLength
);

BOOL GetFirstAlias(
 LPCTSTR lpszHostName,
 CString& strHostAlias
);

The GetFirstAlias method returns the first alias for the specified host name.

Parameters
lpszHostName

A pointer to a string which specifies the host name that you wish to return aliases for. This
should be complete domain name.

lpszHostAlias

A string buffer which will contain the first alias for the specified host name. This string should be
at least 64 bytes in length. This argument may also reference a CString object which will
contain the host alias when the method returns.

nMaxLength

Maximum number of characters that can be copied into the lpszHostAlias string buffer,
including the terminating null byte.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example
CSocketWrench sockClient;
CString strHostAlias;
BOOL bResult;

m_ctlListBox.ResetContent();

bResult = sockClient.GetFirstAlias(m_strHostName, strHostAlias);
if (bResult == FALSE)
{
 sockClient.ShowError();
 return;
}

while (bResult)
{
 m_ctlListBox.AddString(strHostAlias);
 bResult = sockClient.GetNextAlias(strHostAlias);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, GetNextAlias

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetHandle Method

SOCKET GetHandle();

The GetHandle method returns the socket handle associated with the current instance of the
class.

Parameters
None.

Return Value
This method returns the socket handle associated with the current instance of the class object. If
there is no active connection, the value INVALID_SOCKET will be returned.

Remarks
This method is used to obtain the client handle created by the class for use with the SocketTools
API.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
AttachHandle, DetachHandle, IsInitialized

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetHostAddress Method

INT GetHostAddress(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

INT GetHostAddress(
 LPCTSTR lpszHostName,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetHostAddress method resolves the specified host name into an IP address in binary
format.

Parameters
lpszHostName

A pointer to the name of the host to resolve; this may be a fully-qualified domain name or an IP
address. This method recognizes the format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on how the host name can be
resolved. By default, a preference will be given for
returning an IPv4 address. However, if the host only has
an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the specified
host.

Return Value
If the method succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This method can also be used to convert an address in dot notation to a binary format. If the
method must perform a DNS lookup to resolve the hostname, the calling thread will block. To
ensure future compatibility with IPv6 networks, it is important that the application does not make
any assumptions about the format of the address. If the function returns successfully, the ipFamily
member of the INTERNET_ADDRESS structure should always be checked to determine the type
of address.

The nAddressFamily parameter is used to specify a preference for the type of address returned,
however it is possible that a host may not have an IPv4 or IPv6 address record, in which case this
function will fail. Although IPv4 is still the most common address used at this time, an application
should not assume that because a given host name does not have an IPv4 address, that the host
name is invalid.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for a host name to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpszHostName parameter specifies an host that only has an IPv6 (AAAA) DNS record.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostName, GetLocalAddress, GetLocalName, GetPeerAddress, IsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetHostFile Method

INT GetHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

INT GetHostFile(
 CString& strFileName
);

The GetHostFile method returns the name of the host file previously set using the SetHostFile
method. The host file is used as a database that maps an IP address to one or more hostnames,
and is used by the GetHostAddress and GetHostNames method.

Parameters
lpszFileName

Pointer to a string buffer that will contain the host file name. It is recommended that this buffer
be at least MAX_PATH characters in size. This parameter may be NULL, in which case the
method will return the length of the string, not including the terminating null character.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the method succeeds, the return value is length of the string. A return value of zero indicates
that no host file has been specified or the method was unable to determine the file name. To get
extended error information, call GetLastError. If the last error is zero, this indicates that no host
file name has been specified for the current thread. If the last error is non-zero, this indicates the
reason that the method failed.

Remarks
This method only returns the name of the host file that is cached in memory for the current
thread. The contents of the file on the disk may have changed after the file was loaded into
memory. To reload the host file or clear the cache, call the SetHostFile method.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

The host file returned by this method may be different than the default host file for the local
system. To determine the file name for the default host file, use the GetDefaultHostFile method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetHostAddress, GetHostName, SetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetHostName Method

INT GetHostName(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszHostName,
 INT cchHostName
);

INT GetHostName(
 LPINTERNET_ADDRESS lpAddress,
 CString& strHostName
);

The GetHostName method performs a reverse lookup, returning the host name associated with a
given IP address.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the IP address that should be
resolved into a host name.

lpszHostName

A pointer to the buffer that will contain the host name. It is recommended that this buffer be at
least 256 characters in length to accommodate the longest possible fully qualified domain
name.

cchHostName

The maximum number of characters that can be copied into the buffer.

Return Value
If the method succeeds, the return value is the length of the hostname. If the method fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the method must perform a reverse DNS lookup to resolve the IP address into a host name, the
calling thread will block. This method requires that the host have a PTR record, otherwise it will fail.
Because many hosts do not have a PTR record, calling this method frequently may have a
negative impact on the overall performance of the application.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the IsProtocolAvailable method. If an IPv6 stack is not installed, this method will fail if
the lpAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetLocalAddress, GetLocalName, GetPeerAddress, IsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetLastError Method

DWORD GetLastError();

DWORD GetLastError(
 CString& strDescription
);

Parameters
strDescription

A string which will contain a description of the last error code value when the method returns. If
no error has been set, or the last error code has been cleared, this string will be empty.

Return Value
The return value is the last error code value for the current thread. Functions set this value by
calling the SetLastError method. The Return Value section of each reference page notes the
conditions under which the method sets the last error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the GetLastError method immediately when a method's return value indicates that an error has
occurred. That is because some methods call SetLastError(0) when they succeed, clearing the
error code set by the most recently failed method.

Most methods will set the last error code value when they fail; a few methods set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_SOCKET or INET_ERROR. Those methods which call SetLastError when they succeed are
noted on the method reference page.

The description of the error code is the same string that is returned by the GetErrorString
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetErrorString, SetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetLocalAddress Method

INT GetLocalAddress(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress,
 UINT * lpnPort
);

INT GetLocalAddress(
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetLocalAddress(
 CString& strAddress,
 UINT * lpnPort
);

The GetLocalAddress method returns the local IP address and port number for the current
socket.

Parameters
nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the type of connection
that was established. If the hSocket parameter is
INVALID_SOCKET, a preference will be given for
returning an IPv4 address. However, if the local host only
has an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the local host. If
there is no active connection, this function will attempt to determine the IP address of the local
host assigned by the system. If the address is not required, this parameter may be NULL.

lpszAddress

A pointer to a null terminated string that will contain the IP address of the local host. If this

version of the method is used, the IP address is converted to a string format using the
FormatAddress method. The string should be able to store at least 46 characters to ensure
that both IPv4 and IPv6 formatted addresses can be returned without the possibility of a buffer
overrun. An alternate form of the method accepts a CString argument which will contain the
local address.

lpnPort

A pointer to an unsigned integer that will contain the local port number. If there is an active
connection, this parameter will be set to the local port that the socket is bound to. If there is no
active connection, this parameter is ignored. If the local port number is not required, this
parameter may be NULL.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
To ensure future compatibility with IPv6 networks, it is important that the application does not
make any assumptions about the format of the address. If the function returns successfully, the
ipFamily member of the INTERNET_ADDRESS structure should always be checked to determine
the type of address.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for the local host to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

If the system is connected to the Internet through a local network and/or uses a router that
performs Network Address Translation (NAT), the GetLocalAddress method will return the local,
non-routable IP address assigned to the local system. To determine the public IP address has
been assigned to the system, you should use the GetExternalAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetExternalAddress, GetHostAddress, GetHostName, GetLocalName, GetPeerAddress,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetLocalName Method

INT GetLocalName(
 LPTSTR lpszHostName,
 INT cchHostName
);

INT GetLocalName(
 CString& strHostName
);

The GetLocalName method returns the hostname assigned to the local system.

Parameters
lpszHostName

A pointer to the buffer that will contain the hostname. This parameter cannot be NULL. An
alternate form of the method accepts a CString argument which will contain the local
hostname.

cchHostName

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is the length of the hostname. If the method fails, the
return value is INET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, GetLocalAddress, GetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetNextAlias Method

BOOL GetNextAlias(
 LPTSTR lpszHostAlias,
 INT nMaxLength
);

BOOL GetNextAlias(
 CString& strHostAlias
);

The GetNextAlias method returns the next alias for the host name specified in the call to
GetFirstAlias.

Parameters
lpszHostAlias

A string buffer which will contain the next alias for the specified host name. This string should be
at least 64 bytes in length. This argument may also reference a CString object which will
contain the host alias when the method returns.

nMaxLength

Maximum number of characters that can be copied into the lpszHostAlias string buffer,
including the terminating null byte.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Example
CSocketWrench sockClient;
CString strHostAlias;
BOOL bResult;

m_ctlListBox.ResetContent();

bResult = sockClient.GetFirstAlias(m_strHostName, strHostAlias);
if (bResult == FALSE)
{
 sockClient.ShowError();
 return;
}

while (bResult)
{
 m_ctlListBox.AddString(strHostAlias);
 bResult = sockClient.GetNextAlias(strHostAlias);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetFirstAlias, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetOption Method

INT GetOption(
 DWORD dwOption,
 LPBOOL lpbEnabled
);

The GetOption method is used to determine if a specific socket option has been enabled.

Parameters
dwOption

An unsigned integer used to specify one of the socket options. These options cannot be
combined. The following values are recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This is only valid for
stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option is commonly used by server applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

lpbEnabled

A pointer to a boolean flag. If the option is enabled, the flag is set to a non-zero value,
otherwise it is set to a value of zero.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Connect, SetOption

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetPeerAddress Method

INT GetPeerAddress(
 LPINTERNET_ADDRESS lpAddress,
 UINT * lpnRemotePort
);

INT GetPeerAddress(
 LPTSTR lpszAddress,
 INT nMaxLength
);

INT GetPeerAddress(
 CString& strAddress
);

The GetPeerAddress method returns the peer IP address and remote port number for the
specified socket.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the remote
host that is connected to the socket.

lpnRemotePort

A pointer to an unsigned integer that will contain the port number of the remote host that is
connected to the socket.

lpszAddress

A pointer to a string buffer that will contain the formatted IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length.

nMaxLength

The maximum number of characters that can be copied into the address buffer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
If this method is called by a server application in response to a INET_EVENT_ACCEPT event, it will
return the IP address and port number for the client that is attempting to establish the connection.
If the peer address is unavailable, the ipFamily member of the INTERNET_ADDRESS structure will
be zero.

The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

It is not recommended that you use the port number for anything other than informational and
logging purposes. Server applications should not make any assumptions about the specific port
number or range of port numbers that a client is using when establishing a connection to the

server. The ephemeral port number that a client is bound to can vary based on the client
operating system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetHostAddress, GetHostName, GetLocalAddress, GetLocalName, GetPeerPort,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/class/getpeerport.html

 CSocketWrench::GetPhysicalAddress Method

BOOL GetPhysicalAddress(
 LPTSTR lpszAddress,
 UINT cchAddress
);

BOOL GetPhysicalAddress(
 CString& strAddress
);

Return the media access control (MAC) address for the primary network adapter.

Parameters
lpszAddress

A string buffer that will contain the address in a printable format when the function returns. This
parameter cannot be NULL. An alternate form of the method accepts a CString argument
which will contain the address.

cchAddress

The maximum number of characters that can be copied into the buffer, including the
terminating null character.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetPhysicalAddress method returns the media access control (MAC) address for the primary
network adapter. This is a 48 bit or 64 bit address that is assigned to each network interface and is
used for identification and access control. All network devices on the same subnet must be
assigned their own unique MAC address. Unlike IP addresses which may be assigned dynamically
and can be frequently changed, MAC addresses are considered to be more permanent because
they are usually assigned by the device manufacturer and stored in firmware. Note that in some
cases it is possible to change the address assigned to a device, and virtual network interfaces may
have configurable MAC addresses.

This method returns the MAC address as a printable string, with each byte of the address as a
two-digit hexadecimal value separated by a colon. The string buffer passed to the method should
be at least 20 characters long to accommodate the address and terminating null character. An
example of a 48 bit address would be "01:23:45:67:89:AB". If the local system is multi-homed
(having more than one network adapter) then this method will return the MAC address for the
primary network adapter.

This method is provided for backwards compatibility with previous versions of the library and it is
recommended that new applications use the GetAdapterAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnumNetworkAddresses, GetAdapterAddress, GetLocalName, GetHostAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetSecurityInformation Method

BOOL GetSecurityInformation(
 LPSECURITYINFO lpSecurityInfo
);

The GetSecurityInformation method returns security protocol, encryption and certificate
information about the current client connection.

Parameters
lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this method.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
This method is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;
securityInfo.dwSize = sizeof(SECURITYINFO);

if (pSocket->GetSecurityInformation(&securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }
 }
}

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Connect, CreateSecurityCredentials, EnableSecurity, SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetServiceName Method

BOOL GetServiceName(
 UINT nServicePort,
 LPTSTR lpszServiceName,
 INT nMaxLength
);

BOOL GetServiceName(
 UINT nServicePort,
 CString& strServiceName
);

The GetServiceName method returns the service name associated with a specified port number.

Parameters
nServicePort

Port number associated with some network service.

lpszServiceName

A pointer to a string buffer that will contain the service name when the method returns. This
may also reference a CString object that will contain the service name.

nMaxLength

An integer value which specifies the maximum number of characters that can be copied into the
string buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetServicePort Method

UINT GetServicePort(
 LPCTSTR lpszServiceName
);

The GetServicePort method returns the port number associated with a service name.

Parameters
lpszServiceName

A pointer to a string which specifies the name of the service to return the port number for.

Return Value
If the method succeeds, the return value is the port number associated with a service name. If the
method fails, the return value is INET_ERROR. To get extended error information, call
GetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetServiceName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetStatus Method

INT GetStatus();

The GetStatus method returns the current status of the socket.

Parameters
None.

Return Value
If the method succeeds, the return value is the client status code. If the method fails, the return
value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The return value is one of the following values:

Value Constant Description

0 INET_STATUS_UNUSED No connection has been established.

1 INET_STATUS_IDLE The socket is idle and not in a blocked state

2 INET_STATUS_LISTEN The socket is listening for inbound connections from a
client

3 INET_STATUS_CONNECT The socket is establishing a connection with a server

4 INET_STATUS_ACCEPT The socket is accepting a connection from a client

5 INET_STATUS_READ Data is being read from the socket

6 INET_STATUS_WRITE Data is being written to the socket

7 INET_STATUS_FLUSH The socket is being flushed; all data in the receive buffers
is being discarded

8 INET_STATUS_DISCONNECT The socket is disconnecting from the remote host

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified socket.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsConnected, IsInitialized, IsListening, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetStreamInfo Method

BOOL GetStreamInfo(
 LPINETSTREAMINFO lpStreamInfo
);

The GetStreamInfo function fills a structure with information about the current stream I/O
operation.

Parameters
lpSecurityInfo

A pointer to an INETSTREAMINFO structure which contains information about the status of the
current operation.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The GetStreamInfo method returns information about the current streaming socket operation,
including the average number of bytes transferred per second and the estimated amount of time
until the operation completes. If there is no operation currently in progress, this method will return
the status of the last successful streaming read or write performed by the client.

In a multithreaded application, any thread in the current process may call this method to obtain
status information for the specified socket.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
ReadStream, StoreStream, WriteStream, INETSTREAMINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::GetTimeout Method

INT GetTimeout();

The GetTimeout method returns the number of seconds the client will wait for a response from
the remote host. Once the specified number of seconds has elapsed, the method will fail and
return to the caller.

Parameters
None.

Return Value
If the method succeeds, the return value is the timeout period in seconds. If the method fails, the
return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections. A value of zero indicates that the
default timeout period of 20 seconds should be used.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Connect, IsReadable, IsWritable, Read, SetTimeout, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 GetUrlHostName Method

INT GetUrlHostName(
 LPCTSTR lpszUrl,
 LPTSTR lpszHostName,
 INT nMaxLength,
 LPUINT lpnHostPort,
 LPUINT lpnProtocol,
 LPDWORD lpdwOptions
);

INT GetUrlHostName(
 LPCTSTR lpszUrl,
 CString& strHostName,
 LPUINT lpnHostPort,
 LPUINT lpnProtocol,
 LPDWORD lpdwOptions
);

The GetUrlHostName method returns the host name and port number specified in a URL.

Parameters
lpszUrl

A pointer to a null-terminated string which specifies a URL. This parameter cannot be NULL or
point to an empty string. If a non-standard URI scheme is used, the port number must be
explicitly specified or the method will fail. See the remarks below for more information on the
format supported by this method.

lpszHostName

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer and must be large enough to store the complete host
name. An alternate version of this method accepts a reference to a CString object if MFC or
ATL is used with the project.

nMaxLength

The maximum number of characters that can be copied to the lpszHostName string buffer. This
parameter cannot be zero, and must include the terminating null character.

lpnHostPort

Pointer to an optional unsigned integer value which will contain the port number specified in
the URL. This parameter value will always be initialized by the method with a value of zero. If
this parameter is omitted or NULL, it will be ignored and no port information will be returned.

lpnProtocol

Pointer to an optional unsigned integer value which will contain the protocol associated with the
URI scheme. This parameter value will always be initialized by the method with a value of zero. If
this parameter is omitted or NULL, it will be ignored and no protocol information will be
returned.

lpdwOptions

Pointer to an optional unsigned integer value which will contain any socket options required to
establish a connection based on the URI scheme or specified port. This parameter value will
always be initialized by the method with a value of zero. If this parameter is omitted or NULL, it

will be ignored.

Return Value
If the method succeeds, the return value is the number of characters copied into the
lpszHostName buffer. If the method fails, the return value is INET_ERROR. To get extended error
information, call the GetLastError method.

Remarks
The GetUrlHostName method will extract the host name and port number from a URL and
return the canonical form of the host name. If the lpnHostPort, lpnProtocol and lpdwOptions
parameters have been specified, they will contain the port number, protocol and additional
connection options associated with the URL scheme.

The general format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This method recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the
following:

https://www.example.com/

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. This method will also recognize a simpler format which
only includes the host name and port number without a URI scheme, such as:

www.example.com:443

If the lpszUrl parameter only specifies a host name without a URI scheme or port number, this
method will ignore the lpnHostPort, lpnProtocol and lpdwOptions parameters and return the
canonical form of the host name in the lpszHostName string argument.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, the method will return an error indicating the port number
is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address
and this would be considered valid. Without the brackets, this URL would not be accepted.

If the URL uses an IP address instead of a host name, this method will return a copy of that IP
address in the lpszHostName string provided by the caller. The method will not attempt to resolve
the IP address into a host name, however you can use the GetHostName method to perform a
reverse DNS lookup if required.

The only URI schemes currently supported by this method use TCP stream connections. In
practical terms, this means the lpnProtocol parameter will always return with the value
INET_PROTOCOL_TCP when the method is successful. If the method fails, this value will be
INET_PROTOCOL_NONE.

Although this method performs checks to ensure that the lpszUrl parameter is in the correct
format and does not contain any illegal characters or malformed encoding, it does not validate the
host name. To check if the host name exists and has a valid IP address, use the
ValidateHostName method.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
ConnectUrl, GetHostAddress, GetHostName, HostNameToUnicode, NormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::HostNameToUnicode Method

INT HostNameToUnicode(
 LPCTSTR lpszHostName,
 LPTSTR lpszUnicodeName,
 INT nMaxLength
);

INT HostNameToUnicode(
 LPCTSTR lpszHostName,
 CString& strUnicodeName
);

The HostNameToUnicode method converts the canonical form of a host name to its Unicode
version.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszUnicodeName

Pointer to the string buffer that will contain the original Unicode version of the host name,
including the terminating null character. It is recommended that this buffer be at least 256
characters in size. This parameter cannot be a NULL pointer. An alternate version of this method
accepts a reference to a CString object if MFC or ATL is used with the project.

nMaxLength

The maximum number of characters that can be copied to the lpszUnicodeName string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer.
If the method fails, the return value is INET_ERROR. To get extended error information, call
GetLastError.

Remarks
The HostNameToUnicode method will convert the encoded ASCII version of a host name to its
Unicode version. Although any valid host name is accepted by this method, it is intended to
convert a Punycode encoded host name to its original Unicode character encoding.

If the application is compiled using the Unicode character set, the value returned in
lpszUnicodeName will be a Unicode string using UTF-16 encoding. If the ANSI character set is
used, the value returned will be a Unicode string using UTF-8 encoding. To display a UTF-8
encoded host name, your application will need to convert it to UTF-16 using the
MultiByteToWideChar function.

Although this method performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the GetHostAddress method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, NormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsAddressNull Method

BOOL IsAddressNull(
 LPCTSTR lpszAddress
);

BOOL IsAddressNull(
 LPINTERNET_ADDRESS lpAddress
);

The IsAddressNull method determines if the IP address is null.

Parameters
lpszAddress

A string that specifies the IP address.

lpAddress

A pointer to an INTERNET_ADDRESS structure that specifies the IP address.

Return Value
If the method succeeds and the IP address is null, or the parameter is a NULL pointer, the return
value is non-zero. If the method fails or the address is not null, the return value is zero. If the
address family is not supported, the last error code will be updated. If the address is valid but not
null, the last error code will be set to NO_ERROR.

Remarks
A null IP address is one where all bits for the address (32 bits for IPv4 or 128 bits for IPv6) are zero.
This is a special address that is typically used when creating a passive socket that should listen for
connections on all available network interfaces.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, IsAddressRoutable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsAddressRoutable Method

BOOL IsAddressRoutable(
 LPCTSTR lpszAddress
);

BOOL IsAddressRoutable(
 LPINTERNET_ADDRESS lpAddress
);

The IsAddressRoutable method determines if the IP address is routable over the Internet.

Parameters
lpszAddress

A string that specifies the IP address.

lpAddress

A pointer to an INTERNET_ADDRESS structure that specifies the IP address.

Return Value
If the method succeeds and the IP address is routable over the Internet, the return value is non-
zero. If the method fails or the address is not routable, the return value is zero. If the parameter is
NULL, or the address family is not supported, the last error code will be updated. If the address is
valid but not routable, the last error code will be set to NO_ERROR.

Remarks
A routable IP address is one that can be reached by anyone over the public Internet. These are
also commonly referred to as "public addresses" which are typically assigned to networks and
individual hosts by an Internet service provider. There are also certain addresses that are not
routable over the Internet, and used to address systems over a local network or private intranet.
This function can be used to determine if a given IP address is public (routable) or private.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, GetExternalAddress, IsAddressNull, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsBlocking Method

BOOL IsBlocking();

The IsBlocking method is used to determine if the socket is performing a blocking operation.

Parameters
None.

Return Value
If the socket is currently performing a blocking operation, the method returns a non-zero value. If
the socket is not performing a blocking operation, or the socket handle is invalid, the method
returns zero.

Remarks
This method is typically used to determine if a socket that is being used by another thread is
currently blocked. A socket may block when waiting to receive data from a remote host or while
data is actively being exchanged. Because there can only be one blocking socket operation per
thread, this method can be used to determine if a method such as Read or Write would fail
because another thread is currently sending or receiving data on that socket.

It is important to note that if this method returns a non-zero value, it does not guarantee that a
subsequent read or write on the socket will succeed. The application should always check the
return value from methods such as Read and Write to ensure they were successful.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsConnected, IsReadable, IsWritable, Read, ReadLine, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsClosed Method

BOOL IsClosed();

The IsClosed method is used to determine if the remote host has closed its socket.

Parameters
None.

Return Value
If the remote host has closed its socket, the method returns a non-zero value. If the remote host
has not closed its connection, or the socket handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsConnected, IsListening, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsConnected Method

BOOL IsConnected();

The IsConnected method is used to determine if the socket is currently connected to a remote
host.

Parameters
None.

Return Value
If the client is connected to a remote host, the method returns a non-zero value. If the client is not
connected, or the client handle is invalid, the method returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStatus, IsBlocking, IsInitialized, IsReadable, IsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsInitialized Method

BOOL IsInitialized();

The IsInitialized method returns whether or not the class object has been successfully initialized.

Parameters
None.

Return Value
This method returns a non-zero value if the class object has been successfully initialized. A return
value of zero indicates that the runtime license key could not be validated or the networking
library could not be loaded by the current process.

Remarks
When an instance of the class is created, the class constructor will attempt to initialize the
component with the runtime license key that was created when SocketTools was installed. If the
constructor is unable to validate the license key or load the networking libraries, this initialization
will fail.

If SocketTools was installed with an evaluation license, the application cannot be redistributed to
another system. The class object will fail to initialize if the application is executed on another
system, or if the evaluation period has expired. To redistribute your application, you must
purchase a development license which will include the runtime key that is needed to redistribute
your software to other systems. Refer to the Developer's Guide for more information.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
CSocketWrench, IsBlocking, IsConnected

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsListening Method

BOOL IsListening();

The IsListening method determines if the socket is listening for connection requests.

Parameters
None.

Return Value
If the socket is being used to listen for connection requests, the method returns a non-zero value.
If the socket is not listening or the socket handle is invalid, the method returns zero.

Remarks
The IsListening method determines if the socket is being used in a server application to actively
listen for incoming connection requests from client applications. A listening socket can be created
using the Listen method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, IsWritable, IsConnected, Listen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsProtocolAvailable Method

BOOL IsProtocolAvailable(
 INT nAddressFamily,
 INT nProtocol
);

The IsProtocolAvailable method determines if the operating system supports creating a socket
for the specified address family and protocol.

Parameters
nAddressFamily

An integer which identifies the address family that should be checked. It should be one of the
following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the function should determine if it can create an
Internet Protocol version 4 (IPv4) socket. This requires that the
system have an IPv4 TCP/IP stack bound to at least one network
adapter on the local system. All Windows systems include
support for IPv4 by default.

INET_ADDRESS_IPV6 Specifies that the function should determine if it can create an
Internet Protocol version 6 (IPv6) socket. This requires that the
system have an IPv6 TCP/IP stack bound to at least one network
adapter on the local system. Windows XP and Windows Server
2003 includes support for IPv6, however it is not installed by
default. Windows Vista and later versions include support for
IPv6 and enable it by default.

nProtocol

An integer which identifies the protocol that should be checked. It should be one of the
following values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This requires
that the system be capable of creating a stream socket using
the specified address family.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. This
requires that the system be capable of creating a datagram
socket using the specified address family.

Return Value
If the the system is capable of creating a socket using the specified address family and protocol,
this method will return a non-zero value. If the combination of address family and protocol is not
supported, this method will return a value of zero.

Remarks

The IsProtocolAvailable method is used to determine if the operating system supports creating a
particular type of socket. Typically it is used by an application to determine if the system has an
IPv6 TCP/IP stack installed and configured. By default, all Windows systems will have an IPv4 stack
installed if the system has a network adapter. However, not all systems may have an IPv6 stack
installed, particularly older Windows XP and Windows Server 2003 systems. Note that if an IPv6
stack is not installed, the library will not recognize IPv6 addresses and cannot resolve host names
that only have an IPv6 (AAAA) record, even if the address or host name is valid.

Example
if (!pSocket->IsProtocolAvailable(INET_ADDRESS_IPV6, INET_PROTOCOL_TCP))
{
 AfxMessageBox(_T("This system does not support IPv6"), MB_ICONEXCLAMATION);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetAddress, GetHostAddress, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsReadable Method

BOOL IsReadable(
 INT nTimeout,
 LPDWORD lpdwAvail
);

The IsReadable method is used to determine if data is available to be read from the remote host.

Parameters
nTimeout

Timeout for remote host response, in seconds. A value of zero specifies that the connection
should be polled without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read. This
parameter may be NULL if this information is not required.

Return Value
If the current thread can read data from the socket without blocking, the method returns a non-
zero value. If the current thread cannot read any data without blocking, the function returns zero.

Remarks
On some platforms, this value will not exceed the size of the receive buffer (typically 64K bytes).
Because of differences between TCP/IP stack implementations, it is not recommended that your
application exclusively depend on this value to determine the exact number of bytes available.
Instead, it should be used as a general indicator that there is data available to be read.

If the connection is secure, the value returned in lpdwAvail will reflect the number of bytes
available in the encrypted data stream. The actual amount of data available to the application after
it has been decrypted will vary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsWritable, Peek, Read, ReadLine, ReadStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsUrgent Method

BOOL IsUrgent();

The IsUrgent method determines if there is any out-of-band (OOB) data available to be read.

Parameters
None.

Return Value
If there is out-of-band data, the return value is non-zero. If there is no out-of-band data, or an
error occurs the return value is zero. To determine if an error has occurred, use the GetLastError
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
SetOption (INET_OPTION_INLINE)

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::IsWritable Method

BOOL IsWritable(
 INT nTimeout
);

The IsWritable method is used to determine if data can be written to the remote host.

Parameters
nTimeout

Timeout for remote host response, in seconds. A value of zero specifies that the connection
should be polled without blocking the current thread.

Return Value
If data can be written to the socket within the specified timeout period, the method returns a non-
zero value. The method will return zero if the socket send buffer is full.

Remarks
The IsWritable method cannot be used to determine the amount of data that can be sent to the
remote host without blocking the current thread. A non-zero return value only indicates that the
send buffer is not full and can accept some data. In most cases, it is recommended that larger
blocks of data be broken into smaller logical blocks rather than attempting to send it all of the
data at once. For very large streams of data, it is recommended that you use the WriteStream
method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
IsReadable, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Listen Method

SOCKET Listen(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 UINT nBacklog,
 DWORD dwOptions
);

The Listen method creates a listening socket and specifies the maximum number of connection
requests that will be queued.

This method has been deprecated and is included for backwards compatibility. Use the
CInternetServer class to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

nBacklog

The maximum length of queue of pending connections. On Windows workstations, the
maximum backlog value is 5. On Windows servers, the maximum value is 200.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are
recognized:

Constant Description

INET_OPTION_NONE No option specified. If the address and port number
are in use by another application or a closed socket
which was listening on this port is still in the
TIME_WAIT state, the function will fail.

INET_OPTION_REUSEADDRESS This option enables a server application to listen for
connections using the specified address and port
number even if they were in use recently. This is
typically used to enable an application to close the
listening socket and immediately reopen it without
getting an error that the address is in use.

INET_OPTION_EXCLUSIVE This option specifies the local address and port
number is for the exclusive use by the current
process, preventing another application from forcibly
binding to the same address. If another process has

already bound a socket to the address provided by
the caller, this function will fail.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate situations
in which a child process does not close the handle,
leaving it open after the parent process has
disconnected from the server.

Return Value
If the method succeeds, the return value is a handle to the socket. If the method fails, the return
value is INVALID_SOCKET. To get extended error information, call GetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

If the INET_OPTION_REUSEADDRESS option is not specified, an error may be returned if a
listening socket was recently created for the same local address and port number. By default, once
a listening socket is closed there is a period of time that all applications must wait before the
address can be reused (this is called the TIME_WAIT state). The actual amount of time depends on
the operating system and configuration parameters, but is typically two to four minutes. Specifying
this option enables an application to immediately re-use a local address and port number that was
previously in use. Note that this does not permit more than one server to bind to the same
address.

If the INET_OPTION_EXCLUSIVE option is specified, the local address and port number cannot be
used by another process until the listening socket is closed. This can prevent another application
from forcibly binding to the same listening address as your server. This option can be useful in
determining whether or not another process is already bound to the address you wish to use, but
it may also prevent your server application from restarting immediately, regardless if the
INET_OPTION_REUSEADDRESS option has also been specified.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the method will fail.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
Accept, DisableEvents, EnableEvents, Reject

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::MatchHostName Method

BOOL MatchHostName(
 LPCTSTR lpszHostName,
 LPCTSTR lpszHostMask
 BOOL bResolve
);

The MatchHostName method matches a host name against one more strings that may contain
wildcards.

Parameters
lpszHostName

A pointer to a string which specifies the host name or IP address to match.

lpszHostMask

A pointer to a string which specifies one or more values to match against the host name. The
asterisk character can be used to match any number of characters in the host name, and the
question mark can be used to match any single character. Multiple values may be specified by
separating them with a semicolon.

bResolve

A boolean value which specifies if the host name or IP address should be resolved when
matching the host against the mask string. If this parameter is non-zero, two checks against the
host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is zero, then the match is made only against the host name string
provided.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The MatchHostName method provides a convenient way for an application to determine if a
given host name matches one or more mask strings which may contain wildcard characters. For
example, the host name could be "www.microsoft.com" and the host mask string could be
"*.microsoft.com". In this example, the method would return a non-zero value indicating the host
name matched the mask. However, if the mask string was "*.net" then the method would return
zero, indicating that there was no match. Multiple mask values can be combined by separating
them with a semicolon; for example, the mask "*.com;*.org" would match any host name in either
the .com or .org top-level domains.

If an internationalized domain name (IDN) is specified, it will be converted internally to an ASCII
string using Punycode encoding. The host mask will be matched against this encoded version of
the host name, not its Unicode version.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetAddress, GetHostAddress, GetHostName, GetLocalAddress, GetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 NormalizeHostName Method

INT NormalizeHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszNormalized,
 INT nMaxLength
);

NormalizeHostName(
 LPCTSTR lpszHostName,
 CString& strNormalized
);

The NormalizeHostName method returns the canonical form of a host name in the specified
buffer.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszNormalized

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer and must be large enough to store the complete host
name. An alternate form of this method will accept a reference to a CString object if MFC or
ATL is used with the project.

nMaxLength

The maximum number of characters that can be copied to the lpszNormalized string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the method succeeds, the return value is the number of characters copied into the string buffer.
If the method fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The NormalizeHostName method will remove all leading and trailing whitespace characters from
the host name and fold all upper-case characters to lower-case. If an internationalized domain
name (IDN) containing Unicode characters is passed to this method, it will be converted to an
ASCII compatible format for domain names.

The lpszHostName parameter should only specify a host name or IP address. If you want to
support the use of URLs to establish a connection, use the GetUrlHostName method which has
extended support for extracting the host name and port number specified in a URL.

If the Unicode version of this method is used, the host name will be converted from UTF-16 to
UTF-8 and then processed. If you are unsure if an internationalized domain name will be specified
as the host name, it is recommended you use the Unicode version.

Although this method performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP

address, use the ValidateHostName method.

It is recommended that you use this method if your application needs to store the host name, and
if accepts a host name as user input. It is not necessary to call this method prior to calling the
other SocketWrench methods which accept a host name as a parameter. Those methods already
normalize the host name and perform checks to ensure it is in the correct format.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this method will return a copy of that IP address in the buffer provided by the caller. This
allows the method to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the GetHostName method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetHostAddress, GetHostName, GetUrlHostName, HostNameToUnicode, ValidateHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Peek Method

INT Peek(
 LPBYTE lpBuffer,
 INT cbBuffer
);

The Peek method reads the specified number of bytes from the socket and copies them into the
buffer, but it does not remove the data from the internal socket buffer. The data may be of any
type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be stored. This argument may be NULL, in which
case no data is copied from the socket buffers, however the function will return the number of
bytes available to read.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. If the lpBuffer
parameter is not NULL, this value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes available to read from the socket.
A return value of zero indicates that there is no data available to read at that time. If the function
fails, the return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The Peek method returns data that is available to read from the socket, up to the number of bytes
specified. The data returned by this method is not removed from the socket buffers. It must be
consumed by a subsequent call to the Read method. The return value indicates the number of
bytes that can be read in a single operation, up to the specified buffer size. However, it is
important to note that it may not indicate the total amount of data available to be read from the
socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a
loop to poll a non-blocking socket may cause the application to become non-responsive. To
determine if there is data available to be read, use the IsReadable method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, ReadLine, RegisterEvent, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Read Method

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Read(
 LPBYTE lpBuffer,
 INT cbBuffer,
 LPINTERNET_ADDRESS lpAddress,
 UINT* lpnRemotePort
);

The Read method reads the specified number of bytes from the socket and copies them into the
buffer. The data may be of any type, and is not terminated with a null character.

Parameters
lpBuffer

Pointer to the buffer in which the data will be stored.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

lpAddress

Pointer to an INTERNET_ADDRESS structure that which will contain the IP address of the remote
host that sent the data being read. If this information is not required, the parameter may be
specified as NULL.

lpnRemotePort

Pointer to an unsigned integer which will contain the remote port number. If this information is
not required, the parameter may be specified as NULL.

Return Value
If the method succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the remote host has closed the connection and there is no more data available
to be read. If the method fails, the return value is INET_ERROR. To get extended error information,
call GetLastError.

Remarks
The Read method will read up to the specified number of bytes and store the data in the buffer
provided by the caller. If there is no data available to be read at the time this method is invoked,
the session thread will block until at least one byte of data becomes available, the timeout period
elapses or an error occurs. This method will return if any amount of data is sent by the remote
host, and will not block until the entire buffer has been filled. To avoid blocking the current thread,
either create an asynchronous socket or use the IsReadable method to determine if there is data
available to be read prior to calling this function.

The application should never make an assumption about the amount of data that will be available
to read. TCP considers all data to be an arbitrary stream of bytes and does not impose any
structure on the data itself. For example, if the remote host is sending data to the server in fixed
512 byte blocks of data, it is possible that a single call to the Read method will return only a partial
block of data, or it may return multiple blocks combined together. It is the responsibility of the

application to buffer and process this data appropriately.

For applications that are built using the Unicode character set, it is important to note that the
buffer is an array of bytes, not characters. If the remote host is sending string data to the server, it
must be read as a stream of bytes and converted using the MultiByteToWideChar function. If
the remote host is sending lines of text terminated with a linefeed or carriage return and linefeed
pair, the ReadLine method will return a line of text at a time and perform this conversion for you.

When Read is called and the socket is in non-blocking mode, it is possible that the method will fail
because there is no available data to read at that time. This should not be considered a fatal error.
Instead, the application should simply wait to receive the next asynchronous notification that data
is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Peek, ReadLine, RegisterEvent, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::ReadLine Method

BOOL ReadLine(
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

BOOL ReadLine(
 LPTSTR lpszBuffer,
 INT nMaxLength
);

BOOL ReadLine(
 CString& strBuffer,
 INT nMaxLength
);

The ReadLine method reads up to a line of data from the socket and returns it in a string buffer.

Parameters
lpszBuffer

Pointer to the string buffer that will contain the data when the method returns. The string will be
terminated with a null character, and will not contain the end-of-line characters. An alternate
form of the method accepts a CString argument which will contain the line of text returned by
the server.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the method returns, its value will updated with
the actual length of the string.

nMaxLength

An integer value which specifies the maximum length of the buffer.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The ReadLine method reads data from the socket and copies into a specified string buffer. Unlike
the Read method which reads arbitrary bytes of data, this method is specifically designed to
return a single line of text data in a string. When an end-of-line character sequence is
encountered, the method will stop and return the data up to that point. The string buffer is
guaranteed to be null-terminated and will not contain the end-of-line characters.

There are some limitations when using ReadLine. The method should only be used to read text,
never binary data. In particular, the method will discard nulls, linefeed and carriage return control
characters. The Unicode version of this method will return a Unicode string, however it does not
support reading raw Unicode data from the socket. Any data read from the socket is internally
buffered as octets (eight-bit bytes) and converted to Unicode using the MultiByteToWideChar
function.

This method will force the thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If this

 method is called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data and then restore the socket to asynchronous operation. If another
socket operation is attempted while ReadLine is blocked waiting for data from the remote host,
an error will occur. It is recommended that this method only be used with blocking (synchronous)
socket connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

The Read and ReadLine method calls can be intermixed, however be aware that Read will
consume any data that has already been buffered by the ReadLine method and this may have
unexpected results.

Unlike the Read method, it is possible for data to be returned in the string buffer even if the return
value is zero. Applications should check the length of the string to determine if any data was
copied into the buffer. For example, if a timeout occurs while the method is waiting for more data
to arrive on the socket, it will return zero; however, data may have already been copied into the
string buffer prior to the error condition. It is the responsibility of the application to process that
data, regardless of the return value.

Example
CString strBuffer;
BOOL bResult;

do
{
 bResult = pSocket->ReadLine(strBuffer);

 if (strBuffer.GetLength() > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = pSocket->GetLastError();

if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The remote host has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsReadable, Peek, Read, ReadStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::ReadStream Method

BOOL ReadStream(
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 LPBYTE lpMarker,
 DWORD cbMarker
);

The ReadStream method reads the socket data stream and stores the contents in the specified
buffer.

Parameters
lpvBuffer

Pointer to the buffer that will contain or reference the data when the method returns. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be stored.

lpdwLength

A pointer to an unsigned integer value which specifies the maximum length of the buffer and
contains the number of bytes read when the method returns. This argument should should
always point to an initialized value. If the lpvBuffer argument specifies a memory buffer, then
this argument cannot point to an initialized value of zero; if any other type of stream buffer is
used and the initialized value is zero, that indicates that all available data from the socket should
be returned until the end-of-stream marker is encountered or the remote host disconnects.

dwOptions

An unsigned integer value which specifies both the stream buffer type and any options to be
used when reading the data stream. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a pointer to a global memory
handle initialized to NULL, then the method will
return a handle which references the data;
otherwise, the method will consider the parameter
a pointer to a block of pre-allocated memory
which will contain the stream data when the
method returns. In most cases, it is recommended
that an application explicitly specify the stream
buffer type rather than using the default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
pre-allocated block of memory which will contain
the data read from the socket when the method
returns. If this stream buffer type is used, the
lpdwLength argument must point to an unsigned
integer which has been initialized with the
maximum length of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a pointer to a
global memory handle. When the method returns,
the handle will reference a block of memory that
contains the stream data. The application should
take care to make sure that the handle passed to
the method does not currently reference a valid
block of memory; it is recommended that the
handle be initialized to NULL prior to calling this
method.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read from the socket will be written to this handle
using the WriteFile function.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by the
hSocket argument will be written to this socket.
The socket handle passed to this method must
have been created by this library; if it is a socket
created by an third-party library or directly by the
Windows Sockets API, you should either create
another instance of the class and attach the socket
using the AttachHandle method or use the
INET_STREAM_HANDLE stream buffer type instead.

In addition to the stream buffer types listed above, the dwOptions parameter may also
have one or more of the following bit flags set. Programs should use a bitwise operator
to combine values.

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data returned in the buffer to be larger
than the source data. For example, if the source
data only terminates a line of text with a single
linefeed, this option will have the effect of inserting
a carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being returned as 16-
bit wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount

read from the source data stream; if the
application is using a pre-allocated memory buffer,
this must be considered before calling this method.

lpMarker

A pointer to an array of bytes which marks the end of the data stream. When this byte
sequence is encountered by the method, it will stop reading and return to the caller.
The buffer will contain all of the data read from the socket up to and including the
end-of-stream marker. If this argument is NULL, then the method will continue to read
from the socket until the maximum buffer size is reached, the remote host closes its
socket or an error is encountered.

cbMarker

An unsigned integer value which specifies the length of the end-of-stream marker in
bytes. If the lpMarker parameter is NULL, then this value must be zero.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The ReadStream method enables an application to read an arbitrarily large stream of
data and store it in memory, write it to a file or even another socket. Unlike the Read
method, which will return immediately when any amount of data has been read,
ReadStream will only return when the buffer is full as specified by the lpdwLength
parameter, the logical end-of-stream marker has been read, the socket closed by the
remote host or when an error occurs.

This method will force the thread to block until the operation completes. If this method is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
ReadStream is blocked waiting for data from the remote host, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

It is possible for data to be returned in the buffer even if the method returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was copied into the buffer. For example, if a timeout occurs while the method
is waiting for more data to arrive on the socket, it will return zero; however, data may
have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the method return
value.

Because ReadStream can potentially cause the application to block for long periods of
time as the data stream is being read, the method will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
RegisterEvent method, and can obtain information about the current operation by
calling the GetStreamInfo method.

Example
HGLOBAL hgblBuffer = NULL; // Return data in a global memory buffer

DWORD cbBuffer = 102400; // Read up to 100K bytes
BOOL bResult;

bResult = pSocket->ReadStream(&hgblBuffer, &cbBuffer,
 INET_STREAM_HGLOBAL | INET_STREAM_CONVERT);

if (bResult && cbBuffer > 0)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Use data in the stream buffer

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStreamInfo, Read, ReadLine, StoreStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::RegisterEvent Method

INT RegisterEvent(
 UINT nEventId,
 INETEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The RegisterEvent method registers an event handler for the specified event.

Parameters
nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. One of the following values may be used:

Constant Description

INET_EVENT_CONNECT The connection to the remote host has completed.

INET_EVENT_DISCONNECT The remote host has closed the connection to the client. The client
should read any remaining data and disconnect.

INET_EVENT_READ A network event which indicates data is available to read. No
additional messages will be posted until the process has read at
least some of the data from the socket. This event is only
generated if the socket is in asynchronous mode.

INET_EVENT_WRITE A network event which indicates the application can send data to
the remote host. This notification is sent after a connection has
been established, or after a previous attempt to write data has
failed because it would result in a blocking operation. This event is
only generated if the socket is in asynchronous mode.

INET_EVENT_TIMEOUT The network operation has exceeded the specified timeout period.
The application may attempt to retry the operation, or may
disconnect from the remote host and report an error to the user.

INET_EVENT_CANCEL The current operation has been canceled. Under most
circumstances the client should disconnect from the server and re-
connect if needed. After an operation has been canceled, the
server may abort the connection or refuse to accept further
commands from the client.

lpEventProc

Specifies the procedure-instance address of the application defined callback function. For more
information about the callback function, see the description of the InetEventProc callback
function. If this parameter is NULL, the callback for the specified event is disabled.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is

INET_ERROR. To get extended error information, call GetLastError.

Remarks
The RegisterEvent method associates a callback function with a specific event. The event handler
is an InetEventProc function that is invoked when the event occurs. Arguments are passed to the
function to identify the client session, the event type and the user-defined value specified when
the event handler is registered. If the event occurs because of an error condition, the error code
will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

The dwParam parameter is commonly used to identify the class instance which is associated with
the event that has occurred. Applications will cast the this pointer to a DWORD_PTR value when
calling this function, and then the event handler will cast it back to a pointer to the class instance.
This gives the handler access to the class member variables and methods.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
DisableEvents, EnableEvents, FreezeEvents, InetEventProc

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/class/ineteventproc.html

 CSocketWrench::Reject Method

BOOL Reject();

The Reject method is used to reject a client connection request.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The Reject method rejects a pending client connection and the remote host will see this as the
connection being aborted. If there are no pending client connections at the time, this method will
immediately return with an error indicating that the operation would cause the thread to block.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Accept, Listen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::SetHostFile Method

INT SetHostFile(
 LPCTSTR lpszFileName
);

The SetHostFile method specifies the name of an alternate file to use when resolving hostnames
and IP addresses. The host file is used as a database that maps an IP address to one or more
hostnames, and is used by the GetHostAddress and GetHostNames method. The file is a plain
text file, with each line in the file specifying a record, and each field separated by spaces or tabs.
The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string that specifies the name of the file. If the parameter is NULL, then the current
host file is cleared from the cache and only the default host file will be used to resolve
hostnames and addresses.

Return Value
If the method succeeds, the return value is the number of entries in the host file. A return value of
INET_ERROR indicates failure. To get extended error information, call GetLastError.

Remarks
This method loads the file into memory allocated for the current thread. If the contents of the file
have changed after the method has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, call this method again with the
same file name. To remove the alternate host file from memory, specify a NULL pointer as the
parameter.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

To determine if an alternate host file has been specified, use the GetHostFile method. A return
value of zero indicates that no alternate host file has been cached for the current thread.

A system may have a default host file, which is used to resolve hostnames before performing a
nameserver lookup. To determine the name of this file, use the GetDefaultHostFile method. It is
not necessary to specify this default host file, since it is always used to resolve host names and
addresses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetDefaultHostFile, GetHostAddress, GetHostFile, GetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::SetLastError Method

VOID SetLastError(
 DWORD dwErrorCode
);

The SetLastError method sets the last error code for the current thread. This method is typically
used to clear the last error by specifying a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last error code for the current thread.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most methods will
set the last error code value when they fail; a few methods set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SOCKET or
INET_ERROR. Those methods which call SetLastError when they succeed are noted on the
method reference page.

Applications can retrieve the value saved by this method by using the GetLastError method. The
use of GetLastError is optional; an application can call the method to determine the specific
reason for a method failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetErrorString, GetLastError, ShowError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::SetOption Method

INT SetOption(
 DWORD dwOption,
 BOOL bEnabled
);

The SetOption method is used to enable or disable a specific socket option.

Parameters
dwOption

An unsigned integer used to specify one of the socket options. These options cannot be
combined. The following values are recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This is only valid for
stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option is commonly used by server applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

bEnabled

A boolean flag. If the flag is set to a non-zero value, the option is enabled. Otherwise the socket
option is disabled.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
It is not recommend that you disable the Nagle algorithm by specifying the
INET_OPTION_NODELAY flag unless it is absolutely required. Doing so can have a significant,
negative impact on the performance of the application and network.

If if the INET_OPTION_KEEPALIVE option is enabled, keep-alive packets will start being generated
five seconds after the socket has become idle with no data being sent or received. Enabling this
option can be used by applications to detect when a physical network connection has been lost.
However, it is recommended that most applications query the remote host directly to determine if
the connection is still active. This is typically accomplished by sending specific commands to the
server to query its status, or checking the elapsed time since the last response from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Connect, GetOption

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::SetTimeout Method

INT SetTimeout(
 UINT nTimeout
);

The SetTimeout method sets the number of seconds the client will wait for a response from the
remote host. Once the specified number of seconds has elapsed, the method will fail and return to
the caller.

Parameters
nTimeout

The number of seconds to wait for a blocking operation to complete.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
The timeout value is only used with blocking client connections.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Connect, GetTimeout, IsReadable, IsWritable, Read, Write

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::ShowError Method

INT ShowError(
 LPCTSTR lpszAppTitle,
 UINT uType,
 DWORD dwErrorCode
);

The ShowError method displays a message box which describes the specified error.

Parameters
lpszAppTitle

A pointer to a string which specifies the title of the message box that is displayed. If this
argument is NULL or omitted, then the default title of "Error" will be displayed.

uType

An unsigned integer which specifies the type of message box that will be displayed. This is the
same value that is used by the MessageBox method in the Windows API. If a value of zero is
specified, then a message box with a single OK button will be displayed. Refer to that method
for a complete list of options.

dwErrorCode

Specifies the error code that will be used when displaying the message box. If this argument is
zero, then the last error that occurred in the current thread will be displayed.

Return Value
If the method is successful, the return value will be the return value from the MessageBox
function. If the method fails, it will return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetErrorString, GetLastError, SetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Shutdown Method

INT Shutdown(
 DWORD dwOption
);

The Shutdown method is used to disable reception or transmission of data, or both.

Parameters
dwOption

An unsigned integer used to specify one of the shutdown options. These options cannot be
combined. The following values are recognized:

Value Constant Description

0 INET_SHUTDOWN_READ Disable reception of data.

1 INET_SHUTDOWN_WRITE Disable transmission of data.

2 INET_SHUTDOWN_BOTH Disable both reception and transmission of data.

Return Value
If the method succeeds, the return value is zero. If the method fails, the return value is
INET_ERROR. To get extended error information, call GetLastError.

Remarks
This method is rarely needed. It is provided as an interface to the Windows Sockets shutdown
method.

In some asynchronous applications, it may be desirable for a client to inform the server that no
further communication is wanted, while allowing the client to read any residual data that may
reside in internal buffers on the client side. Shutdown accomplishes this because the socket
handle is still valid after it has been called, although some or all communication with the remote
host has ceased.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
Abort, Connect, Disconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::StoreStream Method

BOOL StoreStream(
 LPCTSTR lpszFileName,
 DWORD dwLength,
 LPDWORD lpdwCopied
 DWORD dwOffset,
 DWORD dwOptions
);

The StoreStream method reads the socket data stream and stores the contents in the specified
file.

Parameters
lpszFileName

Pointer to a string which specifies the name of the file to create or overwrite.

dwLength

An unsigned integer which specifies the maximum number of bytes to read from the socket and
write to the file. If this value is zero, then the method will continue to read data from the socket
until the remote host disconnects or an error occurs.

lpdwCopied

A pointer to an unsigned integer value which will contain the number of bytes written to the file
when the method returns.

dwOffset

An unsigned integer which specifies the byte offset into the file where the method will start
storing data read from the socket. Note that all data after this offset will be truncated. A value of
zero specifies that the file should be completely overwritten if it already exists.

dwOptions

An unsigned integer value which specifies one or more options. Programs can use a bitwise
operator to combine any of the following values:

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data written to the file to be larger than
the source data. For example, if the source data
only terminates a line of text with a single linefeed,
this option will have the effect of inserting a
carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being written as 16-bit

wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream. If the dwOffset
parameter has a value of zero, the Unicode byte
order mark (BOM) will be written to the beginning
of the file.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call GetLastError.

Remarks
The StoreStream method enables an application to read an arbitrarily large stream of
data and store it in a file. This method is essentially a simplified version of the
ReadStream method, designed specifically to be used with files rather than memory
buffers or handles.

This method will force the thread to block until the operation completes. If this method is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
StoreStream is blocked waiting for data from the remote host, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

Because StoreStream can potentially cause the application to block for long periods of
time as the data stream is being read, the method will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
RegisterEvent method, and can obtain information about the current operation by
calling the GetStreamInfo method.

Example
DWORD dwCopied;
BOOL bResult;

bResult = pSocket->StoreStream(lpszFileName, 0, &dwCopied, 0,
 INET_STREAM_CONVERT);

if (bResult && dwCopied > 0)
{
 // The data has been written to the file
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
GetStreamInfo, Read, ReadLine, ReadStream, Write, WriteLine, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::ValidateCertificate Method

BOOL ValidateCertificate(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertPassword,
 LPCTSTR lpszCertName
);

The ValidateCertificate method determines if the specified security certificate is installed on the
local system.

Parameters
lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the personal certificate store will
be used as the default. This parameter may also specify the name of a certificate file in PKCS
#12 (PFX) format.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertPassword

A null terminated string which specifies the password associated with a certificate file. This
parameter is only used if the lpszCertStore parameter specifies a certificate file, otherwise it is
ignored. If the certificate file is not protected with a password, this parameter should be a NULL
pointer or empty string.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to validate. The
method will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
method will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the method will return an error indicating that the certificate
could not be found.

Return Value

If the method succeeds, the return value is non-zero. If the method fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
If you are checking the validity of a certificate installed in the local certificate store, you can
explicitly specify whether the certificate store for the current user or the local machine (all users)
should be used. This is done by prefixing the certificate store name with "HKCU:" for the current
user, or "HKLM:" for the local machine. For example, a certificate store name of "HKLM:MY" would
specify the personal certificate store for the local machine, rather than the current user. If neither
prefix is specified, then it will default to the certificate store for the current user.

It is possible to validate a certificate file rather than one stored in the local certificate store. The
lpszCertStore member should specify the name of a file in Private Information Exchange (PFX)
format, also known as PKCS #12.These certificate files typically have an extension of .pfx or .p12. If
a password was specified when the certificate file was created, it must be provided in with the
lpszCertPassword parameter or this method will be unable to access the certificate.

This method can only validate certificate files in PFX format and cannot be used to validate a
certificate file in another format, such as PEM (base64 encoded) or DER (binary).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
CreateSecurityCredentials, DeleteSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 ValidateHostName Method

BOOL ValidateHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszAddress,
 INT nMaxLength
);

BOOL ValidateHostName(
 LPCTSTR lpszHostName,
 CString& strAddress
);

The ValidateHostName method determines if the specified host name is valid and returns its IP
address.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name. The method will fail If this
parameter is NULL or an empty string.

lpszAddress

A pointer to a string buffer which will contain the IP address of the host. If specified, this string
must be large enough to store the complete IP address, including the terminating null
character. If this parameter is NULL or the nMaxLength parameter is zero, it will be ignored and
the IP address will not be returned. An alternate version of this method accepts a reference to a
CString object if MFC or ATL is used with the project.

nMaxLength

An integer value that specifies the maximum number of characters which can be copied into the
lpszAddress string buffer. The buffer must be large enough to store the complete address.
Because this method can return either an IPv4 or IPv6 address, it is recommended the minimum
length for the buffer to be 46 characters. If this parameter is zero, the lpszAddress parameter
will be ignored.

Return Value
If the method succeeds, the host name is valid and the return value will be non-zero. If the
method fails, the host name could not be resolved to an IP address and the return value will be
zero. To get extended error information, call the GetLastError method.

Remarks
The ValidateHostName method provides a convenient way to determine if a host name is valid
by attempting to resolve the name into an IP address. It is similar to calling the
NormalizeHostName method to obtain the canonical form of the host name, calling
GetAddress to obtain the IP address and then calling FormatAddress to return the string
representation of the host's IP address.

If the Unicode version of this method is used, any non-ASCII characters in the host name will be
automatically encoded into a compatible format and then resolved to an IP address. If you are
unsure if an internationalized domain name will be specified as the host name, it is recommended
you use the Unicode version.

The lpszHostName parameter can only specify a host name or IP address and cannot be a URL. If
you want your application to support providing a URL in addition to a host name, use the

GetUrlHostName method to extract the host name from the URL. You can then provide the host
name to this method to obtain its IP address.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this method will return a copy of that IP address in the buffer provided by the caller. This
allows the method to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the GetHostName method.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
FormatAddress, GetAddress, GetHostAddress, GetHostName, GetUrlHostName,
NormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::Write Method

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer
);

INT Write(
 LPBYTE lpBuffer,
 INT cbBuffer,
 LPINTERNET_ADDRESS lpAddress,
 UINT nRemotePort
);

The Write method sends the specified number of bytes to the remote host.

Parameters
lpBuffer

The pointer to the buffer which contains the data that is to be sent to the remote host.

cbBuffer

The number of bytes to send from the specified buffer. This value must be greater than zero.

lpAddress

Pointer to an INTERNET_ADDRESS structure that specifies the address of the remote host that is
to receive the data being written. For TCP stream sockets, this parameter must always be NULL
or specify the same address that was used to establish the connection. For UDP datagram
sockets, this may specify any valid IP address.

nRemotePort

The port number of the remote host that is to receive the data being written. For TCP stream
sockets, this value must always be zero, or specify the same port number that was used to
establish the connection. For UDP datagram sockets, this may specify any valid port number.

Return Value
If the method succeeds, the return value is the number of bytes actually written. If the method
fails, the return value is INET_ERROR. To get extended error information, call GetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the client application to send
the remaining data at some later point. For non-blocking sockets, the client must wait for the next
asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
EnableEvents, IsBlocking, IsReadable, IsWritable, Read, ReadLine, RegisterEvent, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::WriteLine Method

BOOL WriteLine(
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

The WriteLine function sends a line of text to the remote host, terminated by a carriage-return
and linefeed.

Parameters
lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the remote host. All
characters up to, but not including, the terminating null character will be written to the socket.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the socket.

lpnLength

A pointer to an integer value which will contain the number of characters written to the socket,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call GetLastError.

Remarks
The WriteLine method writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the Write method which writes
arbitrary bytes of data to the socket, this method is specifically designed to write a single line of
text data from a null-terminated string.

If the lpszBuffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the value returned in the lpnLength parameter will typically be
larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

There are some limitations when using WriteLine. This method should only be used to send text,
never binary data. In particular, it will discard nulls and append linefeed and carriage return control
characters to the data stream. The Unicode version of this method will accept a Unicode string,
however it does not support writing raw Unicode data to the socket. Unicode strings will be
automatically converted to UTF-8 encoding using the WideCharToMultiByte function and then
written to the socket as a stream of bytes.

This method will force the thread to block until the complete line of text has been written, the
write operation times out or the remote host aborts the connection. If this method is called with
asynchronous events enabled, it will automatically switch the socket into a blocking mode, send
the data and then restore the socket to asynchronous operation. If another socket operation is
attempted while WriteLine is blocked sending data to the remote host, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket connections; if
the application needs to establish multiple simultaneous connections, it should create worker

threads to manage each connection.

The Write and WriteLine methods can be safely intermixed.

Unlike the Write function, it is possible for data to have been written to the socket if the return
value is zero. For example, if a timeout occurs while the method is waiting to send more data to
the remote host, it will return zero; however, some data may have already been written prior to
the error condition. If this is the case, the lpnLength argument will specify the number of
characters actually written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
IsWritable, Read, ReadLine, ReadStream, Write, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 CSocketWrench::WriteStream Method

BOOL WriteStream(
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

The WriteStream method writes data from the stream buffer to the specified socket.

Parameters
lpvBuffer

Pointer to the buffer that contains or references the data to be written to the socket. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be accessed.

lpdwLength

A pointer to an unsigned integer value which specifies the size of the buffer and contains the
number of bytes written when the method returns. This argument should should always point to
an initialized value. If the lpvBuffer argument specifies a memory buffer or global memory
handle, then this argument cannot point to an initialized value of zero.

dwOptions

An unsigned integer value which specifies the stream buffer type to be used when writing the
data stream to the socket. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a a global memory handle,
then the method will write the data referenced by
that handle; otherwise, the method will consider
the parameter a pointer to a block of memory
which contains data to be written. In most cases, it
is recommended that an application explicitly
specify the stream buffer type rather than using the
default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
block of memory which contains the data to be
written to the socket. If this stream buffer type is
used, the lpdwLength argument must point to an
unsigned integer which has been initialized with
the size of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a global memory
handle that references the data to be written to the
socket. The handle must have been created by a
call to the GlobalAlloc or GlobalReAlloc function. If
this stream buffer type is used, the lpdwLength
argument must point to an unsigned integer which
has been initialized with the size of the buffer.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read using the ReadFile function with this handle
will be written to the socket.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by this
handle will be written to the socket specified by the
hSocket parameter. The socket handle passed to
this method must have been created by this library;
if it is a socket created by an third-party library or
directly by the Windows Sockets API, you should
either create another instance of the class and
attach the socket using the AttachHandle method
or use the INET_STREAM_HANDLE stream buffer
type instead.

Return Value
If the method succeeds, the return value is non-zero. If the method fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The WriteStream method enables an application to write an arbitrarily large stream of
data from memory or a file to the specified socket. Unlike the Write method, which may
not write all of the data in a single method call, WriteStream will only return when all of
the data has been written or an error occurs.

This method will force the thread to block until the operation completes. If this method is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, write the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
WriteStream is blocked sending data to the remote host, an error will occur. It is
recommended that this method only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

It is possible for some data to have been written even if the method returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was sent. For example, if a timeout occurs while the method is waiting to write
more data, it will return zero; however, some data may have already been written to the
socket prior to the error condition.

Because WriteStream can potentially cause the application to block for long periods of
time as the data stream is being written, the method will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
RegisterEvent method, and can obtain information about the current operation by
calling the GetStreamInfo method.

Example
CFile *pFile = new CFile();
DWORD dwLength = 0;

if (!pFile->Open(strFileName, CFile::modeRead | CFile::shareDenyWrite))
 return;

dwLength = pFile->GetLength();

if (dwLength > 0)
{
 BOOL bResult = pSocket->WriteStream(
 pFile->m_hFile,
 &dwLength,
 INET_STREAM_HANDLE);
}

delete pFile;

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
GetStreamInfo, Read, ReadLine, ReadStream, StoreStream, Write, WriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Data Structures

INETSTREAMINFO
INTERNET_ADDRESS
SECURITYCREDENTIALS
SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INETSTREAMINFO Structure

This structure contains information about the data stream being currently read or written.

typedef struct _INETSTREAMINFO
{
 DWORD dwStreamThread;
 DWORD dwStreamSize;
 DWORD dwStreamCopied;
 DWORD dwStreamMode;
 DWORD dwStreamError;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} INETSTREAMINFO, *LPINETSTREAMINFO;

Members
dwStreamThread

Specifies the numeric ID for the thread that created the socket.

dwStreamSize

The maximum number of bytes that will be read or written. This is the same value as the buffer
length specified by the caller, and may be zero which indicates that no maximum size was
specified. Note that if this value is zero, the application will be unable to calculate a completion
percentage or estimate the amount of time for the operation to complete.

dwStreamCopied

The total number of bytes that have been copied to or from the stream buffer.

dwStreamMode

A numeric value which specifies the stream operation that is current being performed. It may be
one of the following values:

Constant Description

INET_STREAM_READ Data is being read from the socket and stored in the specified
stream buffer.

INET_STREAM_WRITE Data is being written from the specified stream buffer to the
socket.

dwStreamError

The last error that occurred when reading or writing the data stream. If no error has occurred,
this value will be zero.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the operation is completed. This is based on the
average number of bytes transferred per second and requires that a maximum stream buffer
size be specified by the caller.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h

See Also
ReadStream, StoreStream, WriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Class Error Codes

Value Constant Description

0x80042711 ST_ERROR_NOT_HANDLE_OWNER Handle not owned by the current thread

0x80042712 ST_ERROR_FILE_NOT_FOUND The specified file or directory does not exist

0x80042713 ST_ERROR_FILE_NOT_CREATED The specified file could not be created

0x80042714 ST_ERROR_OPERATION_CANCELED The blocking operation has been canceled

0x80042715 ST_ERROR_INVALID_FILE_TYPE The specified file is a block or character
device, not a regular file

0x80042716 ST_ERROR_INVALID_DEVICE The specified device or address does not
exist

0x80042717 ST_ERROR_TOO_MANY_PARAMETERS The maximum number of method
parameters has been exceeded

0x80042718 ST_ERROR_INVALID_FILE_NAME The specified file name contains invalid
characters or is too long

0x80042719 ST_ERROR_INVALID_FILE_HANDLE Invalid file handle passed to method

0x8004271A ST_ERROR_FILE_READ_FAILED Unable to read data from the specified file

0x8004271B ST_ERROR_FILE_WRITE_FAILED Unable to write data to the specified file

0x8004271C ST_ERROR_OUT_OF_MEMORY Out of memory

0x8004271D ST_ERROR_ACCESS_DENIED Access denied

0x8004271E ST_ERROR_INVALID_PARAMETER Invalid argument passed to method

0x8004271F ST_ERROR_CLIPBOARD_UNAVAILABLE The system clipboard is currently unavailable

0x80042720 ST_ERROR_CLIPBOARD_EMPTY The system clipboard is empty or does not
contain any text data

0x80042721 ST_ERROR_FILE_EMPTY The specified file does not contain any data

0x80042722 ST_ERROR_FILE_EXISTS The specified file already exists

0x80042723 ST_ERROR_END_OF_FILE End of file

0x80042724 ST_ERROR_DEVICE_NOT_FOUND The specified device could not be found

0x80042725 ST_ERROR_DIRECTORY_NOT_FOUND The specified directory could not be found

0x80042726 ST_ERROR_INVALID_BUFFER Invalid memory address passed to method

0x80042728 ST_ERROR_NO_HANDLES No more handles available to this process

0x80042733 ST_ERROR_OPERATION_WOULD_BLOCK The specified operation would block the
current thread

0x80042734 ST_ERROR_OPERATION_IN_PROGRESS A blocking operation is currently in progress

0x80042735 ST_ERROR_ALREADY_IN_PROGRESS The specified operation is already in progress

0x80042736 ST_ERROR_INVALID_HANDLE Invalid handle passed to method

0x80042737 ST_ERROR_INVALID_ADDRESS Invalid network address specified

0x80042738 ST_ERROR_INVALID_SIZE Datagram is too large to fit in specified buffer

0x80042739 ST_ERROR_INVALID_PROTOCOL Invalid network protocol specified

0x8004273A ST_ERROR_PROTOCOL_NOT_AVAILABLE The specified network protocol is not
available

0x8004273B ST_ERROR_PROTOCOL_NOT_SUPPORTED The specified protocol is not supported

0x8004273C ST_ERROR_SOCKET_NOT_SUPPORTED The specified socket type is not supported

0x8004273D ST_ERROR_INVALID_OPTION The specified option is invalid

0x8004273E ST_ERROR_PROTOCOL_FAMILY Specified protocol family is not supported

0x8004273F ST_ERROR_PROTOCOL_ADDRESS The specified address is invalid for this
protocol family

0x80042740 ST_ERROR_ADDRESS_IN_USE The specified address is in use by another
process

0x80042741 ST_ERROR_ADDRESS_UNAVAILABLE The specified address cannot be assigned

0x80042742 ST_ERROR_NETWORK_UNAVAILABLE The networking subsystem is unavailable

0x80042743 ST_ERROR_NETWORK_UNREACHABLE The specified network is unreachable

0x80042744 ST_ERROR_NETWORK_RESET Network dropped connection on remote
reset

0x80042745 ST_ERROR_CONNECTION_ABORTED Connection was aborted due to timeout or
other failure

0x80042746 ST_ERROR_CONNECTION_RESET Connection was reset by remote network

0x80042747 ST_ERROR_OUT_OF_BUFFERS No buffer space is available

0x80042748 ST_ERROR_ALREADY_CONNECTED Connection already established with remote
host

0x80042749 ST_ERROR_NOT_CONNECTED No connection established with remote host

0x8004274A ST_ERROR_CONNECTION_SHUTDOWN Unable to send or receive data after
connection shutdown

0x8004274C ST_ERROR_OPERATION_TIMEOUT The specified operation has timed out

0x8004274D ST_ERROR_CONNECTION_REFUSED The connection has been refused by the
remote host

0x80042750 ST_ERROR_HOST_UNAVAILABLE The specified host is unavailable

0x80042751 ST_ERROR_HOST_UNREACHABLE Remote host is unreachable

0x80042753 ST_ERROR_TOO_MANY_PROCESSES Too many processes are using the
networking subsystem

0x8004276B ST_ERROR_NETWORK_NOT_READY Network subsystem is not ready for
communication

0x8004276C ST_ERROR_INVALID_VERSION This version of the operating system is not
supported

0x8004276D ST_ERROR_NETWORK_NOT_INITIALIZED The networking subsystem has not been
initialized

0x80042775 ST_ERROR_REMOTE_SHUTDOWN The remote host has initiated a graceful
shutdown sequence

0x80042AF9 ST_ERROR_INVALID_HOSTNAME The specified hostname is invalid or could
not be resolved

0x80042AFA ST_ERROR_HOSTNAME_NOT_FOUND The specified hostname could not be found

0x80042AFB ST_ERROR_HOSTNAME_REFUSED Unable to resolve hostname, request refused

0x80042AFC ST_ERROR_HOSTNAME_NOT_RESOLVED Unable to resolve hostname, no address for
specified host

0x80042EE1 ST_ERROR_INVALID_LICENSE The license for this product is invalid

0x80042EE2 ST_ERROR_PRODUCT_NOT_LICENSED This product is not licensed to perform this
operation

0x80042EE3 ST_ERROR_NOT_IMPLEMENTED This method has not been implemented on
this platform

0x80042EE4 ST_ERROR_UNKNOWN_LOCALHOST Unable to determine local host name

0x80042EE5 ST_ERROR_INVALID_HOSTADDRESS Invalid host address specified

0x80042EE6 ST_ERROR_INVALID_SERVICE_PORT Invalid service port number specified

0x80042EE7 ST_ERROR_INVALID_SERVICE_NAME Invalid or unknown service name specified

0x80042EE8 ST_ERROR_INVALID_EVENTID Invalid event identifier specified

0x80042EE9 ST_ERROR_OPERATION_NOT_BLOCKING No blocking operation in progress on this
socket

0x80042F45 ST_ERROR_SECURITY_NOT_INITIALIZED Unable to initialize security interface for this
process

0x80042F46 ST_ERROR_SECURITY_CONTEXT Unable to establish security context for this
session

0x80042F47 ST_ERROR_SECURITY_CREDENTIALS Unable to open client certificate store or
establish client credentials

0x80042F48 ST_ERROR_SECURITY_CERTIFICATE Unable to validate the certificate chain for
this session

0x80042F49 ST_ERROR_SECURITY_DECRYPTION Unable to decrypt data stream

0x80042F4A ST_ERROR_SECURITY_ENCRYPTION Unable to encrypt data stream

0x80043031 ST_ERROR_MAXIMUM_CONNECTIONS The maximum number of client connections
exceeded

0x80043032 ST_ERROR_THREAD_CREATION_FAILED Unable to create a new thread for the current
process

0x80043033 ST_ERROR_INVALID_THREAD_HANDLE The specified thread handle is no longer valid

0x80043034 ST_ERROR_THREAD_TERMINATED The specified thread has been terminated

0x80043035 ST_ERROR_THREAD_DEADLOCK The operation would result in the current

thread becoming deadlocked

0x80043036 ST_ERROR_INVALID_CLIENT_MONIKER The specified moniker is not associated with
any client session

0x80043037 ST_ERROR_CLIENT_MONIKER_EXISTS The specified moniker has been assigned to
another client session

0x80043038 ST_ERROR_SERVER_INACTIVE The specified server is not listening for client
connections

0x80043039 ST_ERROR_SERVER_SUSPENDED The specified server is suspended and not
accepting client connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Library Overview

SocketWrench can be used with a wide variety of programming languages and software development tools
for Windows. The majority of the library functions use simple data types such as 16-bit and 32-bit integers,
and null character terminated strings. To determine if your development language is capable of using the
SocketWrench DLL, it should support all of the following features:

It needs the ability to load a dynamic-link library (DLL) and call exported functions from that library.
In some cases, as with C or C++, you can use an import library instead of dynamically loading the
library. This allows you to link your program just as you would a standard function library. If the
language does not support the use of import libraries, it must provide a mechanism for declaring a
function and specifying the arguments that will be passed to it.
Languages must call the SocketWrench functions using the stdcall calling convention. Parameters are
pushed on to the stack in reverse order (from right to left), and the called function is responsible for
clearing the stack. Note that this is different from the standard C/C++ calling convention in which
the stack is cleared by the calling function, and from the Pascal calling convention in which
arguments are pushed on the stack left to right.
The language must support basic integer data types, including 'short' 16-bit integers and 'long' 32-
bit integers. The language must also support a string data type that is represented as an array of
bytes, terminated by a null character (a character with the ASCII value of zero). If a different native
string type is used, the language must provide a means to convert between the native string format
and a null-terminated byte array.
The language must support passing function parameters by value and by reference. When a variable
is "passed by value", a copy of its value is passed to the function on the stack. However, when a
variable is "passed by reference", the memory address of the variable (typically called a pointer) is
passed to the function. In most cases, the functions in the SocketWrench library expect integer data
to be passed by value, while string and data structures are passed by reference.
In addition to passing a variable by reference to a function, the language must provide the ability to
allocate a block of memory of arbitrary size and be able to pass its address to a function. For
example, in C there is the malloc() and free() functions, and in Visual Basic there is the Dim and
ReDim statements.
The language must support calling functions which do not return a value. For example, in C and
C++, such functions are declared as void. In Visual Basic, a function which does not return a value is
declared as Sub (a subroutine).
Although not required, it is recommended that the language also support the ability to create user-
defined data structures. For example, in C and C++, the struct keyword is used to define a data
structure. In Visual Basic, the Type statement is used to create user-defined data structures.

Data Type Representations
Because various languages handle data types in different ways, the SocketWrench library has been
designed to primarily use basic data types such as integers and strings. The following is a list of numeric
data types that are used, along with their C and Visual Basic equivalents.

Description Size Range C / C++ Visual Basic Visual Basic.NET

Byte 1
byte

0 to 255 BYTE Byte Byte

Boolean 4
bytes

0 is False, 1 is True BOOL Long Integer

Handle 4
bytes

0 to 4,294,967,295 HPACKAGE Long Integer

Integer 4
bytes

-2,147,483,648 to
2,147,483,647

int Long Integer

Integer 4
bytes

0 to 4,294,967,295 UINT Long Integer

Short
Integer

2
bytes

-32,768 to 32,767 SHORT Integer Short

Short
Integer

2
bytes

0 to 65,535 WORD Integer Short

Long
Integer

4
bytes

-2,147,483,648 to
2,147,483,647

LONG Long Integer

Long
Integer

4
bytes

0 to 4,294,967,295 DWORD Long Integer

One problem that is frequently encountered when converting function definitions from C or C++ to other
languages is the size of the integer data type. For example, default integer size for Visual Basic is 16-bits,
even on 32-bit platforms. Also, some languages do not support unsigned integer types. In this case, as with
Visual Basic, the signed type should be used instead.

Handles
Throughout the documentation for the SocketWrench functions, you will see references to "handles".
Simply put, a handle is an unsigned integer value that is used to represent some object in memory. The
actual value of the handle is not important and may refer to the memory address of a specific object, or it
may be an index into a table of objects. When a handle is created, its value is unique for the life of each
object created by the process. It is important that an application never make assumptions about the
specific value of a handle. Handle values may be reused for objects that have been destroyed, and there is
no guarantee that handle values are assigned in any particular order.

In SocketWrench, handles are used to refer to sockets. The socket handle, defined as an unsigned integer
type called SOCKET, is returned by those functions which create a new outbound connection, or listen for
inbound connections. During the time that this connection exists, the socket handle is used to refer to
connection. When the application closes the connection, the handle is destroyed.

The value of an SocketWrench handle varies between processes. The only constant is the value represented
by INVALID_SOCKET, which indicates that a given handle does not represent an open socket.

Boolean Data
Boolean parameters present a special problem for two reasons. Firstly, the data types used to represent
boolean values frequently vary between languages. Secondly, different languages represent the values
'true' and 'false' differently. Boolean parameters (declared as BOOL in the function prototypes) should
always be passed as 32-bit signed integers.

If you are passing a boolean parameter to a function, then 'false' should be represented by a value of zero
and 'true' as a non-zero value (typically a value of one). When writing code that checks a boolean flag, or
tests a boolean return value from a function, it is recommended that you test against a value of zero. For
example, consider the following code in Visual Basic:

Dim bConnected As Long

bConnected = InetIsConnected(hSocket)

If bResult = True Then
 ' The socket is connected to a remote host
Else
 ' The socket is not connected, or the socket handle
 ' may be invalid; call InetGetLastError to check the
 ' error code
End If
In this example, even if the function InetIsConnected was successful, the program would always believe
that it failed because of the explicit test against the value True. This is because the function returns a value
of 1 to indicate success, but Visual Basic defines True as –1. Instead, the code should be written as:

Dim bConnected As Long

bConnected = InetIsConnected(hSocket)

If bResult <> 0 Then
 ' The socket is connected to a remote host
Else
 ' The socket is not connected, or the socket handle
 ' may be invalid; call InetGetLastError to check the
 ' error code
End If
In summary, the rule of thumb for dealing with boolean parameters is that they should always be 32-bit
integer values, and you should always compare the boolean against a value of zero, never against a
predefined constant.

String Data
String parameters can also present a problem when calling functions from languages other than C and
C++. Different languages tend to have different internal representations of how string data is stored. The
convention used by the SocketWrench library is that a string is an array of characters, terminated by a null
character (a character with an ASCII value of zero). The length of the string is not stored in the string data
itself, and by definition, a string cannot contain embedded nulls.

To use functions which require string parameters, the language must be capable of converting between its
native string data type and the null-terminated character array expected by the SocketWrench functions.
For example, Object Pascal provides the StrPCopy function. Note that Visual Basic provides implicit
conversion between its native string type and null-terminated strings when a string is passed by value
(ByVal) instead of by reference.

Another important consideration when passing string parameters is how the string is being used by the
function. In most cases, the string is provided as input to the function (for example, as the hostname or
address of a server to establish a connection with). However, in some cases the string is passed to the
function as an output buffer, which the function copies data into. For example, the InetGetLocalName
function stores the local host name into a string parameter. A Visual Basic programmer may write code that
looks like this:

Dim strLocalName As String
Dim nLength As Long

nLength = InetGetLocalName(strLocalName, 255)

Although this code looks correct, it will invariably result in a general protection fault or some other
unpredictable error. The problem is that although the strLocalName variable has been defined, no memory
has been allocated for it. There are two ways that this can be done in Visual Basic. One is to declare the
string as fixed-length, such as:

Dim strLocalName As String * 256
Dim nLength As Long

nLength = InetGetLocalName(strLocalName, 255)

The other is to dynamically allocate memory for the string using the String function, such as:

Dim strLocalName As String
Dim nLength As Long

strLocalname = String(256, 0)
nLength = InetGetLocalName(strLocalName, 255)

One final consideration is that string data that is returned by the function will be null-terminated. For those
languages that do not terminate strings with null characters, it may be necessary to remove the trailing null
character. The complete example would be written in Visual Basic as:

Dim strLocalName As String
Dim nLength As Long

strLocalname = String(256, 0)
nLength = InetGetLocalName(strLocalName, 255)

' Trim string up to the terminating null character
strLocalName = Left(strLocalName, InStr(strLocalName, Chr(0)) – 1)

If you are unsure of how your language handles null-terminated strings, we recommend that you review
the language's technical reference for information on how to call native Windows API functions. Since the
Windows API also uses null-terminated strings, that same information can be used to determine how to call
functions in the SocketWrench library.

Unicode Support
Unicode is a multi-language character set designed to encompass virtually all of the characters used with
computers today. Unicode characters are represented by a 16-bit value, and differ from other character
sets in two important ways. First, unlike the traditional single-byte (ANSI) character sets, Unicode is capable
of representing significantly more characters in a variety of languages. Second, unlike multi-byte character
sets (where some characters may be one byte in length, while others may be two bytes), the characters are
fixed-width, which makes them easier to work with. Windows support for Unicode varies according to the
platform. Unicode is fully supported under Windows NT and later versions of the operating system.
However, support is limited under Windows 95/98.

The SocketWrench library supports both the ANSI and Unicode character sets by providing two versions of
each function that either expects a string as an argument (including those functions which pass structures
that contain strings) or returns the address of a string.

The version of the function that expects a single-byte character set has a suffix of "A" (ANSI), while the
function which expects the Unicode character set has a suffix of "W" (wide). Note that no suffix is used with
those functions which only expect numeric parameters and return numeric values.

For example, consider the InetGetLocalName function mentioned in the previous section. If you looked at
the list of exported functions in the library, you would see two functions exported, InetGetLocalNameA
and InetGetLocalNameW. In C and C++, which function is called actually depends on how the application
is being built. That is, if your application is built to use Unicode (in other words, the UNICODE macro is
defined and you are linking with Unicode versions of the standard libraries), then the
InetGetLocalNameW function will be used instead of the InetGetLocalNameA. In other languages, you
may have to explicitly declare which version of the function you wish to use. In Visual Basic, for example,
the Alias keyword must be used with the function declaration to specify the correct name.

Some SocketWrench functions expect byte arrays, not character strings. This can create problems when
reading and writing Unicode string data. For example, consider the InetRead and InetWrite functions
which are used to read and write data on the socket. Because character strings and byte arrays are
essentially identical when using 8-bit ANSI character sets, a C/C++ programmer may try to write code such
as this:

LPTSTR lpszData;
int cchData, nResult;

lpszData = _T("This is a test, this is only a test");
cchData = lstrlen(lpszData);

nResult = InetWrite(hSocket, lpszData, cchData);

This would work as expected until the project is changed to use Unicode. The problem is the string is no
longer an array of bytes, but is now an array of 16-bit (short) integers. The string must be converted from
Unicode to a byte array before passing it to the InetWrite function. To do this, the WideCharToMultiByte
function can be used as follows:

LPTSTR lpszData;
LPBYTE lpBuffer;
int cchData, nResult;

lpszData = _T("This is a test, this is only a test");
cchData = lstrlen(lpszData);

#ifdef UNICODE
if ((lpBuffer = (LPBYTE)_alloca((cchData + 1) * 4)) == NULL)
{
 // Unable to allocate memory
 return;
}

WideCharToMultiByte(CP_UTF8, 0,
 (LPCWSTR)lpszData, cchData,
 (LPSTR)lpBuffer, ((cchData + 1) * 4),
 NULL, NULL);
#else
lpBuffer = (LPBYTE)lpszData;
#endif

nResult = InetWrite(hSocket, lpBuffer, cchData);

Note that the type of characters that are being converted may also present a problem to the developer. In
this example, the string is easily converted because it is composed only of characters that are part of the
basic ASCII character set. However, when converting a string that contains international characters (such as
accented vowels) the conversion may result in unprintable characters. For additional information, check
your programming language's technical reference for issues with regards to localization and the use of
Unicode.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Library and Visual Basic

SocketWrench includes both an ActiveX control and a standard Windows dynamic link library, and in most
cases those developers who are programming in Visual Basic will benefit from using the control. However,
there are those situations in which a Visual Basic programmer may prefer to use the library over the
control.

SocketWrench does not come with Visual Basic modules which provide function declarations and
constants. Instead, this information is provided as a type library, which is part of the library itself. To use the
SocketWrench library in your Visual Basic programs, you need to create a reference to it in your project. To
do this, follow these steps:

Open your current project or create a new project.
Select the Project|References menu option which will display a dialog box that lists the currently
selected and available references.
If the SocketWrench Library is listed as an available reference, select it. If it is not listed, click on the
browse button and choose the CSWSKV11.DLL file.

Note that there may be another reference to the SocketWrench Control. You do not want to select this
since it refers to the ActiveX control, not the library. Once the library has been referenced, you will be able
to use the functions and constants detailed in the technical reference.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Library Functions

Function Description

InetAbort Abort the connection and immediately close the socket

InetAccept Accept a connection request from a remote host

InetAcceptEx Accept a client connection on a listening socket with additional options

InetAsyncAccept Accept an asynchronous connection request from a remote host

InetAsyncAcceptEx Accept a non-blocking connection on a listening socket

InetAsyncConnect Connect asynchronously to the specified server

InetAsyncConnectEx Connect asynchronously to the specified server

InetAsyncListen Listen for client connections on an asynchronous socket

InetAsyncListenEx Listen for client connections on an asynchronous socket with additional options

InetAttachSocket Attach the socket handle to the specified process

InetAttachThread Attach the specified socket to another thread

InetCancel Cancel a blocking operation

InetClientBroadcast Write data to all other clients that are connected to the same server

InetCompareAddress Compare two IP addresses to determine if they are identical

InetConnect Connect to the specified server

InetConnectEx Connect to the specified server with additional connection information

InetConnectUrl Connect to the specified server using a URL

InetCreateSecurityCredentials Create a new security credentials structure

InetDeleteSecurityCredentials Delete a previously created security credentials structure

InetDetachSocket Detach the socket handle from the current process

InetDisableEvents Disable asynchronous event notification

InetDisableSecurity Disable secure communication with the remote host

InetDisableTrace Disable logging of network function calls to the trace log

InetDisconnect Disconnect from the current server

InetEnableEvents Enable asynchronous event notification

InetEnableSecurity Enable secure communication with the remote host

InetEnableTrace Enable logging of network function calls to a file

InetEnumHostAliases Return a byte array that contains all the aliases for a specified host

InetEnumNetworkAddresses Return the list of network addresses that are configured for the local host

InetEnumServerClients Returns a list of active client sessions established with the specified server

InetEnumServerClientsByAddress Returns a list of active client sessions that match the specified IP address

InetEventProc Callback method that processes events generated on the socket

InetFindClientMoniker Returns a handle to the client socket which matches the specified moniker

InetFlush Flush the send and receive buffers

InetFormatAddress Convert an IP address in binary format into a printable string

InetFreezeEvents Suspend or resume event handling by the application

InetGetAdapterAddress Return the IP or MAC assigned to the specified network adapter

InetGetAddress Convert an IP address string to a binary format

file:///C|/Projects/cstools11/pdf/winsock/library/inetenumserverclientsbyaddress.html

InetGetAddressFamily Return the address family for the specified IP address

InetGetBlockingSocket Return the handle for the socket which is blocked in the current thread

InetGetDefaultHostFile Return the fully qualified path name of the host file on the local system

InetGetClientData Returns the application defined data associated with the specified client session

InetGetClientHandle Returns the handle for a specific client session based on its ID number

InetGetClientId Returns the unique ID number assigned to the specified client session

InetGetClientIdleTime Returns the amount of time the specified client session has been idle

InetGetClientMoniker Returns the string alias associated with the specified client session

InetGetClientPriority Returns the current priority for the specified client session

InetGetClientServer Returns a socket handle to the server for the specified client socket

InetGetClientServerById Returns a socket handle to the server for the specified session identifier

InetGetClientThreadId Returns the thread ID for the specified client session

InetGetClientThreads Returns the number of client session threads created by the server

InetGetErrorString Return a description for the specified error code

InetGetExternalAddress Return the external IP address assigned to the local system

InetGetHostAddress Return the IP address assigned to the specified hostname

InetGetHostFile Return the name of the host file

InetGetHostName Return the hostname assigned to the specified IP address

InetGetLastError Return the last error code

InetGetLocalAddress Return the local IP address and port number for a socket

InetGetLocalName Return the hostname assigned to the local system

InetGetLockedServer Return the handle to the server which has been locked

InetGetOption Return the current socket options

InetGetPeerAddress Return the IP address of the peer that the socket is connected to

InetGetPhysicalAddress Return the media access control (MAC) address for the primary network adapter

InetGetSecurityInformation Return information about the security characteristics of a connection

InetGetServerClient Return the handle for the last client connection accepted by the server

InetGetServerData Returns the application defined data associated with the specified server

InetGetServerPriority Return the current priority assigned to the specified server

InetGetServerStackSize Return the initial size of the stack allocated for threads created by the server

InetGetServerStatus Returns the status of the specified server

InetGetServerThreadId Returns the thread ID for the specified server

InetGetServiceName Return the service name associated with a specified port number

InetGetServicePort Return the port number associated with a service name

InetGetStatus Report what sort of socket operation is in progress

InetGetStreamInfo Return information about the current stream read or write operation

InetGetThreadClient Return the handle for the client session that is being managed by the specified thread

InetGetTimeout Return the timeout interval for blocking operations, in seconds

InetGetUrlHostName Return the host name and port number specified in a URL

InetHostNameToUnicode Converts the canonical form of a host name to its Unicode version

InetInitialize Initialize the library and validate the specified user license key at runtime

file:///C|/Projects/cstools11/pdf/winsock/library/inetgetaddressfamily.html

InetIsAddressNull Determine if the specified IP address is a null address

InetIsAddressRoutable Determine if the specified IP address is routable over the Internet

InetIsBlocking Determine if the socket is performing a blocking operation

InetIsClosed Determine if the remote host has closed its socket

InetIsConnected Determine if the socket is connected to a remote host

InetIsListening Determine if the socket is listening for a connection

InetIsProtocolAvailable Determine if the specified protocol and address family are supported

InetIsReadable Determine if date can be read from the remote process

InetIsUrgent Determine if there is any out-of-band (OOB) data available to be read

InetIsWritable Determine if data can be written to the remote process

InetListen Listen for client connections on the specified socket

InetListenEx Listen for client connections on the specified socket with additional options

InetMatchHostName Match a host name against of list of addresses including wildcards

InetNormalizeHostName Return the canonical form of a host name

InetPeek Read data from the socket without removing it from the socket buffer

InetRead Read data from the socket

InetReadEx Read data from the socket, with extended functionality

InetReadLine Read a line of data from the socket, storing it in a string buffer

InetReadStream Read a stream of data from the socket

InetRegisterEvent Register an event callback function

InetReject Reject a pending client connection request

InetServerAsyncNotify Enable or disable asynchronous notification of changes in server status

InetServerBroadcast Write data to all active clients currently connected to the specified server

InetServerLock Lock the specified server, causing all other client threads to block until it is unlocked

InetServerRestart Restart the server, terminating all active client sessions

InetServerResume Resume accepting client connections on the specified server

InetServerStart Begin listening for client connections on the specified address and port

InetServerStop Stop listening for connections and terminate all client sessions

InetServerStopEx Stop listening for connections and wait for the server to terminate

InetServerSuspend Suspend accepting client connections on the specified server

InetServerSuspendEx Suspend accepting client connections and optionally reject or disconnect clients

InetServerThrottle Limit the number of active client connections, connections per address and connection rate

InetServerUnlock Unlock the specified server, allowing other client threads to resume execution

InetSetClientData Associate application defined data with the specified client session

InetSetClientMoniker Associate a unique string alias with the specified client session

InetSetClientPriority Set the priority for the specified client session

InetSetServerData Associate application defined data with the specified server

InetSetServerPriority Change the priority assigned to the specified server

InetSetServerStackSize Change the initial size of the stack allocated for threads created by the server

InetSetHostFile Specify the name of an alternate host table

InetSetLastError Set the last error code

file:///C|/Projects/cstools11/pdf/winsock/library/inetserversuspendex.html

InetSetOption Set one or more options for the current socket

InetSetTimeout Set the interval used when waiting for a blocking operation to complete

InetShutdown Disable reception or transmission of data

InetStoreStream Read a stream of data from the remote host and store it in a file

InetUninitialize Terminate use of the library by the application

InetValidateCertificate Validate the specified security certificate is installed on the local system

InetValidateHostName Validate the specified host name and return the resolved IP address

InetWrite Write data to the socket

InetWriteEx Write data to the socket, with extended functionality

InetWriteLine Write a line of data to the socket, terminated with a carriage-return and linefeed

InetWriteStream Write a stream of data to the socket

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAbort Function

INT WINAPI InetAbort(
 SOCKET hSocket
);

Immediately close the socket without waiting for any remaining data to be written out.

Parameters
hSocket

Handle to the socket.

Return Value
If the function succeeds, the return value is 0. If the function fails, the return value is INET_ERROR.
To get extended error information, call InetGetLastError.

Remarks
The InetAbort function should only be used when the connection must be closed immediately
before the application terminates. This function should only be used to abort client connections
and should not be used with passive (listening) sockets. Server applications that need to abort an
incoming client connection should use the InetReject function.

In most cases, the application should call the InetDisconnect function to gracefully close the
connection to the remote host. Aborting the connection will discard any buffered data and may
cause errors or result in unpredictable behavior.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetCancel, InetReject, InetDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAccept Function

SOCKET WINAPI InetAccept(
 SOCKET hSocket,
 UINT nTimeout
);

The InetAccept function is used to accept a pending client connection.

This function has been deprecated and is included for backwards compatibility. Use the
InetServerStart function to create a server application.

Parameters
hSocket

Handle to the listening socket.

nTimeout

The number of seconds that the server will wait for the connection to complete before failing
the operation.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. The socket handle returned by InetAccept should be used to exchange
information with the client.

This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and accept the connection by calling InetAccept in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

To accept a secure connection, use the InetAcceptEx function and specify the
INET_OPTION_SECURE option.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAcceptEx, InetConnect, InetListen, InetRegisterEvent, InetReject, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAcceptEx Function

SOCKET WINAPI InetAcceptEx(
 SOCKET hSocket,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetAcceptEx function is used to accept a pending client connection.

This function has been deprecated and is included for backwards compatibility. Use the
InetServerStart function to create a server application.

Parameters
hSocket

Handle to the socket.

nTimeout

The number of seconds that the server will wait for a client connection before failing the current
operation.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a
full-size packet can be sent to the remote host.

INET_OPTION_INLINE This option controls how urgent (out-of-band)
data is handled when reading data from the
socket. If set, urgent data is placed in the data
stream along with non-urgent data.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has stopped the server.

INET_OPTION_SECURE This option determines if a secure connection is
negotiated with the remote host.

INET_OPTION_SECURE_FALLBACK This option specifies the server should permit the
use of less secure cipher suites for compatibility
with legacy clients. If this option is specified, the
server will allow connections using TLS 1.0 and

 cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This may be NULL, unless dwOptions
includes INET_OPTION_SECURE. When INET_OPTION_SECURE is used, the fields dwSize,
lpszCertStore, and lpszCertName must be defined, while other fields may be left undefined. Set
dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. The socket handle returned by InetAcceptEx should be used to exchange
information with the client.

This function will block the current thread until a connection has been established or the timeout
period has elapsed. To prevent it from blocking the main user interface thread, the application
should create a background worker thread and accept the connection by calling InetAcceptEx in
that thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each connection.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAccept, InetConnect, InetConnectEx, InetListen, InetListenEx, InetRegisterEvent, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncAccept Function

SOCKET WINAPI InetAsyncAccept(
 SOCKET hSocket,
 UINT nTimeout,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncAccept function is used to accept a pending client connection.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Use the InetServerStart function to create a server application.

Parameters
hSocket

Handle to the listening socket.

nTimeout

The number of seconds that the server will wait for the connection to complete before failing
the operation. This value is used only if hWnd is NULL.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. The socket handle returned by InetAsyncAccept should be used to exchange
information with the client.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some

of the data from the socket. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncConnect, InetAsyncListen, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncAcceptEx Function

SOCKET WINAPI InetAsyncAcceptEx(
 SOCKET hSocket,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncAcceptEx function is used to accept a pending client connection.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Use the InetServerStart function to create a server application.

Parameters
hSocket

Handle to the listening socket.

nTimeout

The number of seconds that the server will wait for a client connection before failing the
operation. This value is only used with blocking connections.

dwOptions

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be
reused. This option is commonly used by server
applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a
full-size packet can be sent to the remote host.

INET_OPTION_INLINE This option controls how urgent (out-of-band)
data is handled when reading data from the
socket. If set, urgent data is placed in the data
stream along with non-urgent data.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close

the handle, leaving it open after the parent
process has stopped the server.

INET_OPTION_SECURE This option determines if a secure connection is
negotiated with the remote host.

INET_OPTION_SECURE_FALLBACK This option specifies the server should permit the
use of less secure cipher suites for compatibility
with legacy clients. If this option is specified, the
server will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This may be NULL, unless dwOptions
includes INET_OPTION_SECURE. When INET_OPTION_SECURE is used, the fields dwSize,
lpszCertStore, and lpszCertName must be defined, while other fields may be left undefined. Set
dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a connection is accepted by the server, the original listening socket continues to listen for
more connections. The socket handle returned by InetAsyncAccept or InetAsyncAcceptEx
should be used to exchange information with the client.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some
of the data from the socket. This event is only generated if the

socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

It is recommended that you only establish an asynchronous connection if you understand the
implications of doing so. In most cases, it is preferable to create a synchronous connection and
create threads for each additional session if more than one active client session is required.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncAccept, InetAsyncListenEx, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncConnect Function

SOCKET WINAPI InetAsyncConnect(
 LPCTSTR lpszHostName,
 UINT nPort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncConnect function is used to establish a connection with a server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
InetConnect within that thread. If the application requires multiple simultaneous connections, it is
recommended you create a worker thread for each connection.

Parameters
lpszHostName

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nPort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for a response before failing the current operation.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_DONTROUTE This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_RESERVEDPORT This option specifies the socket should be bound
to an unused port number less than 1024, which is
typically reserved for well-known system services. If
this option is specified, the process may require
administrative privileges.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 and
the strongest cipher suites available. Older
versions of Windows prior to Windows 7 and
Windows Server 2008 R2 only support TLS 1.0 and
secure connections will automatically downgrade
on those platforms.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter is only used if
INET_OPTION_SECURE is specified for a TCP connection. This parameter may be NULL, in which
case no client credentials will be provided to the server. If client credentials are required, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When this function is called with UDP as the specified protocol, it does not actually establish a
connection. Instead, it simply establishes a default destination IP address and port that is used with
subsequent InetRead and InetWrite calls.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_CONNECT The connection to the remote host has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some
of the data from the socket. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

To cancel asynchronous notification and return the socket to a blocking mode, use the
InetDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncConnectEx, InetConnect, InetDisableEvents, InetDisconnect, InetEnableEvents,
InetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncConnectEx Function

SOCKET WINAPI InetAsyncConnectEx(
 LPCTSTR lpszHostName,
 UINT nPort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 LPSECURITYCREDENTIALS lpCredentials,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncConnectEx function is used to establish a connection with a server.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

The application should create a background worker thread and establish a connection by calling
InetConnectEx within that thread. If the application requires multiple simultaneous connections, it
is recommended you create a worker thread for each connection.

Parameters
lpszHostName

A pointer to the name of the server to connect to; this may be a fully-qualified domain name or
an IP address.

nPort

The port number the server is listening on; a value of zero specifies that the default port
number should be used.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for a response before failing the current operation.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are

recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_DONTROUTE This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_RESERVEDPORT This option specifies the socket should be bound
to an unused port number less than 1024, which is
typically reserved for well-known system services. If
this option is specified, the process may require
administrative privileges.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 and
the strongest cipher suites available. Older
versions of Windows prior to Windows 7 and
Windows Server 2008 R2 only support TLS 1.0 and
secure connections will automatically downgrade

on those platforms.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpszLocalAddress

A pointer to a string that specifies the local IP address that the socket should be bound to. If this
parameter is NULL, then an appropriate address will automatically be used. A specific address
should only be used if it is required by the application.

nLocalPort

The local port number that the socket should be bound to. If this parameter is set to zero, then
an appropriate port number will automatically be used. A specific port number should only be
used if it is required by the application.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter is only used if
INET_OPTION_SECURE is specified for a TCP connection. This parameter may be NULL, in which
case no client credentials will be provided to the server. If client credentials are required, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_CONNECT The connection to the remote host has completed. The high word
of the lParam parameter should be checked, since this notification
message will be posted if an error has occurred.

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some
of the data from the socket. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncConnect, InetConnect, InetDisableEvents, InetDisconnect, InetEnableEvents, InetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncListen Function

SOCKET WINAPI InetAsyncListen(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncListen function creates an listening socket.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Use the InetServerStart function to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The socket option INET_OPTION_REUSEADDRESS is enabled by default when calling the
InetAsyncListen function. This allows an application to re-use a local address and port number
when creating the listening socket. If this behavior is not desired, use the InetAsyncListenEx

function instead.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_ACCEPT The process has received a connection request from a client and should
accept the connection using the InetAsyncAccept function. This event
is only generated for server applications which have created an
asynchronous socket using the InetAsyncListen function.

To cancel asynchronous notification and return the socket to a blocking mode, use the
InetDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncAccept, InetAsyncListenEx, InetDisableEvents, InetEnableEvents, InetInitialize, InetListen,
InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAsyncListenEx Function

SOCKET WINAPI InetAsyncListenEx(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 UINT nBacklog,
 DWORD dwOptions,
 HWND hEventWnd,
 UINT uEventMsg
);

The InetAsyncListenEx function creates an listening socket.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Use the InetServerStart function to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

nBacklog

The maximum length of the queue allocated for pending client connections. A value of zero
specifies that the size of the queue should be set to a maximum reasonable value. On Windows
server platforms, the maximum value is large enough to queue several hundred pending
connections.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are
supported:

Constant Description

INET_OPTION_NONE No option specified. If the address and port number
are in use by another application or a closed socket
which was listening on this port is still in the
TIME_WAIT state, the function will fail.

INET_OPTION_REUSEADDRESS This option enables a server application to listen for
connections using the specified address and port
number even if they were in use recently. This is
typically used to enable an application to close the
listening socket and immediately reopen it without

getting an error that the address is in use.

INET_OPTION_EXCLUSIVE This option specifies the local address and port
number is for the exclusive use by the current
process, preventing another application from forcibly
binding to the same address. If another process has
already bound a socket to the address provided by
the caller, this function will fail.

INET_OPTION_RESERVEDPORT This option specifies the listening socket should be
bound to an unused port number less than 1024,
which is typically reserved for well-known system
services. If this option is specified, the process may
require administrative privileges and firewall rules that
will permit a client to establish a connection with the
service.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate situations
in which a child process does not close the handle,
leaving it open after the parent process has stopped
the server.

hEventWnd

The handle to the event notification window. This window receives messages which notify the
application of various asynchronous socket events that occur.

uEventMsg

The message identifier that is used when an asynchronous socket event occurs. This value
should be greater than WM_USER as defined in the Windows header files.

Return Value
If the function succeeds, the return value is a handle to the socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

If the INET_OPTION_REUSEADDRESS option is not specified, an error may be returned if a
listening socket was recently created for the same local address and port number. By default, once
a listening socket is closed there is a period of time that all applications must wait before the
address can be reused (this is called the TIME_WAIT state). The actual amount of time depends on
the operating system and configuration parameters, but is typically two to four minutes. Specifying
this option enables an application to immediately re-use a local address and port number that was
previously in use.

If the INET_OPTION_EXCLUSIVE option is specified, the local address and port number cannot be
used by another process until the listening socket is closed. This can prevent another application

from forcibly binding to the same listening address as your server. This option can be useful in
determining whether or not another process is already bound to the address you wish to use, but
it may also prevent your server application from restarting immediately, regardless if the
INET_OPTION_REUSEADDRESS option has also been specified.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_ACCEPT An incoming client connection is pending. The connection will be
assigned to a new socket. This event is only generated if the socket is in
asynchronous mode.

To cancel asynchronous notification and return the socket to a blocking mode, use the
InetDisableEvents function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAsyncAccept, InetAsyncAcceptEx, InetAsyncListen, InetDisableEvents, InetEnableEvents,
InetListenEx, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAttachSocket Function

SOCKET WINAPI InetAttachSocket(
 SOCKET hSocket
 DWORD dwProcessId
);

The InetAttachThread function attaches the specified socket handle to another thread.

Parameters
hSocket

Handle to the socket.

dwProcessId

The process ID for the process that currently owns the socket handle. This value may be zero to
specify the current process.

Return Value
If the function succeeds, the return value is the handle to the attached socket. If the function fails,
the return value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
The InetAttachSocket function enables an application to attach an external socket handle to the
current thread and initializes it for use by the library. An external socket is any socket handle
created directly by the Windows Sockets API or by a third-party library. If the dwProcessId
parameter is zero or specifies the current process ID, then the function checks to see if the socket
was created by this library. If it was, then its owner context is switched to the current thread; if the
socket was created externally, then it is initialized for use by the library and attached to the current
thread.

If the dwProcessId parameter specifies another process, the socket will be duplicated into the
current process, attached to the current thread and the original socket handle will be closed in the
other process. This enables an application to effectively take control of a connection created by
another process. The original socket handle must be inheritable by the by the current process and
must be an actual Windows socket handle, not a pseudo-handle. This functionality is only
supported on Windows NT 4.0 and later versions of the operating system with the Microsoft
TCP/IP stack. Note that Layered Service Providers (LSPs) may interfere with the ability to inherit
handles across processes.

The attached socket is initialized in a blocking state, even if was originally using asynchronous
socket events. If the application requires that the socket use events, it must explicitly call
InetEnableEvents using the handle returned by this function.

In most cases, the handle returned by this function will be the same value as the hSocket
parameter, however an application should never make the assumption that this will be the case. If
InetAttachSocket returns a socket handle that has a different value than the hSocket parameter,
this indicates that the original handle has been destroyed and should never be used in subsequent
function calls.

This function should never be used with a secure socket connection because the attached socket
will not have the security context required to encrypt and decrypt the data exchanged with the
remote host.

Example

To demonstrate how to pass sockets between processes, this example will use two programs; one
acting as a server to listen for client connections and accept them, the other inheriting the client
socket and echoing back anything the client sends. The first program will create the listening
socket, and when a client connects, it will call CreateProcess to create a new child process to
handle that connection.

SOCKET hServer;
SOCKET hClient;

// Initialize the library

if (!InetInitialize(CSTOOLS11_LICENSE_KEY, NULL))
 return;

// Listen for incoming client connections

if ((hServer = InetListen(NULL, nLocalPort)) == INVALID_SOCKET)
 return;

while (TRUE)
{
 hClient = InetAccept(hServer, 10);

 if (hClient == INVALID_SOCKET)
 {
 // If InetAccept has timed-out, then simply loop back and attempt
 // to continue accepting connections; otherwise, exit the loop

 if (InetGetLastError() != ST_ERROR_OPERATION_TIMEOUT)
 break;
 }
 else
 {
 STARTUPINFO si;
 PROCESS_INFORMATION pi;
 CHAR szCommandLine[512];
 BOOL bResult;

 // Detach the socket, which will free the memory that the library
 // has allocated for it without actually destroying the socket handle;
 // the child process will close the handle in this process when it
 // attaches to it
 InetDetachSocket(hClient, 0);

 // Initialize the STARTUPINFO structure
 ZeroMemory(&si, sizeof(si));

 // Create the command line arguments, passing the current
 // process ID and socket handle to the new process

 wsprintf(szCommandLine, "%s %lu %lu",
 lpszAppName,
 (DWORD)GetCurrentProcessId(),
 (DWORD)hClient);

 // Create the child process

 bResult = CreateProcess(NULL,
 szCommandLine,

 NULL, NULL,
 TRUE,
 CREATE_DEFAULT_ERROR_MODE,
 NULL, NULL,
 &si, &pi);

 if (!bResult)
 InetDisconnect(hClient);
 }
}

InetDisconnect(hServer);
InetUninitialize();

The second program attaches to the socket handle that was passed to it by the parent process. It
goes into a loop, reading any data sent to it by the client and sending the same data back. When
the client disconnects, the InetRead function will return 0, it will exit the loop and the process will
terminate.

SOCKET hSocket;
SOCKET hClient;
DWORD dwProcessId;

// Initialize the library

if (!InetInitialize(CSTOOLS11_LICENSE_KEY, NULL))
 return;

// Process command line arguments that were passed to us
// by the server process

dwProcessId = (DWORD)atol(argv[1]);
hClient = (SOCKET)atol(argv[2]);

// Attach to the hClient socket that the server passed
// to us; this will close the socket in the server process

hSocket = InetAttachSocket(hClient, dwProcessId);

if (hSocket != INVALID_SOCKET)
{
 BYTE cBuffer[512];
 int nRead;

 do
 {
 // Read any data sent to us by the client
 nRead = InetRead(hSocket, cBuffer, sizeof(cBuffer));

 // Echo the data we have read back to the client
 if (nRead > 0)
 InetWrite(hSocket, cBuffer, nRead);
 }
 while (nRead > 0);

 InetDisconnect(hSocket);
}

InetUninitialize();

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAttachThread, InetDetachSocket, InetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetAttachThread Function

DWORD WINAPI InetAttachThread(
 SOCKET hSocket
 DWORD dwThreadId
);

The InetAttachThread function attaches the specified socket handle to another thread.

Parameters
hSocket

Handle to the socket.

dwThreadId

The ID of the thread that will become the new owner of the handle. A value of zero specifies
that the current thread should become the owner of the socket handle.

Return Value
If the function succeeds, the return value is the thread ID of the previous owner. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
When a socket handle is created, it is associated with the current thread that created it. Normally,
if another thread attempts to perform an operation using that handle, an error is returned since it
does not own the handle. This is used to ensure that other threads cannot interfere with an
operation being performed by the owner thread. In some cases, it may be desirable for one
thread in an application to create the socket, and then pass that handle to another worker thread.
The InetAttachThread function can be used to change the ownership of the handle to the new
worker thread. By preserving the return value from the function, the original owner of the handle
can be restored before the worker thread terminates.

This function should be called by the new thread immediately after it has been created, and if the
new thread does not release the handle itself, the ownership of the handle should be restored to
the parent thread before it terminates. Under no circumstances should InetAttachThread be
used to forcibly release a handle allocated by another thread while a blocking operation is in
progress. To cancel an operation, use the InetCancel function and then release the handle after
the blocking function exits and control is returned to the current thread.

Note that the dwThreadId parameter is presumed to be a valid thread ID and no checks are
performed to ensure that the thread actually exists. Specifying an invalid thread ID will orphan the
handle until the InetUninitialize function is called.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAccept, InetAcceptEx, InetConnect, InetConnectEx, InetDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetCancel Function

INT WINAPI InetCancel(
 SOCKET hSocket
);

The InetCancel function cancels a blocking operation.

Parameters
hSocket

Handle to the socket.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
When the InetCancel function is called, the blocking function will not immediately fail. An internal
flag is set which causes the blocking operation to exit with an error. This means that the
application cannot cancel an operation and immediately perform some other operation. Instead it
must allow the calling stack to unwind, returning back to the blocking operation before making
any further function calls.

This function is typically called from within an event handler to signal that the current blocking
operation should stop. It may also be used to cancel a blocking operation that is occurring on
another thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAbort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetClientBroadcast Function

INT WINAPI InetClientBroadcast(
 SOCKET hClient,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetClientBroadcast function sends data to all other clients that are connected to the same
server.

Parameters
hClient

The socket handle.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server clients.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of clients that the data was sent to. If the
function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The InetClientBroadcast function sends the contents of the buffer to all other clients that are
connected to the same server as the specified client. This function will block until all clients have
been sent a copy of the data. There is no guarantee in which order the clients will receive and
process the data that has been broadcast.

This function can only be used with client sessions created as part of the server interface and
cannot be used with standard sockets created using the InetConnect function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetServerBroadcast, InetWrite, InetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetCompareAddress Function

BOOL WINAPI InetCompareAddress(
 LPINTERNET_ADDRESS lpAddress1,
 LPINTERNET_ADDRESS lpAddress2
);

The InetCompareAddress function compares two Internet addresses in a binary format.

Parameters
lpAddress1

A pointer to an INTERNET_ADDRESS structure that contains the first IP address to be compared.

lpAddress2

A pointer to an INTERNET_ADDRESS structure that contains the second IP address to be
compared.

Return Value
If the function succeeds and the two addresses are identical, the return value is non-zero. If the
function fails or the two addresses are not identical, the return value is zero. If either parameter is
NULL, or the address family for the two addresses are not the same, the last error code will be
updated. If the addresses are valid and in the same address family, but are not identical, the last
error code will be set to NO_ERROR.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetHostAddress, InetGetLocalAddress, InetGetPeerAddress, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetConnect Function

SOCKET WINAPI InetConnect(
 LPCTSTR lpszHostName,
 UINT nRemotePort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetConnect function is used to establish a connection with a server.

Parameters
lpszHostName

A pointer to a null-terminated string which specifies the host name or IP address of the system
you want to connect with. This parameter cannot be a URL and must only specify the name of
the remote host. If this parameter is NULL or an empty string, the function will fail with an error
indicating the host name is invalid.

nRemotePort

The port number used to establish the connection. Valid port numbers range in value from 1
through 65535 and a value outside if this range will cause the function to fail. Port numbers in
the range of 49152 and 65535 are referred to as dynamic ports and are generally reserved for
private use by client applications. You cannot specify a port number of zero when establishing
an outbound connection.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for the connection to complete before failing the current
operation.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for

stream sockets.

INET_OPTION_DONTROUTE This option specifies default routing should not be
used. This option should not be specified unless
absolutely necessary.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_RESERVEDPORT This option specifies the socket should be bound
to an unused port number less than 1024, which is
typically reserved for well-known system services. If
this option is specified, the process may require
administrative privileges.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 or later
and the strongest cipher suites available.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved

to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter is only used if
INET_OPTION_SECURE is specified for a TCP connection. This parameter may be NULL, in which
case no client credentials will be provided to the server. If client credentials are required, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
The lpszHostName parameter must specify a valid host name or IP address. Host names are
resolved into an IP address by first checking the local hosts file and if the name is not found, a
name server query will be performed to determine the IP address. If the Unicode version of this
function is called and the host name includes non-ASCII characters, the host name will be
automatically converted to an ASCII compatible format. Refer to the InetNormalizeHostName
function for more information. To establish a connection using a URL rather than a host name, use
the InetConnectUrl function.

To prevent this function from blocking the main user interface thread, the application should
create a background worker thread and establish a connection by calling InetConnect in that
thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each client session.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the InetEnableSecurity function when you are
ready to initiate the TLS handshake.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that

handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

When this function is called with UDP as the specified protocol, it does not actually establish a
connection in the same way that a TCP stream connection is created. Instead, it simply establishes
a default destination IP address and port that is used with subsequent InetRead and InetWrite
calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetConnectEx, InetConnectUrl, InetDisconnect, InetEnableSecurity, InetInitialize, InetRead,
InetRegisterEvent, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetConnectEx Function

SOCKET WINAPI InetConnectEx(
 LPCTSTR lpszHostName,
 UINT nRemotePort,
 UINT nProtocol,
 UINT nTimeout,
 DWORD dwOptions,
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetConnectEx function is used to establish a connection with a server.

Parameters
A pointer to a null-terminated string which specifies the host name or IP address of the system
you want to connect with. This parameter cannot be a URL and must only specify the name of
the remote host. If this parameter is NULL or an empty string, the function will fail with an error
indicating the host name is invalid.

nRemotePort

The port number used to establish the connection. Valid port numbers range in value from 1
through 65535 and a value outside if this range will cause the function to fail. Port numbers in
the range of 49152 and 65535 are referred to as dynamic ports and are generally reserved for
private use by client applications. You cannot specify a port number of zero when establishing
an outbound connection.

nProtocol

The protocol to be used when establishing the connection. This may be one of the following
values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This is the
default protocol.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. Note that
UDP is unreliable in that there is no way for the sender to
know that the receiver has actually received the datagram.

nTimeout

The number of seconds to wait for the connection to complete before failing the operation.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This is
only valid for stream sockets.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_RESERVEDPORT This option specifies the socket should be bound
to an unused port number less than 1024, which is
typically reserved for well-known system services. If
this option is specified, the process may require
administrative privileges.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option
only affects connections using either the SSL or
TLS protocols.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
specific version of TLS and other security related
options are provided in the lpCredentials
parameter. If the lpCredentials parameter is NULL,
the connection will default to using TLS 1.2 or later
and the strongest cipher suites available.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client

will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

lpszLocalAddress

A pointer to a string that specifies the local IP address that the socket should be bound to. If this
parameter is NULL, then an appropriate address will automatically be used. A specific address
should only be used if it is required by the application.

nLocalPort

The local port number that the socket should be bound to. If this parameter is set to zero, then
an appropriate port number will automatically be used. A specific port number should only be
used if it is required by the application.

lpCredentials

A pointer to a SECURITYCREDENTIALS structure. This parameter is only used if
INET_OPTION_SECURE is specified for a TCP connection. This parameter may be NULL, in which
case no client credentials will be provided to the server. If client credentials are required, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a handle to a socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
The lpszHostName parameter must specify a valid host name or IP address. Host names are
resolved into an IP address by first checking the local hosts file and if the name is not found, a
name server query will be performed to determine the IP address. If the Unicode version of this
function is called and the host name includes non-ASCII characters, the host name will be
automatically converted to an ASCII compatible format. Refer to the InetNormalizeHostName
function for more information. To establish a connection using a URL rather than a host name, use
the InetConnectUrl function.

To prevent this function from blocking the main user interface thread, the application should
create a background worker thread and establish a connection by calling InetConnect in that
thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each client session.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the InetEnableSecurity function when you are

ready to initiate the TLS handshake.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

When this function is called with UDP as the specified protocol, it does not actually establish a
connection in the same way that a TCP stream connection is created. Instead, it simply establishes
a default destination IP address and port that is used with subsequent InetRead and InetWrite
calls.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetConnect, InetConnectUrl, InetDisconnect, InetEnableSecurity, InetInitialize, InetRead,
InetRegisterEvent, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetConnectUrl Function

SOCKET WINAPI InetConnectUrl(
 LPCTSTR lpszUrl,
 UINT nTimeout,
 DWORD dwOptions
);

The InetConnectUrl function is used to establish a TCP connection with a server using the
information provided in a URL.

Parameters
lpszUrl

A pointer to a null-terminated string which specifies a URL used when establishing the
connection. This parameter cannot be NULL or point to an empty string. If a non-standard URI
scheme is used, the port number must be explicitly specified or the function will fail. See the
remarks below for more information on the format supported by this function.

nTimeout

The number of seconds to wait for the connection to complete before failing the current
operation. If this value is zero, a default timeout period will be used.

dwOptions

An unsigned integer used to specify one or more socket options. This parameter is constructed
by using the bitwise Or operator with any of the following values:

Constant Description

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to
the remote system when no data is being
exchanged to keep the connection active. This
option is not necessary for most connections,
particularly when the client will not be connected
to the server for an extended period of time.

INET_OPTION_NODELAY This option disables the Nagle algorithm. By
default, small amounts of data written to the
socket are buffered, increasing efficiency and
reducing network congestion. However, this
buffering can negatively impact the responsiveness
of certain applications. This option disables this
buffering and immediately sends data packets as
they are written to the socket.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate
situations in which a child process does not close
the handle, leaving it open after the parent
process has disconnected from the server.

INET_OPTION_TRUSTEDSITE This option specifies the server is trusted. The
server certificate will not be validated and the
connection will always be permitted. This option

only affects secure connections using the TLS
protocol.

INET_OPTION_SECURE This option specifies that a secure connection
should be established with the remote host. The
connection will always default to using TLS 1.2 or
later and the strongest cipher suites available on
the client platform. This option may be
automatically enabled if the URL scheme specifies
a service which requires a secure connection. See
the remarks below for more information.

INET_OPTION_SECURE_FALLBACK This option specifies the client should permit the
use of less secure cipher suites for compatibility
with legacy servers. If this option is specified, the
client will allow connections using TLS 1.0 and
cipher suites that use RC4, MD5 and SHA1.

INET_OPTION_PREFER_IPV6 This option specifies the client should prefer the
use of IPv6 if the server hostname can be resolved
to both an IPv6 and IPv4 address. This option is
ignored if the local system does not have IPv6
enabled, or when the hostname can only be
resolved to an IPv4 address. If the server hostname
can only be resolved to an IPv6 address, the client
will attempt to establish a connection using IPv6
regardless if this option has been specified.

INET_OPTION_FREETHREAD This option specifies the socket returned by this
function may be used by any thread, and is not
limited to the thread which created it. The
application is responsible for ensuring that access
to the socket is synchronized across multiple
threads.

Return Value
If the function succeeds, the return value is a handle to a socket. If the function fails, the return
value is INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
The InetConnectUrl function provides a simplified interface which can be used to establish a
connection using a URL. This function can only be used to establish connections using TCP and
does not currently support the use of URLs to connect with a service which uses UDP. The general
format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This function recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the
following:

https://www.example.com

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. The host name www.example.com would be resolved
into an IP address and the connection established on port 443. This function will also recognize a
simpler format which only includes the host name and port number without a URI scheme, such
as:

www.example.com:443

When used in this way, the port number must always be provided. Without a URI scheme or an
explicit port number, the function cannot determine what port number should be used when
establishing the connection. The same also applies if a custom, non-standard URI scheme is
provided which is not recognized.

If the URI scheme specifies a secure protocol which requires implicit TLS, this function will
automatically enable the INET_OPTION_SECURE option. For example, providing a URL which uses
the https:// scheme will automatically enable a secure connection regardless if the dwOptions
parameter includes that option. If a URI scheme is used in conjunction with a port number
associated with a secure service, security will also be enabled for that connection. For example:

http://www.example.com:443

The standard http:// scheme is used which does not indicate a secure connection. However, since
port 443 is the standard port designated for a secure HTTP connection, a secure connection will
be enabled by default, even if INET_OPTION_SECURE has not been specified by the caller.
Alternatively, if a custom port number is specified in the URL or the scheme is not recognized as
one which requires implicit TLS, security options will not be automatically enabled for the
connection.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, this function will return an error indicating the port
number is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host
address and this would be considered valid. Without the brackets, this URL would not be
accepted.

Important: The URL provided to this function will only be used to establish a connection with a
server. This is a general purpose function which does not enable support for any particular
application protocol and all implementation details are the responsibility of your application. If you
require higher-level support for a specific Internet protocol, the SocketTools API provides
comprehensive collection of higher-level functions which can be used to access those services.

If you use the INET_OPTION_SECURE option to enable a secure connection, the connection will
always use implicit TLS. This means a secure session will be initiated immediately after the socket
connection has been established with the server. A common example of a service which uses
implicit TLS is the HTTPS protocol. Another type of secure connection is one that uses explicit TLS.
This is when the client establishes a normal (non-secure) connection with the server and then
explicitly switches to using a secure connection, typically by sending a command. If the server you
are connecting to requires explicit TLS, you should not specify the INET_OPTION_SECURE option.
Instead, connect without this option and then call the InetEnableSecurity function when you are
ready to initiate the TLS handshake.

To prevent this function from blocking the main user interface thread, the application should
create a background worker thread and establish a connection by calling InetConnectUrl in that
thread. If the application requires multiple simultaneous connections, it is recommended you
create a worker thread for each client session.

The dwOptions argument can be used to specify the threading model that is used by the library
when a connection is established. By default, the handle is initially attached to the thread that
created it. From that point on, until the it is released, only the owner may call functions using that
handle. The ownership of the handle may be transferred from one thread to another using the
InetAttachThread function.

Specifying the INET_OPTION_FREETHREAD option enables any thread to call any function using
the socket handle, regardless of which thread created it. It is important to note that this option
disables certain internal safety checks which are performed by the library and may result in
unexpected behavior unless access to the socket is synchronized. If one thread calls a function in
the library, it must ensure that no other thread will call another function at the same time using the
same socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetConnect, InetDisconnect, InetEnableSecurity, InetGetUrlHostName, InetInitialize, InetRead,
InetRegisterEvent, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetCreateSecurityCredentials Function

BOOL WINAPI InetCreateSecurityCredentials(
 DWORD dwProtocol,
 DWORD dwOptions,
 LPCTSTR lpszUserName,
 LPCTSTR lpszPassword,
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertName,
 LPVOID lpvReserved,
 LPSECURITYCREDENTIALS* lppCredentials
);

The InetCreateSecurityCredentials function creates a SECURITYCREDENTIALS structure.

Parameters
dwProtocol

A bitmask of supported security protocols. This parameter is constructed by using a bitwise
operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is

supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store
name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

lpszUserName

A pointer to a string which specifies the certificate owner's username. A value of NULL specifies
that no username is required. Currently this parameter is not used and any value specified will
be ignored.

lpszPassword

A pointer to a string which specifies the certificate owner's password. A value of NULL specifies
that no password is required. This parameter is only used if a PKCS #12 (PFX) certificate file is
specified and that certificate has been secured with a password. This value will be ignored the
current user or local machine certificate store is specified.

lpszCertStore

A pointer to a string which specifies the name of the certificate store to open. A certificate store
is a collection of certificates and their private keys, typically organized by how they are used. If
this value is NULL or points to an empty string, the default certificate store "MY" will be used.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

lpvReserved

Pointer reserved for future use. Set it to NULL when using this function.

lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. The memory for the credentials structure will
be allocated by this function and must be released by calling the
InetDeleteSecurityCredentials function when it is no longer needed. The pointer value must
be set to NULL before the function is called. It is important to note that this is a pointer to a
pointer variable, not a pointer to the SECURITYCREDENTIALS structure itself.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The structure that is created by this function may be used as client credentials when establishing a
secure connection. This is particularly useful for programming languages other than C/C++ which
may not support C structures or pointers. The pointer to the SECURITYCREDENTIALS structure can
be declared as an unsigned integer variable which is passed by reference to this function, and
then passed by value to the InetAcceptEx, InetAsyncAcceptEx, InetAsyncConnectEx or
InetConnectEx functions.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Example
LPSECURITYCREDENTIALS lpSecCred = NULL;
InetCreateSecurityCredentials(SECURITY_PROTOCOL_DEFAULT,
 CREDENTIAL_STORE_CURRENT_USER,
 NULL,
 NULL,
 strCertStore,
 strCertName,
 NULL,
 &lpSecCred);

hAcceptSocket = InetAsyncAcceptEx(hListenSocket,
 nTimeout,
 dwOptions,
 lpSecCred,
 hEventWnd,
 uEventMsg);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

InetAcceptEx, InetAsyncAcceptEx, InetAsyncConnectEx, InetConnectEx,
InetDeleteSecurityCredentials, InetValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDeleteSecurityCredentials Function

VOID WINAPI InetDeleteSecurityCredentials(
 LPSECURITYCREDENTIALS* lppCredentials
);

The InetDeleteSecurityCredentials function deletes an existing SECURITYCREDENTIALS
structure.

Parameters
lppCredentials

Pointer to an LPSECURITYCREDENTIALS pointer. On exit from the function, the pointer value will
be NULL.

Return Value
None.

Example
if (lpSecCred != NULL)
 InetDeleteSecurityCredentials(&lpSecCred);

Remarks
This function can be used to release the memory allocated to the client or server credentials after
a secure connection has been established.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetCreateSecurityCredentials, InetValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDetachSocket Function

BOOL WINAPI InetDetachSocket(
 SOCKET hSocket
 DWORD dwThreadId
);

The InetDetachSocket function detaches the specified socket from the current process.

Parameters
hSocket

Handle to the socket.

dwThreadId

The ID of the thread that owns the socket handle. A value of zero specifies that the current
thread is the owner.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetDetachSocket function will release the memory that the library has allocated for the
socket without destroying the socket handle. After the function returns, the socket can no longer
be used with other functions in the library, however the socket handle remains valid. This is
typically used when passing a socket handle between processes, where the parent process
detaches the socket prior to creating the child process. The child then calls InetAttachSocket to
attach the socket handle to its own process.

This function should never be used with a secure socket connection because detaching a secure
socket will force the security context for that session to be released. If the socket is attached to
another process, it will not have the security context originally created when the connection was
established and will be unable to encrypt or decrypt the data stream.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAttachThread, InetAttachSocket, InetDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDisableEvents Function

INT WINAPI InetDisableEvents(
 SOCKET hSocket
);

The InetDisableEvents function disables the event notification mechanism, preventing
subsequent event notification messages from being posted to the application's message queue.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Parameters
hSocket

The socket handle.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This function affects both event notification and event callbacks. Any outstanding events in the
message queue should be ignored by the application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnableEvents, InetFreezeEvents, InetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDisableSecurity Function

INT WINAPI InetDisableSecurity(
 SOCKET hSocket,
 DWORD dwReserved
);

The InetDisableSecurity function disables a secure session with the remote host.

Parameters
hSocket

The socket handle.

dwReserved

Reserved parameter. This value should always be zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetDisableSecurity function disables a secure session, with subsequent calls to InetRead
and InetWrite sending and receiving unencrypted data. It is important to note that because this
function sends a shutdown message to terminate the secure session, this may cause connection to
be closed by the remote host.

This function does not close the socket. Use the InetDisconnect function to close the socket and
release the resources allocated for the current session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetCreateSecurityCredentials, InetDeleteSecurityCredentials, InetEnableSecurity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDisableTrace Function

BOOL WINAPI InetDisableTrace();

The InetDisableTrace function disables the logging of socket function calls to the trace log.

Parameters
None.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetDisconnect Function

INT WINAPI InetDisconnect(
 SOCKET hSocket
);

The InetDisconnect function terminates the connection, closing the socket and releasing the
memory allocated for the session.

Parameters
hSocket

The socket handle.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
Once the connection has been terminated, the socket handle is no longer valid and should no
longer be used. Note that it is possible that the actual handle value may be re-used at a later point
when a new connection is established. An application should always consider the socket handle to
be opaque and never depend on it being a specific value.

After a socket is closed, it will go into a TIME-WAIT state which prevents an application from using
the same source and destination address and port numbers bound to that socket for a brief
period of time, typically two to four minutes. This is normal behavior designed to prevent delayed
or misrouted packets of data from being read by a subsequent connection. This can have an
impact on an application that rapidly connects and disconnects over a short period of time
because it can exhaust the pool of ephemeral ports.

If this function is called using a server socket handle returned by the InetServerStart function, all
active client connections will be disconnected, the listening socket will be closed and the server
thread will terminate. If this function is called with a client socket handle allocated by the server, it
will terminate the client connection and the thread that manages it.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetConnect, InetConnectEx, InetServerStart, InetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnableEvents Function

INT WINAPI InetEnableEvents(
 SOCKET hSocket,
 HWND hEventWnd,
 UINT nEventMsg
);

The InetEnableEvents function enables event notifications using Windows messages.

This function has been deprecated and may be unavailable in future releases. It was designed for
use in legacy single-threaded applications and requires the application to have a message pump
to process event messages. It should not be used with applications which are designed to execute
as a service or those which do not have a graphical user interface.

Applications should use the InetRegisterEvent function to register an event handler which is
invoked when an event occurs.

Parameters
hSocket

The socket handle.

hEventWnd

Handle to the event notification window. This window receives a user-defined message which
specifies the event that has occurred. If this value is NULL, event notification is disabled.

nEventMsg

An unsigned integer which specifies the user-defined message that is sent when an event
occurs. This parameter's value must be greater than the value of WM_USER.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
When a message is posted to the notification window, the low word of the lParam parameter
contains the event identifier. The high word of lParam contains the low word of the error code, if
an error has occurred. The wParam parameter contains the socket handle. One or more of the
following event identifiers may be sent:

Constant Description

INET_EVENT_ACCEPT The process has received a connection request from a client and
should accept the connection using the InetAsyncAccept
function. This event is only generated for server applications which
have created an asynchronous socket using the InetAsyncListen
function.

INET_EVENT_CONNECT The connection to the remote host has completed. The high word
of the lParam parameter should be checked, since this notification
message will also be posted if an error has occurred.

INET_EVENT_DISCONNECT The remote host has closed the connection. The process should
read any remaining data and disconnect.

INET_EVENT_READ Data is available to read by the calling process. No additional
messages will be posted until the process has read at least some
of the data from the socket. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_WRITE The process can now write data. This notification is sent after a
connection has been established, or after a previous attempt to
write data has failed because it would result in a blocking
operation. This event is only generated if the socket is in
asynchronous mode.

INET_EVENT_TIMEOUT The process has timed-out waiting for a blocking operation to
complete. This event is only generated for synchronous sockets.

INET_EVENT_CANCEL The application has canceled a blocking operation. This event is
fired once an operation has been terminated by the InetCancel
function, and control has been returned to the calling process.

This function cannot be used with sockets that are created by the SocketWrench server interface.
Those sockets are managed separately in their own thread, and event notifications are handled
inside the callback function specified when the server is created using the InetServerStart
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisableEvents, InetFreezeEvents, InetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnableSecurity Function

INT WINAPI InetEnableSecurity(
 SOCKET hSocket,
 DWORD dwOptions,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetEnableSecurity function enables a secure session with the remote host.

Parameters
hSocket

The socket handle.

dwOptions

An unsigned integer value that specifies additional security options. It may have a value of zero
or one of the following options:

Constant Description

INET_SECURE_CLIENT The certificate specified by the lpCredentials parameter will be
used as a client certificate, and the application will begin to
negotiate the secure session as a client by initiating the
handshake with the server. The certificate that is used must be
a valid client certificate with a private key associated with it. If
the lpCredentials parameter is NULL, then a secure client
session will be initiated without a client certificate.

INET_SECURE_SERVER The certificate specified by the lpCredentials parameter will be
used as a server certificate, and the application will wait for the
remote host to initiate the handshake that establishes the
parameters of the secure session. The certificate that is used
must be a valid server certificate and have a private key
associated with it. The lpCredentials parameter cannot be
NULL if this option is specified.

lpCredentials

Pointer to a SECURITYCREDENTIALS structure. This parameter may be NULL, in which case no
client credentials will be provided. If client credentials are required, the fields dwSize,
lpszCertStore, and lpszCertName must be defined, while other fields may be left undefined. Set
dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetEnableSecurity function enables a secure communications session with the remote host,
automatically negotiating the encryption algorithm and validating the certificate. This function is
useful if the application needs to establish a standard connection to the remote host and then
negotiate a secure connection at a later point (this is known as explicit TLS). If the function
succeeds, all subsequent calls to InetRead and InetWrite to receive and send data will be
encrypted.

If the dwOptions parameter has a value of zero and the socket was created using InetConnect or
related functions to establish a client connection, then InetEnableSecurity will initiate the
handshake with the remote host to establish a secure session. If the InetAccept or related
functions were used to accept a connection from a client, then the function will block and wait for
the client to initiate the handshake.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetConnect, InetConnectEx, InetCreateSecurityCredentials, InetDeleteSecurityCredentials,
InetDisableSecurity

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnableTrace Function

BOOL WINAPI InetEnableTrace(
 LPCTSTR lpszTraceFile,
 DWORD dwTraceFlags
);

The InetEnableTrace function enables the logging of socket function calls to a file.

Parameters
lpszTraceFile

Name of the trace log file. If this parameter is NULL or empty,the file CSTRACE.LOG is used. The
directory for CSTRACE.LOG is given by the TEMP environment variable, if it is defined;
otherwise, the directory given by the TMP environment variable is used, if it is defined;
otherwise, the current working directory is used.

dwTraceFlags

An unsigned integer that specifies one or more options. This parameter is constructed by using
a bitwise operator with any of the following values:

Value Constant Description

0 TRACE_DEFAULT All function calls are written to the trace file. This is the
default value.

1 TRACE_ERROR Only those function calls which fail are recorded in the
trace file.

2 TRACE_WARNING Only those function calls which fail, or return values which
indicate a warning, are recorded in the trace file.

4 TRACE_HEXDUMP All functions calls are written to the trace file, plus all the
data that is sent or received is displayed, in both ASCII and
hexadecimal format.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
When trace logging is enabled, the logfile is opened, appended to and closed for each socket
function call. Using the same logfile name, you can do the same in your application to add
additional information to the logfile if needed. This can provide an application-level context for the
entries made by the library. Make sure that the logfile is closed after the data has been written.

The TRACE_HEXDUMP option can produce very large logfiles, since all data that is being sent and
received by the application is logged. To reduce the size of the file, you can enable and disable
logging around limited sections of code that you wish to analyze.

All of the SocketTools networking components that use the Windows Sockets API support logging.
If you are using multiple components, you only need to enable tracing once in your application or
once per thread in a multithreaded application.

To redistribute an application that includes logging functionality, the cstrcv11.dll library must be
included as part of the installation package. This library provides the trace logging features, and if

it is not available the InetEnableTrace function will fail. Note that this is a standard Windows DLL
and does not need to be registered, it only needs to be redistributed with your application.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetDisableTrace

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnumHostAliases Function

INT WINAPI InetEnumHostAliases(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPTSTR lpszHostAliases,
 INT nMaxLength
);

The InetEnumHostAliases function returns a collection of null terminated strings which contain
the aliases for a specified host.

Parameters
lpszHostName

A pointer to a null terminated string which specifies a host name or IP address. This parameter
cannot be NULL and must specify a valid host name.

nAddressFamily

An integer which specifies the address family which should be used when resolving the host
name or IP address. It may be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN If the host name specifies an IP address, it will be
resolved based on the format of the string. For
compatibility, host names are resolved to IPv4 addresses
by default but if there is only an IPv6 address assigned to
the host name, it will be used.

INET_ADDRESS_IPV4 Specifies the host name should be resolved using an
IPv4 address.

INET_ADDRESS_IPV6 Specifies the host name should be resolved using an
IPv6 address.

lpszHostAliases

A pointer to a null terminated string buffer which will contain the aliases for the specified. If this
parameter is NULL, the function will return the number of characters which would be copied
into the buffer.

nMaxLength

An integer value which specifies the maximum number of characters which can be copied into
the buffer, including the terminating null characters. If the lpszHostAliases parameter is NULL,
this parameter should have a value of zero.

Return Value
If the function succeeds, the return value is the number of characters copied to the string,
including the terminating null characters which indicate the end of each host alias. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If there are multiple aliases for the host name, each name will be terminated with a null character,
with an extra null character indicating the end of the list of aliases.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnumNetworkAddresses Function

INT WINAPI InetEnumNetworkAddresses(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddressList,
 INT nMaxAddresses
);

The InetEnumNetworkAddresses function returns the list of network addresses that are
configured for the local host.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_ANY Return both IPv4 or IPv6 addresses assigned to the local host,
depending on how the system is configured and which network
interfaces are enabled. This option is only recommended for
applications that require support for IPv6 connections.

INET_ADDRESS_IPV4 Return only the IPv4 addresses assigned to the local host. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not significant
and an application should not depend on them having any
particular value, including zero.

INET_ADDRESS_IPV6 Return only the IPv6 addresses assigned to the local host. All
bytes in the ipNumber array are significant. This option is only
recommended for those applications that require support for
IPv6 connections.

lpAddressList

A pointer to an array of INTERNET_ADDRESS structures that will contain the IP address of each
local network interface. This parameter may be NULL, in which case the method will only return
the number of available addresses.

nMaxAddresses

Maximum number of addresses to be returned. If the lpAddressList parameter is NULL, this
value must be zero.

Return Value
If the function succeeds, the return value is the number of network addresses that are configured
for the local host. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_ANY, the application must be
prepared to accept IPv6 addresses returned by this function. On Windows Vista and later versions
of the operating system, IPv6 support is enabled and the local network adapter will have IPv6
addresses assigned to them by default. For legacy applications that only recognize IPv4 addresses,

the nAddressFamily parameter should always be specified as INET_ADDRESS_IPV4 to ensure that
only IPv4 addresses are returned.

This function will ignore addresses that are bound to a disabled interface, as well as those
addresses bound to a virtual loopback interface. For example, although the loopback address
127.0.0.1 is a valid network address, it will not be included in list of addresses returned by this
function.

The first IPv4 or IPv6 address returned by this function is typically the address assigned to the
primary network adapter on the local system. However, your application should not depend on
addresses being returned in any particular order. If the system has dial-up networking or
virtualization software installed, this function may also include the IP addresses assigned to any
virtualized network adapters installed by that software.

Example
INTERNET_ADDRESS *lpAddressList = NULL;
INT nAddressCount = InetEnumNetworkAddresses(INET_ADDRESS_IPV4, NULL, 0);

if (nAddressCount > 0)
{
 // Allocate memory for the array of IP addresses
 lpAddressList = (INTERNET_ADDRESS *)LocalAlloc(LPTR, nAddressCount *
sizeof(INTERNET_ADDRESS));

 if (lpAddressList == NULL)
 {
 // Virtual memory exhausted
 return;
 }

 // Populate the array with the addresses
 nAddressCount = InetEnumNetworkAddresses(INET_ADDRESS_IPV4, lpAddressList,
nAddressCount);
}

_tprintf(_T("There are %d local network addresses assigned\n"), nAddressCount);

// Display each IP address assigned to the local system
for (INT nIndex = 0; nIndex < nAddressCount; nIndex++)
{
 TCHAR szValue[64];

 // Convert the IP address to a printable string
 InetFormatAddress(lpAddressList + nIndex, szValue, 64);
 _tprintf(_T("%d: %s\n"), nIndex, szValue);
}

// Free the memory allocated for the IP address list
if (lpAddressList != NULL)
 LocalFree((HLOCAL)lpAddressList);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetAdapterAddress, InetGetHostAddress, InetGetLocalAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetEnumServerClients Function

INT WINAPI InetEnumServerClients(
 SOCKET hServer,
 SOCKET * lpClients,
 INT nMaxClients
);

The InetEnumServerClients function returns a list of active client sessions established with the
specified server.

Parameters
hServer

Handle to the server socket.

lpClients

Pointer to an array of socket handles which identifies all client connections. If this parameter is
NULL, then the function will return the number of active client connections established with the
server.

nMaxClients

Maximum number of client socket handles to be returned. If the lpClients parameter is NULL,
this parameter should be specified with a value of zero.

Return Value
If the function succeeds, the return value is the number of active client connections to the server.
A return value of zero indicates that there are no active client sessions. If the function fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the nMaxClients parameter is less than the number of active client connections, the function will
fail. To dynamically determine the number of active connections, call the function with the
lpClients parameter with a value of NULL, and the nMaxClients parameter with a value of zero. To
enumerate the active clients that match a specific IP address, use the
InetEnumServerClientsByAddress function.

This function will not enumerate clients that have disconnected from the server, even if the session
thread is still active. If the server is in the process of shutting down, this function will return zero,
indicating no active client sessions, even though there may be clients that are still in the process of
disconnecting from the server. To determine the actual number of client sessions regardless of
their status, use the InetGetClientThreads function.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using InetListen or InetListenEx.

Example
INT nMaxClients = InetEnumServerClients(hServer, NULL, 0);

if (nMaxClients > 0)
{
 SOCKET *lpClients = NULL;

 // Allocate memory for client sockets
 lpClients = (SOCKET *)LocalAlloc(LPTR, nMaxClients * sizeof(SOCKET));

 if (lpClients == NULL)
 {
 // Virtual memory has been exhausted
 return;
 }

 nMaxClients = InetEnumServerClients(hServer, lpClients, nMaxClients);
 if (nMaxClients == INET_ERROR)
 {
 // Unable to obtain list of connected clients
 return;
 }

 for (INT nClient = 0; nClient < nMaxClients; nClient++)
 {
 // Perform some action with each client socket
 SOCKET hClient = lpClients[nClient];
 }

 // Free memory allocated for client sockets
 LocalFree((HLOCAL)lpClients);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnumServerClientsByAddress, InetGetClientThreads, InetServerBroadcast, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/library/inetenumserverclientsbyaddress.html

 InetEventProc Function

VOID CALLBACK InetEventProc(
 SOCKET hSocket,
 UINT nEvent,
 DWORD dwError,
 DWORD_PTR dwParam
);

The InetEventProc function is an application-defined callback function that processes events
generated by the calling process.

Parameters
hSocket

The socket handle.

nEvent

An unsigned integer which specifies which event occurred. For a complete list of events, refer to
the InetRegisterEvent function.

dwError

An unsigned integer which specifies any error that occurred. If no error occurred, then this
parameter will be zero.

dwParam

A user-defined integer value which was specified when the event callback was registered.

Return Value
None.

Remarks
An application must register this callback function by passing its address to the InetRegisterEvent
function. The InetEventProc function is a placeholder for the application-defined function name.

If the callback function is being used with the InetServerStart function, the function will be called
in the context of the thread that is currently managing the server or client session. You must
ensure that any access to global or static variables is synchronized, otherwise the results may be
unpredictable. It is recommended that you do not declare any static variables within the callback
function itself. If you need to manage state information for a specific client, then use the
InetGetClientData and InetSetClientData functions which will allow you to access application
defined data for that client session in a thread-safe manner.

When this callback function is used for event notifications from the server interface, the the
hSocket parameter specifies the client socket handle, except for the INET_EVENT_ACCEPT event,
in which case the handle references the server socket handle. To obtain the handle of the client
connection that was just accepted, use the InetGetServerClient function. To obtain the handle to
the server using the client socket handle, use the InetGetClientServer function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisableEvents, InetEnableEvents, InetFreezeEvents, InetGetClientServer, InetGetServerClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetFindClientMoniker Function

SOCKET WINAPI InetFindClientMoniker(
 SOCKET hServer,
 LPCTSTR lpszMoniker
);

The InetFindClientMoniker function returns a handle to the client socket which matches the
specified moniker.

Parameters
hServer

A handle to the server.

lpszMoniker

A pointer to a string which specifies the client moniker to search for. This parameter cannot be
NULL and cannot specify an empty string.

Return Value
If the function succeeds, the return value is the handle to the client socket for the session that
matches the specified moniker. If the function fails, the return value is INVALID_SOCKET. To get
extended error information, call InetGetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session using the
InetSetClientMoniker function. This function will search all active client sessions for the server,
and returns the socket handle to the client that matches the specified moniker. If there is no
match, an error will be returned.

The moniker can be any string value, however monikers are not case sensitive and may not
contain embedded null characters. The maximum length of a moniker is 127 characters.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using InetListen or InetListenEx.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetClientMoniker, InetGetClientServer, InetGetClientThreadId, InetSetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetFlush Function

INT WINAPI InetFlush(
 SOCKET hSocket
);

The InetFlush function flushes the internal send and receive buffers used by the socket.

Parameters
hSocket

The socket handle.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetFlush function will flush any data waiting to be read or written to the remote host . It is
important to note that this function is not similar to flushing data to a disk file; it does not ensure
that a specific block of data has been written to the socket. For example, you should never call this
function immediately after calling InetWrite or prior to calling InetDisconnect.

An application never needs to use InetFlush under normal circumstances. This function is only to
be used when the application needs to immediately return the socket to an inactive state with no
pending data to be read or written. Calling this function may result in data loss and should only be
used if you understand the implications of discarding any data which has been sent by the remote
host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsReadable, InetIsWritable, InetPeek, InetRead, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetFormatAddress Function

INT WINAPI InetFormatAddress(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszAddress,
 INT cchAddress
);

The InetFormatAddress function converts a numeric IP address to a printable string. The format
of the string depends on whether an IPv4 or IPv6 address is specified.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the numeric IP address that
should be converted to a string.

lpszAddress

A pointer to a string buffer that will contain the formatted IP address, terminated with a null
character. To accommodate both IPv4 and IPv6 addresses, this buffer should be at least 46
characters in length.

cchAddress

The maximum number of characters that can be copied into the address buffer.

Return Value
If the function succeeds, the return value is the length of the IP address string. If the function fails,
the return value is INET_ERROR, meaning that the IP address could not be converted into a string.
Typically this indicates that the pointer to the INTERNET_ADDRESS structure is invalid, or the data
does not specify a valid IP address family.

Remarks
The format and length of IPv4 and IPv6 address strings are very different. An IPv4 address string
looks like "192.168.0.20", while an IPv6 address string can look something like
"fd7c:2f6a:4f4f:ba34::a32". If your application checks for the format of these address strings, it
needs to be aware of the differences. You also need to make sure that you're providing enough
space to display or store an address to avoid buffer overruns.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetExternalAddress, InetGetHostAddress, InetGetLocalAddress, InetGetPeerAddress,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetFreezeEvents Function

INT WINAPI InetFreezeEvents(
 SOCKET hSocket,
 BOOL bFreeze
);

The InetFreezeEvents function is used to suspend and resume event handling.

Parameters
hSocket

Socket handle.

bFreeze

A non-zero value specifies that event handling should be suspended. A zero value specifies that
event handling should be resumed.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This function should be used when the application does not want to process events, such as when
a modal dialog is being displayed. When events are suspended, all events are queued. If events
are re-enabled at a later point, those queued events will be sent to the application for processing.
Note that only one of each event will be generated. For example, if event handling has been
suspended, and four read events occur, only one of those read events will be posted to the
application when even handling is resumed. This prevents the application from being flooded by a
potentially large number of queued events.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisableEvents, InetEnableEvents, InetRegisterEvent

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetAdapterAddress Function

INT WINAPI InetGetAdapterAddress(
 INT nAdapterIndex,
 INT nAddressType,
 LPTSTR lpszAddress,
 INT nMaxLength
);

Return the IP or MAC assigned to the specified network adapter.

Parameters
nAdapterIndex

An integer value that identifies the network adapter.

nAddressType

An integer value which specifies the type of address that should be returned:

Constant Description

INET_ADAPTER_IPV4 The address string will contain the primary IPv4 unicast address
assigned to the network adapter.

INET_ADAPTER_IPV6 The address string will contain the primary IPv6 unicast address
assigned to the network adapter.

INET_ADAPTER_MAC The address string will contain the media access control (MAC)
address assigned to the network adapter.

lpszAddress

A string buffer that will contain the IP or MAC address assigned to the adapter. This parameter
cannot be NULL and it is recommended that it be at least 64 characters in length to provide
enough space for any address type.

nMaxLength

The maximum number of characters that can be copied into the string buffer, including the
terminating null character. If the buffer is too small to store the complete address, this function
will fail.

Return Value
If the function succeeds, the return value is the number of characters copied to the string buffer,
not including the terminating null character. A return value of zero indicates that the requested
address type has not been assigned to the adapter. If the function fails, the return value is
INET_ERROR and this typically indicates that either the adapter index is invalid or the string buffer
is not large enough to store the complete address. To get extended error information, call
InetGetLastError.

Remarks
The InetGetAdapterAddress function will return the IPv4, IPv6 or MAC address assigned to a
specific network adapter. The primary network adapter has an index value of zero, and it
increments for each adapter that is configured on the local system.

The media access control (MAC) address is a 48 bit or 64 bit value that is assigned to each
network interface and is used for identification and access control. All network devices on the

same subnet must be assigned their own unique MAC address. Unlike IP addresses which may be
assigned dynamically and can be frequently changed, MAC addresses are considered to be more
permanent because they are usually assigned by the device manufacturer and stored in firmware.
Note that in some cases it is possible to change the address assigned to a device, and virtual
network interfaces may have configurable MAC addresses.

This function returns the MAC address string as sequence of hexadecimal values separated by a
colon. An example of a 48 bit MAC address would be "01:23:45:67:89:AB". Note that some virtual
network adapters may not have a MAC address assigned to them, in which case this function
would return zero.

This function will ignore network adapters that have been disabled, as well as those that are
bound to a virtual loopback interface. If the system has dial-up networking or virtualization
software installed, this function may also return IP addresses assigned to a virtualized network
adapters installed by that software.

Example
// Display the IPv4 address assigned to each network adapter
for (INT nIndex = 0;; nIndex++)
{
 TCHAR szAddress[64];
 INT cchAddress;

 cchAddress = InetGetAdapterAddress(nIndex, INET_ADAPTER_IPV4, szAddress,
64);

 if (cchAddress == INET_ERROR)
 break;

 _tprintf(_T("Adapter %d: %s\n"), nIndex, szAddress);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnumNetworkAddresses, InetGetLocalAddress, InetGetLocalName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetAddress Function

INT WINAPI InetGetAddress(
 LPCTSTR lpszAddress,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetAddress function converts an IP address string to binary format.

Parameters
lpszAddress

A pointer to a null terminated string which specifies an IP address. This function recognizes the
format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address specified by the lpszAddress parameter. It may
be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the value of the
lpszAddress parameter.

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The
first four bytes of the ipNumber array are significant and
contains the IP address. The remaining bytes are not
significant and an application should not depend on
them having any particular value, including zero. If the
lpszAddress parameter does not specify a valid IPv4
address string, this function will fail.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. All
bytes in the ipNumber array are significant. If the
lpszAddress parameter does not specify a valid IPv6
address string, this function will fail.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible that an IPv6 address string has been
specified. For legacy applications that only recognize IPv4 addresses, the nAddressFamily member
should always be specified as INET_ADDRESS_IPV4 to ensure that only IPv4 addresses are
returned and any attempt to specify an IPv6 address string would result in an error.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the InetIsProtocolAvailable function. If an IPv6 stack is not installed, this function will

fail if the lpszAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetFormatAddress, InetIsAddressNull, InetIsAddressRoutable, InetIsProtocolAvailable,
INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetBlockingSocket Function

SOCKET InetGetBlockingSocket();

The InetGetBlockingSocket function returns the handle for the socket in the current thread
which is currently blocking, if there is one.

Parameters
None.

Return Value
If the function succeeds, the return value is the handle for the socket in the current thread which is
currently blocking. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAbort, InetCancel

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientData Function

BOOL WINAPI InetGetClientData(
 SOCKET hClient,
 LPVOID * lppvData
);

The InetGetClientData function returns the application defined data associated with the specified
client session.

Parameters
hSocket

The socket handle.

lppvData

Pointer to a void pointer which will contain an application defined value associated with the
client session.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the client session could not be retrieved. To get extended error
information, call InetGetLastError.

Remarks
The InetGetClientData function is used to retrieve the application defined data that was
previously associated with a client session using the InetSetClientData function. This is typically
used to associate a pointer to a data structure or a class instance with a specific client handle.

This function can only be used with client socket handles created using the server interface. It
cannot be used with socket handles created using the InetConnect or InetAccept functions. If
the socket handle is invalid, or does not reference a client socket handle created by the server, the
lppvData pointer passed to this function will be initialized to a value of NULL and the function will
return a value of zero.

If this function is called with a valid socket handle and there is no data associated with the socket,
the function will return a non-zero value and the lppvData pointer will be returned with a NULL
value. Before dereferencing the pointer returned by this function, the application should always
check the return value to ensure the function succeeded and make sure that the pointer is not
NULL.

Example
UINT *pnValue1 = (UINT *)LocalAlloc(LPTR, sizeof(UINT));
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (InetSetClientData(hSocket, pnValue1) == FALSE)
{
 // Unable to associate the data with this session
 return;
}

if (InetGetClientData(hSocket, &pnValue2) == FALSE)
{

 // Unable to retrieve the data associated with this session
 return;
}

// *pnValue2 == 1234
printf("The value of user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerData, InetSetClientData, InetSetServerData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientHandle Function

SOCKET WINAPI InetGetClientHandle(
 SOCKET hServer,
 UINT nClientId
);

The InetGetClientHandle function returns the handle for a specific client session based on its ID
number.

Parameters
hServer

Handle to the server socket.

nClientId

An unsigned integer value which uniquely identifies the client session.

Return Value
If the function succeeds, the return value is the socket handle for the specified client session. If the
function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value can be obtained by calling the InetGetClientId function and used by the application to
identify that client session. The InetGetClientHandle function can then be used to used to obtain
the client socket handle for the session, based on that client ID.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientId, InetGetClientMoniker, InetSetClientMoniker, InetGetServerClient,
InetGetThreadClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientId Function

UINT WINAPI InetGetClientId(
 SOCKET hClient
);

The InetGetClientId function returns the unique ID number assigned to the specified client
session.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is an unsigned integer value which uniquely identifies the
client session. If the function fails, the return value is zero. To get extended error information, call
InetGetLastError.

Remarks
Each client connection that is accepted by the server is assigned a unique numeric value. This
value can be obtained by calling the InetGetClientId function and used by the application to
identify that client session. The InetGetClientHandle function can then be used to used to obtain
the client socket handle for the session, based on that client ID. It is important to note that the
actual value of the client ID should be considered opaque. It is only guaranteed that the value will
be greater than zero, and that it will be unique to the client session.

While it is possible for a client socket handle to be reused by the operating system, client IDs are
unique throughout the life of the server session and are never duplicated.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept
functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientMoniker, InetSetClientMoniker, InetGetServerClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientIdleTime Function

DWORD WINAPI InetGetClientIdleTime(
 SOCKET hClient
);

Returns the number of milliseconds that the specified client session has been idle.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is an unsigned integer value which specifies the number
of milliseconds the client session has been idle. If the function fails, the return value is INFINITE. To
get extended error information, call InetGetLastError.

Remarks
The InetGetClientIdleTime function will return the number of milliseconds that have elapsed
since data was exchanged with the client. The elapsed time is limited to the resolution of the
system timer, which is typically in the range of 10 milliseconds to 16 milliseconds.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientMoniker, InetGetServerClient

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientMoniker Function

INT WINAPI InetGetClientMoniker(
 SOCKET hSocket,
 LPTSTR lpszMoniker,
 INT nMaxLength
);

The InetGetClientMoniker function returns the moniker associated with the specified client
session.

Parameters
hSocket

Handle to the client socket.

lpszMoniker

Pointer to a string buffer that will contain the moniker for the specified client session when the
function returns.

nMaxLength

The maximum number of characters that may be copied into the string buffer. The buffer must
be large enough to store the moniker and a terminating null character. The maximum length of
a moniker is 127 characters.

Return Value
If the function succeeds, the return value is the number of characters in the moniker string. A
return value of zero specifies that no moniker was assigned to the socket. If the function fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. A moniker can be assigned to the client session using the
InetSetClientMoniker function. This function will return the moniker that was previously assigned
to the client, if any. To obtain the socket handle associated with a given moniker, use the
InetFindClientMoniker function.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept
functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFindClientMoniker, InetGetClientHandle, InetGetClientId, InetSetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientPriority Function

INT WINAPI InetGetClientPriority(
 SOCKET hClient
);

The InetGetClientPriority function returns the current priority for the specified client session.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is the priority for the specified client session. If the
function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The InetGetClientPriority function can be used to determine the current priority assigned to the
specified client session. The client priority is inherited from the priority specified when the server is
started using the InetServerStart function. It may be one of the following values:

Constant Description

INET_PRIORITY_NORMAL The default priority which balances resource and processor
utilization. It is recommended that most applications use this
priority.

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory, processor and
network resource utilization for the client session. It is typically
used with lightweight services running in the background that
are designed for few client connections. The client thread will
be assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for the client
session and meters the processor utilization for the client
session. The client thread will be assigned a lower scheduling
priority and will occasionally be forced to yield execution to
other threads.

INET_PRIORITY_HIGH This priority increases the overall resource utilization for the
client session and the thread will be given higher scheduling
priority. It is not recommended that this priority be used on a
system with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor, memory and
network utilization. The client thread will be given higher
scheduling priority and will be more responsive to network
events. It is not recommended that this priority be used on a
system with a single processor.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept

functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerPriority, InetServerStart, InetSetClientPriority, InetSetServerPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientServer Function

SOCKET WINAPI InetGetClientServer(
 SOCKET hClient
);

The InetGetClientServer function returns a socket handle to the server for the specified client
socket.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is the handle to the server that created the client session.
If the function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The InetGetClientServer function returns the handle to the server that created the client session.
The InetGetClientServerById function can be used to obtain the server handle using the client
session ID rather than the client socket handle.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientId, InetGetClientServerById

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientServerById Function

SOCKET WINAPI InetGetClientServerById(
 UINT nClientId
);

The InetGetClientServerById function returns a socket handle to the server for the specified
client session identifier.

Parameters
nClientId

Client session identifier.

Return Value
If the function succeeds, the return value is the handle to the server that created the client session.
If the function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The InetGetClientServerById function returns the handle to the server that created the client
session using the client's unique identifier. The InetGetClientServer function can be used to
obtain the server handle using the client socket handle rather than the client session ID. This
function is typically used in conjunction with the INET_NOTIFY_CONNECT notification message to
obtain the handle to the server that generated the event using the client ID passed in the wParam
message parameter.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientId, InetGetClientServer, InetServerAsyncNotify

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientThreadId Function

DWORD WINAPI InetGetClientThreadId(
 SOCKET hClient
);

The InetGetClientThreadId function returns the thread ID for the specified client session.

Parameters
hClient

Handle to the client socket.

Return Value
If the function succeeds, the return value is an unsigned integer value which identifies the thread
that was created to manage the client session. If the function fails, the return value is zero. To get
extended error information, call InetGetLastError.

Remarks
The thread ID returned by this function can be used with the OpenThread function to obtain a
handle to the thread. Until the thread terminates, the thread identifier uniquely identifies the
thread throughout the system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetGetServerThreadId, InetGetThreadClient, InetSetClientPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetClientThreads Function

INT WINAPI InetGetClientThreads(
 SOCKET hServer
);

Returns the number of client session threads created by the server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the number of client session threads that have been
created by the server. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Remarks
The InetGetClientThreads function returns the number of threads that are managing client
sessions for the specified server. If there are no clients connected to the server, this function will
return a value of zero. Because this function returns the number of session threads, the value
returned will include those clients that are in the process of disconnecting from the server but their
session thread has not yet terminated. This differs from the InetEnumServerClients function
which will only enumerate active clients.

If you wish to determine when the last client has disconnected from the server, call this function
within an event handler for the INET_EVENT_DISCONNECT event. If the function returns a value
greater than one, then there are other client sessions that are either connected or in the process
of terminating.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetEnumServerClients, InetEnumServerClientsByAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/library/inetenumserverclientsbyaddress.html

 InetGetDefaultHostFile Function

INT WINAPI InetGetDefaultHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

The InetGetDefaultHostFile function returns the fully qualified path name of the host file on the
local system. The host file is used as a database that maps an IP address to one or more
hostnames, and is used by the InetGetHostAddress and InetGetHostNames function. The file is
a plain text file, with each line in the file specifying a record, and each field separated by spaces or
tabs. The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

The location of the default host file depends on the operating system. For Windows 95/98 and
Windows Me the file is stored in C:\Windows\hosts and for Windows NT and later versions the file
is stored in C:\Windows\system32\drivers\etc\hosts. Regardless of platform, there is no filename
extension and this file may or may not exist on a given system.

Parameters
lpszFileName

Pointer to a string buffer that will contain the fully qualified file name to the default host file. It is
recommended that this buffer be at least MAX_PATH characters in size. This parameter may be
NULL, in which case the function will return the length of the string, not including the
terminating null byte.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is length of the string. A return value of zero indicates
that the default host file could not be determined for the current platform. To get extended error
information, call InetGetLastError.

Remarks
This function only returns the default location of the host file and does not determine if the file
actually exists. It is not required that a host file be present on the system.

The default host file is processed before performing a nameserver lookup when resolving a
hostname into an IP address, or an IP address into a hostname.

To specify an alternate local host file, use the InetSetHostFile function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostAddress, InetGetHostFile, InetGetHostName, InetSetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetErrorString Function

INT WINAPI InetGetErrorString(
 DWORD dwErrorCode,
 LPTSTR lpszDescription,
 INT cbDescription
);

The InetGetErrorString function is used to return a description of a specific error code. Typically
this is used in conjunction with the InetGetLastError function for use with warning dialogs or as
diagnostic messages.

Parameters
dwErrorCode

The last-error code for which a description is returned.

lpszDescription

A pointer to the buffer that will contain a description of the specified error code. This buffer
should be at least 128 characters in length.

cbDescription

The maximum number of characters that may be copied into the description buffer.

Return Value
If the function succeeds, the return value is the length of the description string. If the function fails,
the return value is 0, meaning that no description exists for the specified error code. Typically this
indicates that the error code passed to the function is invalid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetLastError, InetSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetExternalAddress Function

INT WINAPI InetGetExternalAddress(
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetExternalAddress function returns the external IP address for the local system.

Parameters
nAddressFamily

An integer which identifies the type of IP address that should be returned by this function. It
may be one of the following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the address should be in IPv4 format. The method
will attempt to determine the external IP address using an IPv4
network connection.

INET_ADDRESS_IPV6 Specifies that the address should be in IPv6 format. The method
will attempt to determine the external IP address using an IPv6
network connection and requires that the local host have an
IPv6 network interface installed and enabled.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the external IP address of the
local host.

Return Value
If the function succeeds, the return value is zero and the INTERNET_ADDRESS structure contains
the external IP address for the local host in binary form. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetGetExternalAddress function returns the IP address assigned to the router that connects
the local host to the Internet. This is typically used by an application executing on a system in a
local network that uses a router which performs Network Address Translation (NAT). In that
network configuration, the InetGetLocalAddress function will only return the IP address for the
local system on the LAN side of the network unless a connection has already been established to a
remote host. The InetGetExternalAddress function can be used to determine the IP address
assigned to the router on the Internet side of the connection and can be particularly useful for
servers running on a system behind a NAT router.

This function requires that you have an active connection to the Internet and calling this function
on a system that uses dial-up networking may cause the operating system to automatically
connect to the Internet service provider. An application should always check the return value in
case there is an error; never assume that the return value is always a valid address. The function
may be unable to determine the external IP address for the local host for a number of reasons,
particularly if the system is behind a firewall or uses a proxy server that restricts access to external
sites on the Internet. If the function is able to obtain a valid external address for the local host, that
address will be cached by the library for sixty minutes. Because dial-up connections typically have
different IP addresses assigned to them each time the system is connected to the Internet, it is

recommended that this function only be used with broadband connections where a NAT router is
being used.

Calling this function may cause the current thread to block until the external IP address can be
resolved and should never be used in conjunction with asynchronous socket connections. If you
need to call this function in an application which uses asynchronous sockets, it is recommended
that you create a new thread and call this function from within that thread.

To convert the address from its binary form into a string, use the InetFormatAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFormatAddress, InetGetHostAddress, InetGetLocalAddress, InetGetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetHostAddress Function

INT WINAPI InetGetHostAddress(
 LPCTSTR lpszHostName,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress
);

The InetGetHostAddress function resolves the specified host name into an IP address in binary
format.

Parameters
lpszHostName

A pointer to the name of the host to resolve; this may be a fully-qualified domain name or an IP
address. This function recognizes the format for both IPv4 and IPv6 format addresses.

nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on how the host name can be
resolved. By default, a preference will be given for
returning an IPv4 address. However, if the host only has
an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the specified
host.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This function can also be used to convert an address in dot notation to a binary format. If the
function must perform a DNS lookup to resolve the hostname, the calling thread will block. To
ensure future compatibility with IPv6 networks, it is important that the application does not make

any assumptions about the format of the address. If the function returns successfully, the ipFamily
member of the INTERNET_ADDRESS structure should always be checked to determine the type
of address.

The nAddressFamily parameter is used to specify a preference for the type of address returned,
however it is possible that a host may not have an IPv4 or IPv6 address record, in which case this
function will fail. Although IPv4 is still the most common address used at this time, an application
should not assume that because a given host name does not have an IPv4 address, that the host
name is invalid.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for a host name to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the InetIsProtocolAvailable function. If an IPv6 stack is not installed, this function will
fail if the lpszHostName parameter specifies an host that only has an IPv6 (AAAA) DNS record.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostName, InetGetLocalAddress, InetGetLocalName, InetGetPeerAddress,
InetIsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetHostFile Function

INT WINAPI InetGetHostFile(
 LPTSTR lpszFileName,
 INT nMaxLength
);

The InetGetHostFile function returns the name of the host file previously set using the
InetSetHostFile function. The host file is used as a database that maps an IP address to one or
more hostnames, and is used by the InetGetHostAddress and InetGetHostNames function.

Parameters
lpszFileName

Pointer to a string buffer that will contain the host file name. It is recommended that this buffer
be at least MAX_PATH characters in size. This parameter may be NULL, in which case the
function will return the length of the string, not including the terminating null character.

nMaxLength

The maximum number of characters that may be copied to the string buffer.

Return Value
If the function succeeds, the return value is length of the string. A return value of zero indicates
that no host file has been specified or the function was unable to determine the file name. To get
extended error information, call InetGetLastError. If the last error is zero, this indicates that no
host file name has been specified for the current thread. If the last error is non-zero, this indicates
the reason that the function failed.

Remarks
This function only returns the name of the host file that is cached in memory for the current
thread. The contents of the file on the disk may have changed after the file was loaded into
memory. To reload the host file or clear the cache, call the InetSetHostFile function.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

The host file returned by this function may be different than the default host file for the local
system. To determine the file name for the default host file, use the InetGetDefaultHostFile
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetDefaultHostFile, InetGetHostAddress, InetGetHostName, InetSetHostFile

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetHostName Function

INT WINAPI InetGetHostName(
 LPINTERNET_ADDRESS lpAddress,
 LPTSTR lpszHostName,
 INT cchHostName
);

The InetGetHostName function performs a reverse lookup, returning the host name associated
with a given IP address.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure which specifies the IP address that should be
resolved into a host name.

lpszHostName

A pointer to the buffer that will contain the host name. It is recommended that this buffer be at
least 256 characters in length to accommodate the longest possible fully qualified domain
name.

cchHostName

The maximum number of characters that can be copied into the buffer.

Return Value
If the function succeeds, the return value is the length of the hostname. If the function fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If the function must perform a reverse DNS lookup to resolve the IP address into a host name, the
calling thread will block. This function requires that the host have a PTR record, otherwise it will fail.
Because many hosts do not have a PTR record, calling this function frequently may have a
negative impact on the overall performance of the application.

To determine if the local system has an IPv6 TCP/IP stack installed and configured on the local
system, use the InetIsProtocolAvailable function. If an IPv6 stack is not installed, this function will
fail if the lpAddress parameter specifies an IPv6 address, even if the address itself is valid.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostAddress, InetGetLocalAddress, InetGetLocalName, InetGetPeerAddress,
InetGetUrlHostName, InetIsProtocolAvailable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetLastError Function

DWORD WINAPI InetGetLastError();

Parameters
None.

Return Value
Functions set this value by calling the InetSetLastError function. The return value section of each
reference page notes the conditions under which the function sets the last-error code.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. You should call
the InetGetLastError function immediately when a function's return value indicates that an error
has occurred. That is because some functions call InetSetLastError(0) when they succeed, clearing
the error code set by the most recently failed function.

Most functions will set the last error code value when they fail; a few functions set it when they
succeed. Function failure is typically indicated by a return value such as FALSE, NULL,
INVALID_SOCKET or INET_ERROR. Those functions which call InetSetLastError when they
succeed are noted on the function reference page.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetErrorString, InetSetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetLocalAddress Function

INT WINAPI InetGetLocalAddress(
 SOCKET hSocket,
 INT nAddressFamily,
 LPINTERNET_ADDRESS lpAddress,
 UINT* lpnPort
);

The InetGetLocalAddress function returns the local IP address and port number for the specified
socket.

Parameters
hSocket

The socket handle.

nAddressFamily

An integer which identifies the type of IP address to return. It may be one of the following
values:

Constant Description

INET_ADDRESS_UNKNOWN Return the IP address for the specified host in either IPv4
or IPv6 format, depending on the type of connection
that was established. If the hSocket parameter is
INVALID_SOCKET, a preference will be given for
returning an IPv4 address. However, if the local host only
has an IPv6 address, that value will be returned.

INET_ADDRESS_IPV4 Specifies that the address should be returned in IPv4
format. The first four bytes of the ipNumber array are
significant and contains the IP address. The remaining
bytes are not significant and an application should not
depend on them having any particular value, including
zero.

INET_ADDRESS_IPV6 Specifies that the address should be returned in IPv6
format. All bytes in the ipNumber array are significant.
Note that it is possible for an IPv6 address to actually
represent an IPv4 address. This is indicated by the first 10
bytes of the address being zero.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the local host. If
the hSocket parameter is specified as INVALID_SOCKET, this function will attempt to determine
the IP address of the local host assigned by the system. If the address is not required, this
parameter may be NULL.

lpnPort

A pointer to an unsigned integer that will contain the local port number. If the hSocket
parameter specifies a valid socket, this parameter will be set to the local port that the socket was
bound to. If the hSocket parameter is specified as INVALID_SOCKET, this parameter is ignored.
If the port number is not required, this parameter may be NULL.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
To ensure future compatibility with IPv6 networks, it is important that the application does not
make any assumptions about the format of the address. If the function returns successfully, the
ipFamily member of the INTERNET_ADDRESS structure should always be checked to determine
the type of address.

If the nAddressFamily parameter is specified as INET_ADDRESS_UNKNOWN, the application must
be prepared to handle IPv6 addresses because it is possible for the local host to have an IPv6
address assigned to it and no IPv4 address. For legacy applications that only recognize IPv4
addresses, the nAddressFamily member should always be specified as INET_ADDRESS_IPV4 to
ensure that only IPv4 addresses are returned.

If the system is connected to the Internet through a local network and/or uses a router that
performs Network Address Translation (NAT), the InetGetLocalAddress function will return the
local, non-routable IP address assigned to the system. To determine the public IP address has
been assigned to the system, you should use the InetGetExternalAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetExternalAddress, InetGetHostAddress, InetGetHostName, InetGetLocalName,
InetGetPeerAddress, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetLocalName Function

INT WINAPI InetGetLocalName(
 LPTSTR lpszHostName,
 INT cchHostName
);

The InetGetLocalName function returns the hostname assigned to the local system.

Parameters
lpszHostName

A pointer to the buffer that will contain the hostname.

cchHostName

The maximum number of characters that can be copied into the address buffer.

Return Value
If the function succeeds, the return value is the length of the hostname. If the function fails, the
return value is INET_ERROR. To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostAddress, InetGetHostName, InetGetLocalAddress, InetGetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetLockedServer Function

SOCKET WINAPI InetGetLockedServer(
 LPDWORD lpdwThreadId
);

The InetGetLockedServer function unlocks the specified server, allowing other server threads to
resume execution.

Parameters
lpdwThreadId

A pointer to an unsigned integer which identifies the thread that established the server lock. If
this information is not required, this parameter may be NULL.

Return Value
If the function succeeds, the return value is the handle to the locked server. If no server is in a
locked state, the function will return a value of INVALID_SOCKET.

Remarks
The InetGetLockedServer function can be used to determine if there is a server in a locked state.
If there is, the function will return a handle to the server and will identify the thread which
established the lock. This function may be called from any thread, however only the thread which
established the server lock may interact with the server or release the lock.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetServerLock, InetServerUnlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetOption Function

INT WINAPI InetGetOption(
 SOCKET hSocket,
 DWORD dwOption,
 LPBOOL lpbEnabled
);

The InetGetOption function is used to determine if a specific socket option has been enabled.

Parameters
hSocket

The socket handle.

dwOption

An unsigned integer used to specify one of the socket options. These options cannot be
combined. The following values are recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This is only valid for
stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option is commonly used by server applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

lpbEnabled

A pointer to a boolean flag. If the option is enabled, the flag is set to a non-zero value,
otherwise it is set to a value of zero.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAsyncConnectEx, InetConnectEx, InetSetOption

Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetPeerAddress Function

INT WINAPI InetGetPeerAddress(
 SOCKET hSocket,
 LPINTERNET_ADDRESS lpAddress,
 UINT* lpnPort
);

The InetGetPeerAddress function returns the peer IP address and remote port number for the
specified socket.

Parameters
hSocket

The socket handle.

lpAddress

A pointer to an INTERNET_ADDRESS structure that will contain the IP address of the remote
host that the socket is connected to.

lpnPort

A pointer to an unsigned integer that will contain the remote port that the socket is connected
to.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
If this function is called by a server application in response to a INET_EVENT_ACCEPT event, it will
return the IP address and port number for the client that is attempting to establish the connection.
If the peer address is unavailable, the ipFamily member of the INTERNET_ADDRESS structure will
be zero. To convert the IP address to a printable string, use the InetFormatAddress function.

It is not recommended that you use the port number for anything other than informational and
logging purposes. Server applications should not make any assumptions about the specific port
number or range of port numbers that a client is using when establishing a connection to the
server. The ephemeral port number that a client is bound to can vary based on the client
operating system.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFormatAddress, InetGetHostAddress, InetGetHostName, InetGetLocalAddress,
InetGetLocalName, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetPhysicalAddress Function

BOOL WINAPI InetGetPhysicalAddress(
 LPTSTR lpszAddress,
 UINT nMaxLength
);

Return the media access control (MAC) address for the primary network adapter.

Parameters
lpszAddress

A string buffer that will contain the address in a printable format when the function returns. This
parameter cannot be NULL.

nMaxLength

The maximum number of characters that can be copied into the buffer, including the
terminating null character.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetGetPhysicalAddress function returns the media access control (MAC) address for the
primary network adapter. This is a 48 bit or 64 bit address that is assigned to each network
interface and is used for identification and access control. All network devices on the same subnet
must be assigned their own unique MAC address. Unlike IP addresses which may be assigned
dynamically and can be frequently changed, MAC addresses are considered to be more
permanent because they are usually assigned by the device manufacturer and stored in firmware.
Note that in some cases it is possible to change the address assigned to a device, and virtual
network interfaces may have configurable MAC addresses.

This function returns the MAC address as a printable string, with each byte of the address as a
two-digit hexadecimal value separated by a colon. The string buffer passed to the function should
be at least 20 characters long to accommodate the address and terminating null character. An
example of a 48 bit address would be "01:23:45:67:89:AB". If the local system is multi-homed
(having more than one network adapter) then this function will return the MAC address for the
primary network adapter.

This function is provided for backwards compatibility with previous versions of the library and it is
recommended that new applications use the InetGetAdapterAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetEnumNetworkAddresses, InetGetAdapterAddress, InetGetLocalName, InetGetHostAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetSecurityInformation Function

BOOL WINAPI InetGetSecurityInformation(
 SOCKET hSocket,
 LPSECURITYINFO lpSecurityInfo
);

The InetGetSecurityInformation function fills a structure with information about the security
characteristics of a connection.

Parameters
hSocket

Handle to the socket.

lpSecurityInfo

A pointer to a SECURITYINFO structure which contains information about the current client
connection. The dwSize member of this structure must be initialized to the size of the structure
before passing the address of the structure to this function.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
This function is used to obtain security related information about the current client connection to
the server. It can be used to determine if a secure connection has been established, what security
protocol was selected, and information about the server certificate. Note that a secure connection
has not been established, the dwProtocol structure member will contain the value
SECURITY_PROTOCOL_NONE.

Example
The following example notifies the user if the connection is secure or not:

SECURITYINFO securityInfo;

securityInfo.dwSize = sizeof(SECURITYINFO);
if (InetGetSecurityInformation(hClient, &securityInfo))
{
 if (securityInfo.dwProtocol == SECURITY_PROTOCOL_NONE)
 {
 MessageBox(NULL, _T("The connection is not secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 if (securityInfo.dwCertStatus == SECURITY_CERTIFICATE_VALID)
 {
 MessageBox(NULL, _T("The connection is secure"),
 _T("Connection"), MB_OK);
 }
 else
 {
 MessageBox(NULL, _T("The server certificate not valid"),
 _T("Connection"), MB_OK);
 }

 }
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetConnectEx, InetAsyncConnectEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerClient Function

SOCKET WINAPI InetGetServerClient(
 SOCKET hServer
);

The InetGetServerClient function returns the handle for the last client connection accepted by
the server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the handle to the last client connection that was
accepted by the server. If the function fails, the return value is INVALID_SOCKET. To get extended
error information, call InetGetLastError.

Remarks
The InetGetServerClient function can be used inside the service event handler to determine the
client connection that was just accepted by the server. This would typically be used in conjunction
with the INET_EVENT_ACCEPT handler, enabling the application to obtain the handle of the new
client session.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientThreadId, InetGetServerThreadId, InetServerBroadcast, InetServerLock,
InetServerStop, InetServerThrottle, InetServerUnlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerData Function

BOOL WINAPI InetGetServerData(
 SOCKET hServer,
 LPVOID * lppvData
);

The InetGetServerData function returns the application defined data associated with the specified
server.

Parameters
hSocket

The server socket handle.

lppvData

Pointer to a void pointer which will contain an application defined value associated with the
server.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the server could not be retrieved. To get extended error information,
call InetGetLastError.

Remarks
The InetGetServerData function is used to retrieve the application defined data that was
previously associated with a server using the InetSetServerData function. This is typically used to
associate a pointer to a data structure or a class instance with a specific instance of a server.

This function can only be used with socket handles created using InetServerStart function. It
cannot be used with socket handles created using the InetListen or InetListenEx functions. If the
socket handle is invalid, or does not reference a server handle, the lppvData pointer passed to this
function will be initialized to a value of NULL and the function will return a value of zero.

If this function is called with a valid socket handle and there is no data associated with the socket,
the function will return a non-zero value and the lppvData pointer will be returned with a NULL
value. Before dereferencing the pointer returned by this function, the application should always
check the return value to ensure the function succeeded and make sure that the pointer is not
NULL.

Example
UINT *pnValue1 = (UINT *)LocalAlloc(LPTR, sizeof(UINT));
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (InetSetServerData(hServer, pnValue1) == FALSE)
{
 // Unable to associate the data with this server
 return;
}

if (InetGetServerData(hServer, &pnValue2) == FALSE)
{
 // Unable to retrieve the data associated with this server

 return;
}

// *pnValue2 == 1234
printf("The value of user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientData, InetSetClientData, InetSetServerData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerPriority Function

INT WINAPI InetGetServerPriority(
 SOCKET hServer
);

The InetGetServerPriority function returns the current priority for the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the priority for the specified server. If the function fails,
the return value is INET_PRIORITY_INVALID. To get extended error information, call
InetGetLastError.

Remarks
The InetGetServerPriority function can be used to determine the current priority assigned to the
specified server. It will be one of the following values:

Constant Description

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory, processor and
network resource utilization for the server. It is typically used
with lightweight services running in the background that are
designed for few client connections. The server thread will be
assigned a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for the
server and meters the processor utilization for the server
thread. The server thread will be assigned a lower scheduling
priority and will occasionally be forced to yield execution to
other threads.

INET_PRIORITY_NORMAL The default priority which balances resource and processor
utilization. This is the priority that is initially assigned to the
server when it is started, and it is recommended that most
applications use this priority.

INET_PRIORITY_HIGH This priority increases the overall resource utilization for the
server and the thread will be given higher scheduling priority.
It is not recommended that this priority be used on a system
with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor, memory and
network utilization. The server thread will be given higher
scheduling priority and will be more responsive to client
connection requests. It is not recommended that this priority
be used on a system with a single processor.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetServerStart, InetSetClientPriority, InetSetServerPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerStackSize Function

DWORD WINAPI InetGetServerStackSize(
 SOCKET hServer
);

Return the initial size of the stack allocated for threads created by the server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the amount of memory that will be allocated for the
stack in bytes. If the function fails, the return value is zero. To get extended error information, call
InetGetLastError.

Remarks
The InetGetServerStackSize function returns the initial amount of memory that is committed to
the stack for each thread created by the server. By default, the stack size for each thread is set to
256K for 32-bit processes and 512K for 64-bit processes.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetServerStart, InetSetServerStackSize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerStatus Function

INT WINAPI InetGetServerStatus(
 SOCKET hServer
);

The InetGetServerStatus function returns the current status of the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the status for the specified server. If the function fails,
the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetGetServerStatus function can be used to determine the current status for the specified
server. It may be one of the following values:

Constant Description

INET_SERVER_INACTIVE The server is currently inactive.

INET_SERVER_STARTED The server has initialized and is preparing to listen for client
connections.

INET_SERVER_LISTENING The server is actively listening for incoming client connections.

INET_SERVER_SUSPENDED The server has been suspended and is no longer accepting client
connections.

INET_SERVER_SHUTDOWN The server has been stopped and is in the process of terminating
all active client connections.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetServerRestart, InetServerResume, InetServerStart, InetServerStop, InetServerSuspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServerThreadId Function

DWORD WINAPI InetGetServerThreadId(
 SOCKET hServer
);

The InetGetServerThreadId function returns the thread ID for the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is an unsigned integer value which identifies the thread
that was created to manage the server. If the function fails, the return value is zero. To get
extended error information, call InetGetLastError.

Remarks
The thread ID returned by this function can be used with the OpenThread function to obtain a
handle to the thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetGetClientThreadId, InetGetThreadClient, InetSetClientPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServiceName Function

BOOL WINAPI InetGetServiceName(
 UINT nServicePort,
 LPTSTR lpszServiceName,
 INT nMaxLength
);

The InetGetServiceName function returns the service name associated with a specified port
number.

Parameters
nServicePort

Port number associated with some network service.

lpszServiceName

A pointer to a string buffer that will contain the name of the service associated with the
specified port number. This string should be at least 32 characters long.

cchServiceName

An integer value which specifies the maximum number of characters that can be copied into the
string buffer.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetServicePort

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetServicePort Function

UINT WINAPI InetGetServicePort(
 LPCTSTR lpszServiceName
);

The InetGetServicePort function returns the port number associated with a service name.

Parameters
lpszServiceName

A pointer to a string which specifies the name of the service to return the port number for.

Return Value
If the function succeeds, the return value is the port number associated with a service name. If the
function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetServiceName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetStatus Function

INT WINAPI InetGetStatus(
 SOCKET hSocket
);

The InetGetStatus function is used to report what sort of socket operation is in progress.

Parameters
hSocket

The socket handle.

Return Value
If the function succeeds, the return value is the client status code. If the function fails, the return
value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The return value is one of the following values:

Value Constant Description

0 INET_STATUS_UNUSED No connection has been established.

1 INET_STATUS_IDLE The socket is idle and not in a blocked state

2 INET_STATUS_LISTEN The socket is listening for inbound connections from a
client

3 INET_STATUS_CONNECT The socket is establishing a connection with a server

4 INET_STATUS_ACCEPT The socket is accepting a connection from a client

5 INET_STATUS_READ Data is being read from the socket

6 INET_STATUS_WRITE Data is being written to the socket

7 INET_STATUS_FLUSH The socket is being flushed; all data in the receive buffers
is being discarded

8 INET_STATUS_DISCONNECT The socket is disconnecting from the remote host

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified socket.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetBlockingSocket, InetIsConnected, InetIsListening, InetIsReadable, InetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetStreamInfo Function

BOOL WINAPI InetGetStreamInfo(
 SOCKET hSocket,
 LPINETSTREAMINFO lpStreamInfo
);

The InetGetStreamInfo function fills a structure with information about the current stream I/O
operation.

Parameters
hSocket

Handle to the socket.

lpSecurityInfo

A pointer to an INETSTREAMINFO structure which contains information about the status of the
current operation.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetGetStreamInfo function returns information about the current streaming socket
operation, including the average number of bytes transferred per second and the estimated
amount of time until the operation completes. If there is no operation currently in progress, this
function will return the status of the last successful streaming read or write performed by the
client.

In a multithreaded application, any thread in the current process may call this function to obtain
status information for the specified socket.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetReadStream, InetStoreStream, InetWriteStream, INETSTREAMINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetThreadClient Function

SOCKET WINAPI InetGetThreadClient(
 DWORD dwThreadId
);

The InetGetThreadClient function returns the socket handle for the client session that is being
managed by the specified thread.

Parameters
dwThreadId

An unsigned integer value which identifies the thread managing the client session. If this
parameter has a value of zero, then the client handle for the current thread is returned.

Return Value
If the function succeeds, the return value is the socket handle for the specified client session. If the
function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The InetGetThreadClient is used to obtain the socket handle for the client session that is being
managed by the specified thread. If the specified thread ID is zero, then the function will return the
client socket for the current thread, otherwise it will search the internal table of all active client
sessions and return the handle to the session that is being managed by that thread.

This function will fail if the thread ID does not specify an active client session thread.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientHandle, InetGetClientId, InetGetClientThreadId, InetGetServerClient,
InetGetServerThreadId

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetTimeout Function

INT WINAPI InetGetTimeout(
 SOCKET hSocket
);

The InetGetTimeout function returns the timeout interval for blocking operations, in seconds.

Parameters
hSocket

Handle to the socket.

Return Value
If the function succeeds, the return value is the timeout interval for blocking operations, in
seconds. If the function fails, the return value is INET_ERROR. To get extended error information,
call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetSetTimeout

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetGetUrlHostName Function

INT WINAPI InetGetUrlHostName(
 LPCTSTR lpszUrl,
 DWORD dwReserved,
 LPTSTR lpszHostName,
 INT nMaxLength,
 LPUINT lpnHostPort,
 LPUINT lpnProtocol,
 LPDWORD lpdwOptions
);

The InetGetUrlHostName function returns the host name and port number specified in a URL.

Parameters
lpszUrl

A pointer to a null-terminated string which specifies a URL. This parameter cannot be NULL or
point to an empty string. If a non-standard URI scheme is used, the port number must be
explicitly specified or the function will fail. See the remarks below for more information on the
format supported by this function.

dwReserved

An unsigned integer value reserved for internal use. This value should always be zero.

lpszHostName

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer and must be large enough to store the complete host
name.

nMaxLength

The maximum number of characters that can be copied to the lpszHostName string buffer. This
parameter cannot be zero, and must include the terminating null character.

lpnHostPort

Pointer to an unsigned integer value which will contain the port number specified in the URL.
This parameter value will always be initialized by the function with a value of zero. If this
parameter is NULL, it will be ignored and no port information will be returned.

lpnProtocol

Pointer to an unsigned integer value which will contain the protocol associated with the URI
scheme. This parameter value will always be initialized by the function with a value of zero. If
this parameter is NULL, it will be ignored and no protocol information will be returned.

lpdwOptions

Pointer to an unsigned integer value which will contain any socket options required to establish
a connection based on the URI scheme or specified port. This parameter value will always be
initialized by the function with a value of zero. If this parameter is NULL, it will be ignored.

Return Value
If the function succeeds, the return value is the number of characters copied into the
lpszHostName buffer. If the function fails, the return value is INET_ERROR. To get extended error
information, call InetGetLastError.

Remarks
The InetGetUrlHostName function will extract the host name and port number from a URL and
return the canonical form of the host name. If the lpnHostPort, lpnProtocol and lpdwOptions
parameters have been specified, they will contain the port number, protocol and additional
connection options associated with the URL scheme.

The general format of the URL should look like this:

[scheme]:// [[username : password] @] hostname [:port] / [path;paramters
...]

This function recognizes most standard URI schemes which use this format. The host name and
port number specified in the URL will be used to establish a connection and the remaining
information will be discarded. If the URL does not explicitly specify a port number, the default port
number associated with the scheme will be used as the default value. For example, consider the
following:

https://www.example.com/

In this example, there is no port number specified; instead, the default port for the https://
scheme would be used, which is port 443. This function will also recognize a simpler format which
only includes the host name and port number without a URI scheme, such as:

www.example.com:443

If the lpszUrl parameter only specifies a host name without a URI scheme or port number, this
function will ignore the lpnHostPort, lpnProtocol and lpdwOptions parameters and return the
canonical form of the host name in the lpszHostName string argument.

The host name portion of the URL can be specified as either a domain name or an IP address.
Because an IPv6 address can contain colon characters, you must enclose the entire address in
bracket [] characters. If this is not done, the function will return an error indicating the port number
is invalid. For example, the URL https://[2001:db8:0:0:1::128]/ uses an IPv6 host address
and this would be considered valid. Without the brackets, this URL would not be accepted.

If the URL uses an IP address instead of a host name, this function will return a copy of that IP
address in the lpszHostName string provided by the caller. The function will not attempt to
resolve the IP address into a host name, however you can use the InetGetHostName function to
perform a reverse DNS lookup if required.

The only URI schemes currently supported by this function use TCP stream connections. In
practical terms, this means the lpnProtocol parameter will always return with the value
INET_PROTOCOL_TCP when the function is successful. If the function fails, this value will be
INET_PROTOCOL_NONE.

Although this function performs checks to ensure that the lpszUrl parameter is in the correct
format and does not contain any illegal characters or malformed encoding, it does not validate the
host name. To check if the host name exists and has a valid IP address, use the
InetValidateHostName function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

InetConnectUrl, InetGetHostAddress, InetGetHostName, InetHostNameToUnicode,
InetNormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetHostNameToUnicode Function

INT WINAPI InetHostNameToUnicode(
 LPCTSTR lpszHostName,
 LPTSTR lpszUnicodeName,
 INT nMaxLength
);

The InetHostNameToUnicode function converts the canonical form of a host name to its
Unicode version.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszUnicodeName

Pointer to the string buffer that will contain the original Unicode version of the host name,
including the terminating null character. It is recommended that this buffer be at least 256
characters in size. This parameter cannot be a NULL pointer.

nMaxLength

The maximum number of characters that can be copied to the lpszUnicodeName string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer.
If the function fails, the return value is INET_ERROR. To get extended error information, call
DnsGetLastError.

Remarks
The InetHostNameToUnicode function will convert the encoded ASCII version of a host name to
its Unicode version. Although any valid host name is accepted by this function, it is intended to
convert a Punycode encoded host name to its original Unicode character encoding.

If the Unicode version of this function is used, the value returned in lpszUnicodeName will be a
Unicode string using UTF-16 encoding. If the ANSI version of this function, the value returned will
be a Unicode string using UTF-8 encoding. To display a UTF-8 encoded host name, your
application will need to convert it to UTF-16 using the MultiByteToWideChar function.

Although this function performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the InetGetHostAddress function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

InetGetHostAddress, InetNormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetInitialize Function

BOOL WINAPI InetInitialize(
 LPCTSTR lpszLicenseKey,
 LPINITDATA lpData
);

The InetInitialize function initializes the library and validates the specified license key at runtime.

Parameters
lpszLicenseKey

Pointer to a string that specifies the runtime license key to be validated. If this parameter is
NULL, the library will validate the development license installed on the local system.

lpData

Pointer to an INITDATA data structure. This parameter may be NULL if the initialization data for
the library is not required.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError. All other functions will fail until a license
key has been successfully validated.

Remarks
This must be the first function that an application calls before using any of the other functions in
the library. When a NULL license key is specified, the library will only function on the development
system. Before redistributing the application to an end-user, you must insure that this function is
called with a valid license key.

If the lpData argument is specified, it must point to an INITDATA structure which has been
initialized by setting the dwSize member to the size of the structure. All other structure members
should be set to zero. If the function is successful, then the INITDATA structure will be filled with
identifying information about the library.

Although it is only required that InetInitialize be called once for the current process, it may be
called multiple times; however, each call must be matched by a corresponding call to
InetUninitialize.

This function dynamically loads other system libraries and allocates thread local storage. If you are
calling the functions in this library from within another DLL, it is important that you do not call the
InetInitialize or InetUninitialize functions from the DllMain function because it can result in
deadlocks or access violation errors. If the DLL is linked with the C runtime library (CRT), it will
automatically call the constructors and destructors for static and global C++ objects and has the
same restrictions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also

InetConnect, InetConnectEx, InetDisconnect, InetListen, InetUninitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsAddressNull Function

BOOL WINAPI InetIsAddressNull(
 LPINTERNET_ADDRESS lpAddress
);

The InetIsAddressNull function determines if the IP address is null.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure that contains the address to check.

Return Value
If the function succeeds and the IP address is null, or the lpAddress parameter is a NULL pointer,
the return value is non-zero. If the function fails or the address is not null, the return value is zero.
If the address family is not supported, the last error code will be updated. If the address is valid
but not null, the last error code will be set to NO_ERROR.

Remarks
A null IP address is one where all bits for the address (32 bits for IPv4 or 128 bits for IPv6) are zero.
This is a special address that is typically used when creating a passive socket that should listen for
connections on all available network interfaces.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetAddress, InetIsAddressRoutable, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsAddressRoutable Function

BOOL WINAPI InetIsAddressRoutable(
 LPINTERNET_ADDRESS lpAddress
);

The InetIsAddressRoutable function determines if the IP address is routable over the Internet.

Parameters
lpAddress

A pointer to an INTERNET_ADDRESS structure that contains the address to check. This
parameter cannot be NULL.

Return Value
If the function succeeds and the IP address is routable over the Internet, the return value is non-
zero. If the function fails or the address is not routable, the return value is zero. If the parameter is
NULL, or the address family is not supported, the last error code will be updated. If the address is
valid but not routable, the last error code will be set to NO_ERROR.

Remarks
A routable IP address is one that can be reached by anyone over the public Internet. These are
also commonly referred to as "public addresses" which are typically assigned to networks and
individual hosts by an Internet service provider. There are also certain addresses that are not
routable over the Internet, and used to address systems over a local network or private intranet.
This function can be used to determine if a given IP address is public (routable) or private.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetAddress, InetGetExternalAddress, InetIsAddressNull, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsBlocking Function

BOOL WINAPI InetIsBlocking(
 SOCKET hSocket
);

The InetIsBlocking function is used to determine if the socket is performing a blocking operation.

Parameters
hSocket

Socket handle.

Return Value
If the socket is currently performing a blocking operation, the function returns a non-zero value. If
the socket is not performing a blocking operation, or the socket handle is invalid, the function
returns zero.

Remarks
This function is typically used to determine if an open socket that is being used by another thread
is currently blocked. A socket may block when waiting to receive data from a remote host or while
data is actively being exchanged. Because there can only be one blocking socket operation per
thread, this function can be used to determine if a function such as InetRead or InetWrite would
fail because another thread is currently sending or receiving data on that socket. This socket
handle that is passed to this function does not need to be owned by the current thread.

It is important to note that if this function returns a non-zero value, it does not guarantee that a
subsequent read or write on the socket will succeed. The application should always check the
return value from functions such as InetRead and InetWrite to ensure they were successful.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsConnected, InetIsReadable, InetIsWritable, InetRead, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsClosed Function

BOOL WINAPI InetIsClosed(
 SOCKET hSocket
);

The InetIsClosed function is used to determine if the remote host has closed its socket.

Parameters
hSocket

Socket handle.

Return Value
If the remote host has closed its socket, the function returns a non-zero value. If the remote host
has not closed its connection, or the socket handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsConnected, InetIsListening, InetIsReadable, InetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsConnected Function

BOOL WINAPI InetIsConnected(
 SOCKET hSocket
);

The InetIsConnected function is used to determine if the socket is currently connected to a
remote host.

Parameters
hSocket

Socket handle.

Return Value
If the socket is connected to a remote host, the function returns a non-zero value. If the socket is
not connected, or the socket handle is invalid, the function returns zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsClosed, InetIsListening, InetIsReadable, InetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsListening Function

BOOL WINAPI InetIsListening(
 SOCKET hSocket
);

The InetIsListening function determines if the socket is listening for connection requests.

Parameters
hSocket

Socket handle.

Return Value
If the socket is being used to listen for connection requests, the function returns a non-zero value.
If the socket is not listening or the socket handle is invalid, the function returns zero.

Remarks
The InetIsListening function determines if the socket is being used in a server application to
actively listen for incoming connection requests from client applications. A listening socket can be
created using either the InetAsyncListen or InetListen functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAsyncListen, InetIsReadable, InetIsWritable, InetIsConnected, InetListen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsProtocolAvailable Function

BOOL WINAPI InetIsProtocolAvailable(
 INT nAddressFamily,
 INT nProtocol
);

The InetIsProtocolAvailable function determines if the operating system supports creating a
socket for the specified address family and protocol.

Parameters
nAddressFamily

An integer which identifies the address family that should be checked. It should be one of the
following values:

Constant Description

INET_ADDRESS_IPV4 Specifies that the function should determine if it can create an
Internet Protocol version 4 (IPv4) socket. This requires that the
system have an IPv4 TCP/IP stack bound to at least one network
adapter on the local system. All Windows systems include
support for IPv4 by default.

INET_ADDRESS_IPV6 Specifies that the function should determine if it can create an
Internet Protocol version 6 (IPv6) socket. This requires that the
system have an IPv6 TCP/IP stack bound to at least one network
adapter on the local system. Windows XP and Windows Server
2003 includes support for IPv6, however it is not installed by
default. Windows Vista and later versions include support for
IPv6 and enable it by default.

nProtocol

An integer which identifies the protocol that should be checked. It should be one of the
following values:

Constant Description

INET_PROTOCOL_TCP Specifies the Transmission Control Protocol. This protocol
provides a reliable, bi-directional byte stream. This requires
that the system be capable of creating a stream socket using
the specified address family.

INET_PROTOCOL_UDP Specifies the User Datagram Protocol. This protocol is
message oriented, sending data in discrete packets. This
requires that the system be capable of creating a datagram
socket using the specified address family.

Return Value
If the the system is capable of creating a socket using the specified address family and protocol,
this function will return a non-zero value. If the combination of address family and protocol is not
supported, this function will return a value of zero.

Remarks

The InetIsProtocolAvailable function is used to determine if the operating system supports
creating a particular type of socket. Typically it is used by an application to determine if the system
has an IPv6 TCP/IP stack installed and configured. By default, all Windows systems will have an
IPv4 stack installed if the system has a network adapter. However, not all systems may have an
IPv6 stack installed, particularly older Windows XP and Windows Server 2003 systems. Note that if
an IPv6 stack is not installed, the library will not recognize IPv6 addresses and cannot resolve host
names that only have an IPv6 (AAAA) record, even if the address or host name is valid.

Example
if (!InetIsProtocolAvailable(INET_ADDRESS_IPV6, INET_PROTOCOL_TCP))
{
 AfxMessageBox(_T("This system does not support IPv6"), MB_ICONEXCLAMATION);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetAddress, InetGetHostAddress, InetGetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsReadable Function

BOOL WINAPI InetIsReadable(
 SOCKET hSocket,
 DWORD dwTimeout,
 LPDWORD lpdwAvail
);

The InetIsReadable function is used to determine if data is available to be read from the socket.

Parameters
hSocket

Socket handle.

dwTimeout

Timeout value in milliseconds. If the socket cannot be read within this time period, the function
will return a value of zero. A timeout value of zero specifies that the socket should be polled
without blocking the current thread.

lpdwAvail

A pointer to an unsigned integer which will contain the number of bytes available to read.

Return Value
If the current thread can read data from the socket without blocking, the function returns a non-
zero value. If the current thread cannot read any data without blocking, the function returns zero.

Remarks
On some platforms, the value returned in lpdwAvail will not exceed the size of the receive buffer
(typically 64K bytes). Because of differences between TCP/IP stack implementations, it is not
recommended that your application exclusively depend on this value to determine the exact
number of bytes available. Instead, it should be used as a general indicator that there is data
available to be read.

If the connection is secure, the value returned in lpdwAvail will reflect the number of bytes
available in the encrypted data stream. The actual amount of data available to the application after
it has been decrypted will vary.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsClosed, InetIsWritable, InetPeek, InetRead, InetReadLine, InetReadStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsUrgent Function

BOOL WINAPI InetIsUrgent(
 SOCKET hSocket
);

The InetIsUrgent function determines if there is any out-of-band (OOB) data available to be read.

Parameters
hSocket

Handle to the socket.

Return Value
If there is out-of-band data, the return value is non-zero. If there is no out-of-band data, or an
error occurs the return value is zero. To determine if an error has occurred, use the
InetGetLastError function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetSetOption (INET_OPTION_INLINE)

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetIsWritable Function

BOOL WINAPI InetIsWritable(
 SOCKET hSocket,
 DWORD dwTimeout
);

The InetIsWritable function is used to determine if data can be written to the socket.

Parameters
hSocket

Socket handle.

dwTimeout

Timeout value in milliseconds. If the socket cannot be written to within this time period, the
function will return a value of zero. A timeout value of zero specifies that the socket should be
polled without blocking the current thread.

Return Value
If the current thread can write data to the socket within the timeout period, the function returns a
non-zero value. The function will return zero if the socket send buffer is full.

Remarks
The InetIsWritable function cannot be used to determine the amount of data that can be sent to
the remote host without blocking the current thread. A non-zero return value only indicates that
the send buffer is not full and can accept some data. In most cases, it is recommended that larger
blocks of data be broken into smaller logical blocks rather than attempting to send it all of the
data at once. For very large streams of data, it is recommended that you use the
InetWriteStream function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsReadable, InetWrite, InetWriteLine, InetWriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetListen Function

SOCKET WINAPI InetListen(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort
);

The InetListen function creates a passive socket used to listen for connections from a client
application.

This function has been deprecated and is included for backwards compatibility. Use the
InetServerStart function to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

Return Value
If the function succeeds, the return value is a socket handle. If the function fails, the return value is
INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

The socket option INET_OPTION_REUSEADDRESS is enabled by default when calling the
InetListen function. This allows an application to re-use a local address and port number when
creating the listening socket. If this behavior is not desired, use the InetListenEx function instead.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

After the listening socket has been created, the application should then call the InetAccept
function to wait for a client to establish a connection. For servers that need to handle multiple
simultaneous client connections, it is recommended that the asynchronous functions be used.

Example
SOCKET hServer = INVALID_SOCKET;
LPCTSTR lpszAddress = _T("192.168.0.48");

// Accept connections from clients that connect to

// address 192.168.0.48 on port 7000

hServer = InetListen(lpszAddress, 7000);
if (hServer == INVALID_SOCKET)
{
 DWORD dwError;
 TCHAR szError[256];

 dwError = InetGetLastError();
 InetGetErrorString(dwError, szError, 256);

 MessageBox(NULL, szError, NULL, MB_OK|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAccept, InetAcceptEx, InetInitialize, InetListenEx, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetListenEx Function

SOCKET WINAPI InetListenEx(
 LPCTSTR lpszLocalAddress,
 UINT nLocalPort,
 UINT nBacklog,
 DWORD dwOptions
);

The InetListenEx function creates a passive socket, and specifies the maximum number of
connection requests that will be queued.

This function has been deprecated and is included for backwards compatibility. Use the
InetServerStart function to create a server application.

Parameters
lpszLocalAddress

A pointer to a string which specifies the local IP address that the socket should be bound to. If
this parameter is NULL or points to an empty string, a client may establish a connection using
any valid network interface configured on the local system. If an address is specified, then a
client may only establish a connection with the system using that address.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero. Port numbers less than 1024 are considered reserved ports and may require that the
process execute with administrative privileges and/or require changes to the default firewall
rules to permit inbound connections.

nBacklog

The maximum length of the queue allocated for pending client connections. A value of zero
specifies that the size of the queue should be set to a maximum reasonable value. On Windows
server platforms, the maximum value is large enough to queue several hundred pending
connections.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are
supported:

Constant Description

INET_OPTION_NONE No option specified. If the address and port number
are in use by another application or a closed socket
which was listening on this port is still in the
TIME_WAIT state, the function will fail.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option enables a server application to listen for
connections using the specified address and port
number even if they were in use recently. This is
typically used to enable an application to close the
listening socket and immediately reopen it without
getting an error that the address is in use.

INET_OPTION_EXCLUSIVE This option specifies the local address and port

number is for the exclusive use by the current
process, preventing another application from forcibly
binding to the same address. If another process has
already bound a socket to the address provided by
the caller, this function will fail.

INET_OPTION_RESERVEDPORT This option specifies the listening socket should be
bound to an unused port number less than 1024,
which is typically reserved for well-known system
services. If this option is specified, the process may
require administrative privileges and firewall rules that
will permit a client to establish a connection with the
service.

INET_OPTION_NOINHERIT This option prevents the socket handle from being
inherited by child processes created by the
application. Using this option can mitigate situations
in which a child process does not close the handle,
leaving it open after the parent process has
disconnected from the server.

Return Value
If the function succeeds, the return value is a socket handle. If the function fails, the return value is
INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

If the INET_OPTION_REUSEADDRESS option is not specified, an error may be returned if a
listening socket was recently created for the same local address and port number. By default, once
a listening socket is closed there is a period of time that all applications must wait before the
address can be reused (this is called the TIME_WAIT state). The actual amount of time depends on
the operating system and configuration parameters, but is typically two to four minutes. Specifying
this option enables an application to immediately re-use a local address and port number that was
previously in use. Note that this does not permit more than one server to bind to the same
address.

If the INET_OPTION_EXCLUSIVE option is specified, the local address and port number cannot be
used by another process until the listening socket is closed. This can prevent another application
from forcibly binding to the same listening address as your server. This option can be useful in
determining whether or not another process is already bound to the address you wish to use, but
it may also prevent your server application from restarting immediately, regardless if the
INET_OPTION_REUSEADDRESS option has also been specified.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

After the listening socket has been created, the application should then call the InetAccept or
InetAcceptEx function to wait for a client to establish a connection. For servers that need to

handle multiple simultaneous client connections, it is recommended that the asynchronous
functions be used.

Example
SOCKET hServer = INVALID_SOCKET;
LPCTSTR lpszAddress = _T("192.168.0.48");

// Accept connections from clients that connect to
// address 192.168.0.48 on port 7000 with a standard
// backlog of 5 connections

hServer = InetListenEx(lpszAddress,
 7000,
 INET_BACKLOG,
 INET_OPTION_REUSEADDRESS);

if (hServer == INVALID_SOCKET)
{
 DWORD dwError;
 TCHAR szError[256];

 dwError = InetGetLastError();
 InetGetErrorString(dwError, szError, 256);

 MessageBox(NULL, szError, NULL, MB_OK|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetAccept, InetAcceptex, InetListen, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetMatchHostName Function

BOOL WINAPI InetMatchHostName(
 LPCTSTR lpszHostName,
 LPCTSTR lpszHostMask
 BOOL bResolve
);

The InetMatchHostName function matches a host name against one more strings that may
contain wildcards.

Parameters
lpszHostName

A pointer to a string which specifies the host name or IP address to match.

lpszHostMask

A pointer to a string which specifies one or more values to match against the host name. The
asterisk character can be used to match any number of characters in the host name, and the
question mark can be used to match any single character. Multiple values may be specified by
separating them with a semicolon.

bResolve

A boolean value which specifies if the host name or IP address should be resolved when
matching the host against the mask string. If this parameter is non-zero, two checks against the
host mask string will be performed; once for the host name specified and once for its IP
address. If this parameter is zero, then the match is made only against the host name string
provided.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetMatchHostName function provides a convenient way for an application to determine if a
given host name matches one or more mask strings which may contain wildcard characters. For
example, the host name could be "www.microsoft.com" and the host mask string could be
"*.microsoft.com". In this example, the function would return a non-zero value indicating the host
name matched the mask. However, if the mask string was "*.net" then the function would return
zero, indicating that there was no match. Multiple mask values can be combined by separating
them with a semicolon; for example, the mask "*.com;*.org" would match any host name in either
the .com or .org top-level domains.

If an internationalized domain name (IDN) is specified, it will be converted internally to an ASCII
string using Punycode encoding. The host mask will be matched against this encoded version of
the host name, not its Unicode version.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetAddress, InetGetHostAddress, InetGetHostName, InetGetLocalAddress, InetGetPeerAddress

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetNormalizeHostName Function

INT WINAPI InetNormalizeHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszNormalized,
 INT nMaxLength
);

The InetNormalizeHostName function returns the canonical form of a host name in the specified
buffer.

Parameters
lpszHostName

Pointer to the host name as a null-terminated string. This parameter cannot be a NULL pointer
or a zero length string.

lpszNormalized

Pointer to the string buffer that will contain the canonical form of the host name, including the
terminating null character. It is recommended that this buffer be at least 256 characters in size.
This parameter cannot be a NULL pointer and must be large enough to store the complete host
name.

nMaxLength

The maximum number of characters that can be copied to the lpszNormalized string buffer.
This parameter cannot be zero, and must include the terminating null character.

Return Value
If the function succeeds, the return value is the number of characters copied into the string buffer.
If the function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The InetNormalizeHostName function will remove all leading and trailing whitespace characters
from the host name and fold all upper-case characters to lower-case. If an internationalized
domain name (IDN) containing Unicode characters is passed to this function, it will be converted
to an ASCII compatible format for domain names.

The lpszHostName parameter should only specify a host name or IP address. If you want to
support the use of URLs to establish a connection, use the InetGetUrlHostName function which
has extended support for extracting the host name and port number specified in a URL.

If the Unicode version of this function is used, the host name will be converted from UTF-16 to
UTF-8 and then processed. If you are unsure if an internationalized domain name will be specified
as the host name, it is recommended you use the Unicode version.

Although this function performs checks to ensure that the lpszHostName parameter is in the
correct format and does not contain any illegal characters or malformed encoding, it does not
validate the existence of the domain name. To check if the host name exists and has a valid IP
address, use the InetValidateHostName function.

It is recommended that you use this function if your application needs to store the host name, and
if accepts a host name as user input. It is not necessary to call this function prior to calling other
SocketWrench functions which accept a host name as a parameter. Those functions already
normalize the host name and perform checks to ensure it is in the correct format.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this function will return a copy of that IP address in the buffer provided by the caller. This
allows the function to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the InetGetHostName
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetHostAddress, InetGetHostName, InetGetUrlHostName, InetHostNameToUnicode,
InetValidateHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetPeek Function

INT WINAPI InetPeek(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetPeek function reads the specified number of bytes from the socket and copies them into
the buffer, but it does not remove the data from the internal socket buffer. The data may be of
any type, and is not terminated with a null character.

Parameters
hSocket

The socket handle.

lpBuffer

Pointer to the buffer in which the data will be copied. This argument may be NULL, in which
case no data is copied from the socket buffers, however the function will return the number of
bytes available to read.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. If the lpBuffer
parameter is not NULL, this value must be greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes available to read from the socket.
A return value of zero indicates that there is no data available to read at that time. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetPeek function returns data that is available to read from the socket, up to the number of
bytes specified. The data returned by this function is not removed from the socket buffers. It must
be consumed by a subsequent call to the InetRead or InetReadEx function. The return value
indicates the number of bytes that can be read in a single operation, up to the specified buffer
size. However, it is important to note that it may not indicate the total amount of data available to
be read from the socket at that time.

If no data is available to be read, the method will return a value of zero. Using this method in a
loop to poll a non-blocking socket may cause the application to become non-responsive. To
determine if there is data available to be read, use the InetIsReadable function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFlush, InetRead, InetReadEx, InetWrite, InetWriteEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetRead Function

INT WINAPI InetRead(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetRead function reads the specified number of bytes from the socket and copies them into
the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hSocket

The socket handle.

lpBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the remote host has closed the connection and there is no more data available
to be read. If the function fails, the return value is INET_ERROR. To get extended error information,
call InetGetLastError.

Remarks
The InetRead function will read up to the specified number of bytes and store the data in the
buffer provided by the caller. If there is no data available to be read at the time this function is
called, the current thread will block until at least one byte of data becomes available, the timeout
period elapses or an error occurs. This function will return if any amount of data is sent by the
remote host, and will not block until the entire buffer has been filled. To avoid blocking the current
thread, either create an asynchronous socket or use the InetIsReadable function to determine if
there is data available to be read prior to calling this function.

The application should never make an assumption about the amount of data that will be available
to read. TCP considers all data to be an arbitrary stream of bytes and does not impose any
structure on the data itself. For example, if the remote host is sending data to the server in fixed
512 byte blocks of data, it is possible that a single call to the Read function will return only a
partial block of data, or it may return multiple blocks combined together. It is the responsibility of
the application to buffer and process this data appropriately.

For applications that are built using the Unicode character set, it is important to note that the
buffer is an array of bytes, not characters. If the remote host is writing string data to the socket, it
must be read as a stream of bytes and converted using the MultiByteToWideChar function. If
the remote host is sending lines of text terminated with a linefeed or carriage return and linefeed
pair, the InetReadLine function will return a line of text at a time and perform this conversion for
you.

When InetRead is called and the socket is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a

fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetIsReadable, InetPeek, InetReadEx, InetWrite, InetWriteEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetReadEx Function

INT WINAPI InetReadEx(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 INT cbBuffer,
 DWORD dwReserved,
 LPINTERNET_ADDRESS lpRemoteAddress,
 UINT * lpnRemotePort
);

The InetReadEx function reads the specified number of bytes from the socket and copies them
into the buffer. The data may be of any type, and is not terminated with a null character.

Parameters
hSocket

The socket handle.

lpvBuffer

Pointer to the buffer in which the data will be copied.

cbBuffer

The maximum number of bytes to read and copy into the specified buffer. This value must be
greater than zero.

dwReserved

Reserved parameter. This value must always be zero.

lpRemoteAddress

Pointer to an INTERNET_ADDRESS structure which will contain the IP address of the remote host
that sent the data being read. If this information is not required, the parameter may be specified
as NULL.

lpnRemotePort

Pointer to an unsigned integer which will contain the remote port number. If this information is
not required, the parameter may be specified as NULL.

Return Value
If the function succeeds, the return value is the number of bytes actually read. A return value of
zero indicates that the remote host has closed the connection and there is no more data available
to be read. If the function fails, the return value is INET_ERROR. To get extended error information,
call InetGetLastError.

Remarks
When InetReadEx is called and the socket is in non-blocking mode, it is possible that the function
will fail because there is no available data to read at that time. This should not be considered a
fatal error. Instead, the application should simply wait to receive the next asynchronous notification
that data is available.

This function extends the InetRead function to return additional information about the peer who
sent the data being received. For a client TCP socket, the IP address and remote port are the same
values that were used to establish the connection. For a server TCP socket, it is the IP address and
port number of the client which sent the data. When reading data from a UDP socket, this is the IP
address and remote port of the peer that sent the datagram. This information can be used in

conjunction with the InetWriteEx function to send a datagram back to that host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFlush, InetGetPeerAddress, InetPeek, InetRead, InetWrite, InetWriteEx, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetReadLine Function

BOOL WINAPI InetReadLine(
 SOCKET hSocket,
 LPTSTR lpszBuffer,
 LPINT lpnLength
);

The InetReadLine function reads up to a line of data from the socket and returns it in a string
buffer.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpszBuffer

Pointer to the string buffer that will contain the data when the function returns. The string will
be terminated with a null byte, and will not contain the end-of-line characters.

lpnLength

A pointer to an integer value which specifies the length of the buffer. The value should be
initialized to the maximum number of characters that can be copied into the string buffer,
including the terminating null character. When the function returns, its value will updated with
the actual length of the string.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetReadLine function reads data from the socket and copies into a specified string buffer.
Unlike the InetRead function which reads arbitrary bytes of data, this function is specifically
designed to return a single line of text data in a null-terminated string. When an end-of-line
character sequence is encountered, the function will stop and return the data up to that point. The
string buffer is guaranteed to be null-terminated and will not contain the end-of-line characters.

There are some limitations when using InetReadLine. The function should only be used to read
text, never binary data. In particular, the function will discard nulls, linefeed and carriage return
control characters. The Unicode version of this function will return a Unicode string, however this
function does not support reading raw Unicode data from the socket. Any data read from the
socket is internally buffered as octets (eight-bit bytes) and converted to Unicode using the
MultiByteToWideChar function.

This function will force the thread to block until an end-of-line character sequence is processed,
the read operation times out or the remote host closes its end of the socket connection. If this
function is called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data and then restore the socket to asynchronous operation. If another
socket operation is attempted while InetReadLine is blocked waiting for data from the remote
host, an error will occur. It is recommended that this function only be used with blocking
(synchronous) socket connections; if the application needs to establish multiple simultaneous
connections, it should create worker threads to manage each connection.

The InetRead and InetReadLine function calls can be intermixed, however be aware that
InetRead will consume any data that has already been buffered by the InetReadLine function
and this may have unexpected results.

Unlike the InetRead function, it is possible for data to be returned in the buffer even if the return
value is zero. Applications should also check the value of the lpnLength argument to determine if
any data was copied into the buffer. For example, if a timeout occurs while the function is waiting
for more data to arrive on the socket, it will return zero; however, data may have already been
copied into the string buffer prior to the error condition. It is the responsibility of the application to
process that data, regardless of the function return value.

Example
TCHAR szBuffer[MAXBUFLEN];
INT nLength;
BOOL bResult;

do
{
 nLength = sizeof(szBuffer);
 bResult = InetReadLine(hSocket, szBuffer, &nLength);

 if (nLength > 0)
 {
 // Process the line of data returned in the string
 // buffer; the string is always null-terminated
 }
} while (bResult);

DWORD dwError = InetGetLastError();
if (dwError == ST_ERROR_CONNECTION_CLOSED)
{
 // The remote host has closed its side of the connection and
 // there is no more data available to be read
}
else if (dwError != 0)
{
 // An error has occurred while reading a line of data
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetIsReadble, InetRead, InetWrite, InetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetReadStream Function

BOOL WINAPI InetReadStream(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions,
 LPBYTE lpMarker,
 DWORD cbMarker,
 DWORD dwReserved
);

The InetReadStream function reads the socket data stream and stores the contents in the
specified buffer.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpvBuffer

Pointer to the buffer that will contain or reference the data when the function returns. The
actual argument depends on the value of the dwOptions parameter which specifies how the
data stream will be stored.

lpdwLength

A pointer to an unsigned integer value which specifies the maximum length of the buffer and
contains the number of bytes read when the function returns. This argument should should
always point to an initialized value. If the lpvBuffer argument specifies a memory buffer, then
this argument cannot point to an initialized value of zero; if any other type of stream buffer is
used and the initialized value is zero, that indicates that all available data from the socket should
be returned until the end-of-stream marker is encountered or the remote host disconnects.

dwOptions

An unsigned integer value which specifies both the stream buffer type and any options to be
used when reading the data stream. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a pointer to a global memory
handle initialized to NULL, then the function will
return a handle which references the data;
otherwise, the function will consider the parameter
a pointer to a block of pre-allocated memory
which will contain the stream data when the
function returns. In most cases, it is recommended
that an application explicitly specify the stream
buffer type rather than using the default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
pre-allocated block of memory which will contain
the data read from the socket when the function

returns. If this stream buffer type is used, the
lpdwLength argument must point to an unsigned
integer which has been initialized with the
maximum length of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a pointer to a
global memory handle. When the function returns,
the handle will reference a block of memory that
contains the stream data. The application should
take care to make sure that the handle passed to
the function does not currently reference a valid
block of memory; it is recommended that the
handle be initialized to NULL prior to calling this
function.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read from the socket will be written to this handle
using the WriteFile function.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by the
hSocket argument will be written to this socket.
The socket handle passed to this function must
have been created by this library; if it is a socket
created by an third-party library or directly by the
Windows Sockets API, you should either attach the
socket using the InetAttachSocket function or use
the INET_STREAM_HANDLE stream buffer type
instead.

In addition to the stream buffer types listed above, the dwOptions parameter may also
have one or more of the following bit flags set. Programs should use a bitwise operator
to combine values.

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data returned in the buffer to be larger
than the source data. For example, if the source
data only terminates a line of text with a single
linefeed, this option will have the effect of inserting
a carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being returned as 16-
bit wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream; if the
application is using a pre-allocated memory buffer,
this must be considered before calling this
function.

lpMarker

A pointer to an array of bytes which marks the end of the data stream. When this byte
sequence is encountered by the function, it will stop reading and return to the caller.
The buffer will contain all of the data read from the socket up to and including the
end-of-stream marker. If this argument is NULL, then the function will continue to read
from the socket until the maximum buffer size is reached, the remote host closes its
socket or an error is encountered.

cbMarker

An unsigned integer value which specifies the length of the end-of-stream marker in
bytes. If the lpMarker parameter is NULL, then this value must be zero.

dwReserved

A reserved parameter. This value must always be zero.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The InetReadStream function enables an application to read an arbitrarily large stream
of data and store it in memory, write it to a file or even another socket. Unlike the
InetRead method, which will return immediately when any amount of data has been
read, InetReadStream will only return when the buffer is full as specified by the
lpdwLength parameter, the logical end-of-stream marker has been read, the socket
closed by the remote host or when an error occurs.

This function will force the thread to block until the operation completes. If this function is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
InetReadStream is blocked waiting for data from the remote host, an error will occur. It
is recommended that this function only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

It is possible for data to be returned in the buffer even if the function returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was copied into the buffer. For example, if a timeout occurs while the function
is waiting for more data to arrive on the socket, it will return zero; however, data may
have already been copied into the buffer prior to the error condition. It is the
responsibility of the application to process that data, regardless of the function return
value.

Because InetReadStream can potentially cause the application to block for long periods
of time as the data stream is being read, the function will periodically generate
INET_EVENT_PROGRESS events. An application can register an event hander using the
InetRegisterEvent function, and can obtain information about the current operation by
calling the InetGetStreamInfo function.

Example
HGLOBAL hgblBuffer = NULL; // Return data in a global memory buffer
DWORD cbBuffer = 102400; // Read up to 100K bytes
BOOL bResult;

bResult = InetReadStream(hSocket,
 &hgblBuffer,
 &cbBuffer,
 INET_STREAM_HGLOBAL | INET_STREAM_CONVERT,
 NULL, 0, 0);

if (bResult && cbBuffer > 0)
{
 LPBYTE lpBuffer = (LPBYTE)GlobalLock(hgblBuffer);

 // Use data in the stream buffer

 GlobalUnlock(hgblBuffer);
 GlobalFree(hgblBuffer);
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetStreamInfo, InetRead, InetReadLine, InetStoreStream, InetWrite, InetWriteLine,
InetWriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetRegisterEvent Function

INT WINAPI InetRegisterEvent(
 SOCKET hSocket,
 UINT nEventId,
 INETEVENTPROC lpEventProc,
 DWORD_PTR dwParam
);

The InetRegisterEvent function registers a callback function for the specified event.

Parameters
hSocket

Socket handle.

nEventId

An unsigned integer which specifies which event should be registered with the specified callback
function. This parameter is ignored if the socket handle specifies a server created using the
InetServerStart function. One or more of the following values may be used:

Constant Description

INET_EVENT_ACCEPT A network event that indicates the process has received a
connection request from a client and should accept the
connection using the InetAsyncAccept function. This
event is only generated for server applications which have
created an asynchronous socket using the
InetAsyncListen function.

INET_EVENT_CONNECT A network event that indicates the connection to the
remote host has completed.

INET_EVENT_DISCONNECT A network event that indicates the remote host has
closed the connection. The process should read any
remaining data and disconnect.

INET_EVENT_READ A network event which indicates data is available to read.
No additional messages will be posted until the process
has read at least some of the data from the socket. This
event is only generated if the socket is in asynchronous
mode.

INET_EVENT_WRITE A network event which indicates the application can send
data to the remote host. This notification is sent after a
connection has been established, or after a previous
attempt to write data has failed because it would result in
a blocking operation. This event is only generated if the
socket is in asynchronous mode.

INET_EVENT_TIMEOUT The network operation has exceeded the specified
timeout period. The application may attempt to retry the
operation, or may disconnect from the remote host and
report an error to the user.

INET_EVENT_CANCEL The application has canceled a blocking operation. This

event is fired once an operation has been terminated by
the InetCancel function, and control has been returned
to the calling process.

lpEventProc

Specifies the address of the application defined callback function. For more information about
the callback function, see the description of the InetEventProc callback function. If this
parameter is NULL, the callback for the specified event is disabled. This parameter cannot be
NULL if the socket handle specifies a server created using the InetServerStart function.

dwParam

A user-defined integer value that is passed to the callback function. If the application targets the
x86 (32-bit) platform, this parameter must be a 32-bit unsigned integer. If the application
targets the x64 (64-bit) platform, this parameter must be a 64-bit unsigned integer.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The InetRegisterEvent function associates a callback function with a specific event. The event
handler is an InetEventProc function that is invoked when the event occurs. Arguments are
passed to the function to identify the client session, the event type and the user-defined value
specified when the event handler is registered. If the event occurs because of an error condition,
the error code will be provided to the handler.

The callback function specified by the lpEventProc parameter must be declared using the
__stdcall calling convention. This ensures the arguments passed to the event handler are pushed
on to the stack in the correct order. Failure to use the correct calling convention will corrupt the
stack and cause the application to terminate abnormally.

This function can be used to change the callback function and user defined parameter for a server
created using the InetServerStart function. However, it cannot be used with client sockets
automatically created by the server interface. Those sockets are managed separately in their own
thread, and individual client event notifications are not supported.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAsyncAccept, InetAsyncAcceptEx, InetAsyncListen, InetDisableEvents, InetEnableEvents,
InetEventProc, InetFreezeEvents

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetReject Function

BOOL WINAPI InetReject(
 SOCKET hSocket
);

The InetReject function is used to reject a client connection request.

Parameters
hSocket

Handle to a listening socket.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetReject function rejects a pending client connection and the remote host will see this as
the connection being aborted. If there are no pending client connections at the time, this function
will immediately return with an error indicating that the operation would cause the thread to block.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAbort, InetAccept, InetListen

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerAsyncNotify Function

BOOL WINAPI InetServerAsyncNotify(
 SOCKET hServer,
 HWND hWnd,
 UINT uMsg
);

Enable or disable asynchronous notification of changes in server status.

Parameters
hServer

The socket handle.

hWnd

A handle to the window whose window procedure will receive the notification message.

uMsg

The user-defined message that will be sent to the notification window.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerAsyncNotify function is used by an application to enable or disable asynchronous
notifications. The message window is typically the main UI window and these notifications are used
signal to the application that it should update the user interface. If the hWnd parameter is not
NULL, it must specify a valid window handle and the user-defined message must have a value of
WM_USER or higher. The application cannot specify a notification message that is reserved by the
operating system. The pseudo-handle HWND_BROADCAST cannot be specified as the
notification window. If the hWnd parameter is NULL, notifications for the specified server will be
disabled.

When asynchronous notifications are enabled for a server, the server will post the user-defined
message to the window whenever there is a change in status or after a client has connected or
disconnected from the server. The wParam message parameter will contain the notification
message and the lParam message parameter will contain the handle to the server or the unique
client ID. The following notification messages are defined:

Constant Description

INET_NOTIFY_STARTUP This notification is sent when the server has started and
is preparing to accept client connections. This
notification is only sent once, and only if asynchronous
notifications are enabled immediately after the
InetServerStart function is called. This message will not
be sent once the server has begun accepting client
connections or when notification messages are disabled
and then subsequently re-enabled at a later time. The
lParam message parameter will specify the handle to
the server.

INET_NOTIFY_LISTEN This notification is sent when the server is listening for

client connections. This notification message may be
sent to the application multiple times over the lifetime of
the server. If the server was suspended, this notification
will be sent after the application calls the
InetServerResume function to resume accepting client
connections. The lParam message parameter will specify
the handle to the server.

INET_NOTIFY_SUSPEND This notification is sent when the server suspends
accepting new connections because the application has
called either the InetServerSuspend or
InetServerSuspendEx function. This notification
message may be sent to the application multiple times
over the lifetime of the server. The lParam message
parameter will specify the handle to the server.

INET_NOTIFY_RESTART This notification is sent when the server is restarted using
the InetServerRestart function. Note that the server
socket handle provided by the lParam message
parameter will specify the new socket handle of the
restarted server instance, not the original socket handle.
The lParam message parameter will specify the handle
to the server.

INET_NOTIFY_CONNECT This notification is sent when the server accepts a client
connection and the thread that manages the client
session has begun processing network events for that
client. This message notification will not be sent if the
client connection is rejected by the server. The lParam
message parameter will specify the unique ID of the
client that connected to the server.

INET_NOTIFY_DISCONNECT This notification is sent when the client disconnects from
the server and the client socket has been closed. This
notification message may not occur for each client
session that is forced to terminate as the result of the
server being stopped using the InetServerStop
function. The lParam message parameter will specify the
unique ID of the client that disconnected from the
server.

INET_NOTIFY_SHUTDOWN This notification is sent when the server thread is in the
process of terminating. At the time the application
processes this notification message, the server handle in
lParam will reference the defunct server and cannot be
used with other server functions. The lParam message
parameter will specify the handle to the server.

If asynchronous notifications are enabled, you should never use those notifications as a
replacement for an event handler. When an event occurs, the callback function that handles the
event is invoked in the context of the thread that manages the client session. The application
should exchange data with the client within that event handler and not in response to a
notification message. These notification messages should only be used to update the application

UI in response to changes in the status of the server.

The INET_NOTIFY_CONNECT and INET_NOTIFY_DISCONNECT notifications are different from the
other server notifications because the lParam message parameter does not specify the server
handle, but rather the unique client ID associated with the session that connected to or
disconnected from the server. If you need to obtain the handle to the client session using the ID,
call the InetGetClientHandle function. To obtain the server handle in response to the
INET_NOTIFY_CONNECT message, use the InetGetClientServerById function. Note that at the
time the application processes the INET_NOTIFY_DISCONNECT notification message, the client
session will have already terminated.

This function can only be used with a handle returned by the InetServerStart function and cannot
be used with sockets created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientServerById, InetGetServerStatus, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerBroadcast Function

INT WINAPI InetServerBroadcast(
 SOCKET hServer,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetServerBroadcast function sends data to clients that are connected to the specified
server.

Parameters
hServer

The socket handle.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the server clients.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of clients that the data was sent to. If the
function fails, the return value is INET_ERROR. To get extended error information, call
InetGetLastError.

Remarks
The InetServerBroadcast function sends the contents of the buffer to all of the clients that are
connected to the specified server. This function will block until all clients have been sent a copy of
the data. There is no guarantee in which order the clients will receive and process the data that
has been broadcast.

This function can only be used with a socket handle created using the InetServerStart function
and cannot be used with sockets created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetClientBroadcast, InetWrite, InetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerLock Function

BOOL WINAPI InetServerLock(
 SOCKET hServer
);

The InetServerLock function locks the specified server, causing other client threads to block until
it is unlocked.

Parameters
hServer

The socket handle to the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerLock function causes the specified server to enter a locked state where only the
current thread may interact with the server and the clients that are connected to it. While a server
is locked, all other threads will block when they attempt to perform a network operation. When
the server is unlocked, the blocked threads will resume normal execution.

This function should be used carefully, and a server should never be left in a locked state for an
extended period of time. It is meant to be used when the server process updates a global data
structure and it must prevent any other threads from performing a network operation during the
update. Only one server can be locked at any one time, and once a server has been locked, it can
only be unlocked by the same thread.

The program should always check the return value from this function, and should never assume
that the lock has been established. If more than one thread attempts to lock a server at the same
time, there is no guarantee as to which thread will actually establish the lock. If a potential
deadlock situation is detected, this function will fail and return a value of zero.

Every time the InetServerLock function is called, an internal lock counter is incremented, and the
lock will not be released until the lock count drops to zero. This means that each call to
InetServerLock must be matched by an equal number of calls to the InetServerUnlock function.
Failure to do so will result in the server becoming non-responsive as it remains in a locked state.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetLockedServer, InetServerUnlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerRestart Function

SOCKET WINAPI InetServerRestart(
 SOCKET hServer
);

The InetServerRestart function restarts the server, terminating all active client sessions.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is the new socket handle for the specified server. If the
function fails, the return value is INVALID_SOCKET. To get extended error information, call
InetGetLastError.

Remarks
The InetServerRestart function will restart the specified server, terminating all active client
sessions and recreating the listening socket. The socket handle that is returned by the function is
the handle for the new listening socket, and the old handle value is no longer valid. If the function
is unable to recreate the listening socket for any reason, the server thread is terminated.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerResume, InetServerStart, InetServerStop, InetServerSuspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerResume Function

BOOL WINAPI InetServerResume(
 SOCKET hServer
);

The InetServerResume function resumes accepting client connections on the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerResume function instructs the server to resume accepting client connections. Any
pending client connections that were requested while the server was suspended will be accepted.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerRestart, InetServerStart, InetServerStop, InetServerSuspend

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerStart Function

SOCKET WINAPI InetServerStart(
 LPCTSTR lpszLocalHost,
 UINT nLocalPort,
 UINT nBacklog,
 UINT nMaxClients,
 UINT nTimeout,
 UINT nPriority,
 DWORD dwOptions,
 INETEVENTPROC lpEventProc,
 DWORD_PTR dwEventParam,
 LPSECURITYCREDENTIALS lpCredentials
);

The InetServerStart function begins listening for client connections on the specified local address
and port number. The server is started in its own thread and manages the client sessions
independently of the calling thread. All interaction with the server and its client sessions takes
place inside the callback function specified by the caller.

Parameters
lpszLocalHost

A pointer to a string which specifies the local hostname or IP address address that the socket
should be bound to. If this parameter is NULL or an empty string, then an appropriate address
will automatically be used. A specific address should only be used if it is required by the
application.

nLocalPort

The local port number that the socket should be bound to. This value must be greater than
zero.

nBacklog

The maximum length of the queue allocated for pending client connections. A value of zero
specifies that the size of the queue should be set to a maximum reasonable value. On Windows
server platforms, the maximum value is large enough to queue several hundred pending
connections.

nMaxClients

The maximum number of client connections that can be established with the server. A value of
zero specifies that there should not be any fixed limit on the number of active client
connections. This value can be adjusted after the server has been created by calling the
InetServerThrottle function.

nTimeout

The number of seconds the server should wait for a client to perform a network operation. If the
client does not exchange any information with the server within this period of time, a timeout
event will occur. The timeout value affects all clients that are connected to the server.

nPriority

An integer value which specifies the priority for the server and all client sessions. The priority for
a specific client session may be modified by calling the InetSetClientPriority function. This
parameter may be one of the following values:

Constant Description

INET_PRIORITY_NORMAL The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
client session. It is typically used with lightweight
services running in the background that are designed
for few client connections. The client thread will be
assigned a lower scheduling priority and will be
frequently forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. The client thread will be
assigned a lower scheduling priority and will
occasionally be forced to yield execution to other
threads.

INET_PRIORITY_HIGH This priority increases the overall resource utilization
for the client session and the thread will be given
higher scheduling priority. It can be used when it is
important for the client session thread to be highly
responsive. It is not recommended that this priority be
used on a system with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization. The thread will be
given higher scheduling priority and will be more
responsive to the remote host. It is not recommended
that this priority be used on a system with a single
processor.

dwOptions

An unsigned integer used to specify one or more socket options. The following values are
supported:

Constant Description

INET_OPTION_NONE No option specified. If the address and port number
are in use by another application or a closed socket
which was listening on this port is still in the
TIME_WAIT state, the function will fail.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option enables a server application to listen for
connections using the specified address and port
number even if they were in use recently. This is
typically used to enable an application to close the
listening socket and immediately reopen it without
getting an error that the address is in use.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to

keep the connection active. Enabling this option will
also help applications detect the physical loss of a
network connection, such as an Ethernet cable being
unplugged. This option does not guarantee that
persistent connections will be maintained over long
periods of time.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and combines smaller
packets into a single larger packet when sending data
to a remote host. Specifying this option can improve
the responsiveness and overall throughput of
applications that implement their own buffering and
exchange large amounts of information.

INET_OPTION_NOINHERIT This option prevents the server socket handle from
being inherited by child processes created by the
application. Using this option can mitigate situations
in which a child process does not close the handle,
leaving it open after the parent process has
disconnected from the server.

INET_OPTION_SECURE This option specifies that a secure connection should
be established with the client, where the client
immediately initiates the SSL handshake when it
connects to the server. To implement an explicit SSL
session, where the client establishes a standard, non-
secure connection and then sends a command to the
server to initiate a secure session, you should not use
this option. Instead, use the InetEnableSecurity
function to selectively enable SSL for the client
session.

lpEventProc

Specifies the address of the application defined callback function. For more information about
the callback function, see the description of the InetEventProc callback function. This
parameter cannot be NULL.

dwEventParam

A user-defined integer value that is passed to the callback function.

lpCredentials

Pointer to credentials structure SECURITYCREDENTIALS. This may be NULL, unless the
dwOptions parameter includes INET_OPTION_SECURE. When a secure session is specified, the
fields dwSize, lpszCertStore, and lpszCertName must be defined, while other fields may be left
undefined. Set dwSize to the size of the SECURITYCREDENTIALS structure.

Return Value
If the function succeeds, the return value is a socket handle. If the function fails, the return value is
INVALID_SOCKET. To get extended error information, call InetGetLastError.

Remarks
In most cases, the lpszLocalHost parameter should be a NULL pointer or an empty string. On a

multihomed system, this will enable the server to accept connections on any appropriately
configured network adapter. Specifying a hostname or IP address will limit client connections to
that particular address. Note that the hostname or address must be one that is assigned to the
local system, otherwise an error will occur.

If an IPv6 address is specified as the local address, the system must have an IPv6 stack installed
and configured, otherwise the function will fail.

To listen for connections on any suitable IPv4 interface, specify the special dotted-quad address
"0.0.0.0". You can accept connections from clients using either IPv4 or IPv6 on the same socket by
specifying the special IPv6 address "::0", however this is only supported on Windows 7 and
Windows Server 2008 R2 or later platforms. If no local address is specified, then the server will only
listen for connections from clients using IPv4. This behavior is by design for backwards
compatibility with systems that do not have an IPv6 TCP/IP stack installed.

If the INET_OPTION_REUSEADDRESS option is not specified, an error may be returned if a
listening socket was recently created for the same local address and port number. By default, once
a listening socket is closed there is a period of time that all applications must wait before the
address can be reused (this is called the TIME_WAIT state). The actual amount of time depends on
the operating system and configuration parameters, but is typically two to four minutes. Specifying
this option enables an application to immediately re-use a local address and port number that was
previously in use. Note that this does not permit more than one server to bind to the same
address.

When the event handler callback function is invoked by the server, it normally executes in the
context of the worker thread that manages that client session. This means that even if you do not
explicitly create any threads in your application, you must design your program to be thread-safe,
with synchronized access to global objects and data. If your application has a user interface, only
the main UI thread should attempt to modify controls. If you attempt to modify a control from a
worker thread, such as adding a row to a listbox control, it can result the application becoming
deadlocked. This means that you should not attempt to directly update the UI from within the
event handler function. To enable asynchronous server notifications for a GUI application, use the
InetServerAsyncNotify function.

The socket handle returned by this function references the listening socket that was created when
the server was started. The service is managed in another thread, and all interaction with the
server and active client connections are performed inside the event handler. To disconnect all
active connections, close the listening socket and terminate the server thread, call the
InetServerStop function.

Example
#define SERVER_PORT 7000
#define SERVER_CLIENTS 100

SOCKET hServer = INVALID_SOCKET;

// Accept connections from clients that connection on port 7000 with a default
// backlog of 5 connections and a maximum of 100 client connections.

hServer = InetServerStart(NULL,
 SERVER_PORT,
 INET_BACKLOG,
 SERVER_CLIENTS,
 INET_TIMEOUT,
 INET_PRIORITY_NORMAL,

 INET_OPTION_REUSEADDRESS,
 MyEventHandler,
 0,
 NULL);

if (hServer == INVALID_SOCKET)
{
 DWORD dwError;
 TCHAR szError[256];

 dwError = InetGetLastError();
 InetGetErrorString(dwError, szError, 256);

 MessageBox(NULL, szError, NULL, MB_OK|MB_TASKMODAL);
 return;
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetServerData, InetGetServerPriority, InetGetServerStatus, InetServerLock, InetServerRestart,
InetServerResume, InetServerStop, InetServerSuspend, InetServerThrottle, InetServerUnlock,
InetSetServerData, InetSetServerPriority InetValidateCertificate

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerStop Function

BOOL WINAPI InetServerStop(
 SOCKET hServer
);

The InetServerStop function signals the server to stop listening for connections and terminates all
client sessions.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerStop function signals the server to stop accepting client connections, disconnects
all active client connections and terminates the thread that is managing the server session. The
socket handle is no longer valid after the server has been stopped and should no longer be used.
Note that it is possible that the actual handle value may be re-used at a later point when a new
server is started. An application should always consider the socket handle to be opaque and never
depend on it being a specific value.

If this function is called when there is one or more clients connected to the server, it will signal
each client thread to terminate and then wait for the server thread to terminate. As the client
sessions are terminated, the event handler will not be invoked. If you wish to ensure that all clients
are disconnected normally before stopping the server, call the InetServerSuspendEx function
with the INET_SUSPEND_DISCONNECT option and then stop the server after the last client has
disconnected.

Because the InetServerStop function waits for the server thread to terminate, this function may
cause your application to block. If this is not desirable, use the InetServerStopEx function which
can perform the shutdown sequence asynchronously.

After the server thread has been terminated, the listening socket will go into a TIME-WAIT state
which prevents an application from reusing the same address and port number bound to that
socket for a brief period of time, typically two to four minutes. This is normal behavior designed to
prevent delayed or misrouted packets of data from being read by a subsequent connection. To
immediately start a new server using the same local address and port number, the option
INET_OPTION_REUSEADDRESS must be specified when calling the InetServerStart function.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also

InetGetServerStatus, InetServerRestart, InetServerStart, InetServerStopEx, InetServerSuspendEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/library/inetserversuspendex.html

 InetServerStopEx Function

BOOL WINAPI InetServerStopEx(
 SOCKET hServer,
 DWORD dwMilliseconds
);

The InetServerStopEx function signals the server to stop listening for connections and terminates
all client sessions.

Parameters
hServer

Handle to the server socket.

dwMilliseconds

An unsigned integer value that specifies the number of milliseconds to wait for all active clients
to disconnect and the server thread to terminate.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerStopEx function signals the server to stop accepting client connections,
disconnects all active client connections and terminates the thread that is managing the server
session. The socket handle is no longer valid after the server has been stopped and should no
longer be used. Note that it is possible that the actual handle value may be re-used at a later point
when a new server is started. An application should always consider the socket handle to be
opaque and never depend on it being a specific value.

Unlike the InetServerStop function, which waits for fixed period of time for the server thread to
terminate, the InetServerStopEx allows the caller to determine how much time should be spent
waiting for the clients to disconnect and the server thread to terminate. If the dwMilliseconds
parameter has a value of INFINITE, the function will wait for an indefinite period of time until all
clients have disconnected, the listening socket closed and the server thread has terminated. If the
dwMilliseconds parameter has a value of zero, the function does not wait for the server to
shutdown. Instead, it returns immediately and the shutdown process continues in the background.

If your application specifies a value of zero for the dwMilliseconds parameter, the event handler
will be invoked with the INET_EVENT_DISCONNECT event as each client disconnects from the
server during the shutdown process. If you depend on this event to perform some cleanup on a
per-client basis, you must ensure that the application does not exit until the server thread has
terminated. To perform a graceful shutdown of the server, it is recommended that you use the
InetServerSuspendEx function and specify the INET_SUSPEND_DISCONNECT option. After all
clients have disconnected, call the InetServerStop function to terminate the server thread.

After the server thread has been terminated, the listening socket will go into a TIME-WAIT state
which prevents an application from reusing the same address and port number bound to that
socket for a brief period of time, typically two to four minutes. This is normal behavior designed to
prevent delayed or misrouted packets of data from being read by a subsequent connection. To
immediately start a new server using the same local address and port number, the option
INET_OPTION_REUSEADDRESS must be specified when calling the InetServerStart function.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerRestart, InetServerStart, InetServerStop, InetServerSuspendEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

file:///C|/Projects/cstools11/pdf/winsock/library/inetserversuspendex.html

 InetServerSuspend Function

BOOL WINAPI InetServerSuspend(
 SOCKET hServer
);

Suspend accepting client connections on the specified server.

Parameters
hServer

Handle to the server socket.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerSuspend function instructs the server to suspend accepting new client
connections. Any incoming client connections will be queued up to the maximum backlog value
specified when the server was started. To resume accepting client connections, call the
InetServerResume function.

It is recommended that you only suspend a server if absolutely necessary, and only for brief
periods of time. If you want to limit the number of active client connections or control the
connection rate for clients, use the InetServerThrottle function.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerRestart, InetServerResume, InetServerStart, InetServerStop,
InetServerThrottle

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerThrottle Function

BOOL WINAPI InetServerThrottle(
 SOCKET hServer,
 UINT nMaxClients,
 UINT nMaxClientsPerAddress,
 DWORD dwConnectionRate
);

The InetServerThrottle function limits the number of active client connections, connections per
address and connection rate.

Parameters
hServer

Handle to the server socket.

nMaxClients

A value which specifies the maximum number of clients that may connect to the server. A value
of zero specifies that there is no fixed limit to the number of client connections.

nMaxClientsPerAddress

A value which specifies the maximum number of clients that may connect to the server from the
same IP address. A value of zero specifies that there is no fixed limit to the number of client
connections per address. By default, there is no limit on the number of client connections per
address.

dwConnectionRate

A value which specifies a restriction on the rate of client connections, limiting the number of
connections that will be accepted within that period of time. A value of zero specifies that there
is no restriction on the rate of client connections. The higher this value, the fewer the number of
connections that will be accepted within a specific period of time. By default, there is no limit on
the client connection rate.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerThrottle function is used to limit the number of connections and the connection
rate to minimize the potential impact of a large number of client connections over a short period
of time. This can be used to protect the server from a client application that is malfunctioning or a
deliberate denial-of-service attack in which the attacker attempts to flood the server with
connection attempts.

If the maximum number of client connections or maximum number of connections per address is
exceeded, the server will reject subsequent connection attempts until the number of active client
sessions drops below the specified threshold. Note that adjusting these values lower than the
current connection limits will not affect clients that have already connected to the server. For
example, if the InetServerStart function is called with the maximum number of clients set to 100,
and then InetServerThrottle is called lowering that value to 75, no existing client connections will
be affected by the change. However, the server will not accept any new connections until the
number of active clients drops below 75.

Increasing the connection rate value will force the server to slow down the rate at which it will
accept incoming client connection requests. For example, setting this parameter to a value of 1000
would limit the server to accepting one client connection every second, while a value of 250 would
allow the server to accept four client connections per second. Note that significantly increasing the
amount of time the server must wait to accept client connections can exceed the connection
backlog queue, resulting in client connections being rejected.

The socket handle for the server must be one that was created by calling the InetServerStart
function, and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStatus, InetServerLock, InetServerRestart, InetServerResume, InetServerStart,
InetServerSuspend, InetServerUnlock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetServerUnlock Function

BOOL WINAPI InetServerUnlock(
 SOCKET hServer
);

The InetServerUnlock function unlock the specified server, allowing other client threads to
resume execution.

Parameters
hServer

The socket handle to the server.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetServerUnlock function releases the lock on the specified server and allows any blocked
threads to resume execution. Only one server may be locked at any one time, and only the thread
which established the lock can unlock the server.

Every time the InetServerLock function is called, an internal lock counter is incremented, and the
lock will not be released until the lock count drops to zero. This means that each call to
InetServerLock must be matched by an equal number of calls to the InetServerUnlock function.
Failure to do so will result in the server becoming non-responsive as it remains in a locked state.

The program should always check the return value from this function, and should never assume
that the lock has been released. If a potential deadlock situation is detected, this function will fail
and return a value of zero.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetLockedServer, InetGetServerStatus, InetServerLock

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetClientData Function

BOOL WINAPI InetSetClientData(
 SOCKET hClient,
 VOID lpvData
);

The InetSetClientData function sets the application defined data associated with the specified
client session.

Parameters
hSocket

The socket handle.

lppvData

Pointer to the application defined data associated with the specified client session.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the client session could not be modified. To get extended error
information, call InetGetLastError.

Remarks
The InetSetClientData function is used to associate application defined data with a specific client
session. This is typically used to associate a pointer to a data structure or a class instance with the
client socket. A pointer to the data can be retrieved using the InetGetClientData function.

You should never specify a pointer to a local variable or data structure that will go out of scope
when the calling function exits. If you do this, the pointer will no longer be valid after the function
exits and attempting to dereference that pointer at some later time can cause an exception to be
thrown and terminate the program. You should always allocate a block of memory for the data
using a function such as HeapAlloc or LocalAlloc. If you specify the address of a static or global
data structure, you must use thread synchronization functions when dereferencing and modifying
that structure.

This function can only be used with client socket handles created using the SocketWrench server
interface. It cannot be used with socket handles created using the InetConnect or InetAccept
functions.

Example
UINT *pnValue1 = (UINT *)LocalAlloc(LPTR, sizeof(UINT));
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (InetSetClientData(hSocket, pnValue1) == FALSE)
{
 // Unable to associate the data with this session
 return;
}

if (InetGetClientData(hSocket, &pnValue2) == FALSE)
{
 // Unable to retrieve the data associated with this session

 return;
}

// *pnValue2 == 1234
printf("The value of user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientData, InetGetServerData, InetSetServerData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetClientMoniker Function

INT WINAPI InetSetClientMoniker(
 SOCKET hSocket,
 LPCTSTR lpszMoniker
);

The InetSetClientMoniker function associates a unique string moniker with the specified client
session.

Parameters
hSocket

Handle to the client socket.

lpszMoniker

Pointer to a string which specifies the moniker for the specified client socket. If this parameter is
NULL or specifies an empty string, a moniker will no longer be associated with the client session.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
A client moniker is a string which can be used to uniquely identify a specific client session aside
from its socket handle. The InetGetClientMoniker function will return the moniker that was
previously assigned to the client, if any. To obtain the socket handle associated with a given
moniker, use the InetFindClientMoniker function.

Monikers are not case-sensitive, and they must be unique so that no client socket for a particular
server can have the same moniker. The maximum length for a moniker is 127 characters.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept
functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFindClientMoniker, InetGetClientHandle, InetGetClientId, InetGetClientMoniker

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetClientPriority Function

INT WINAPI InetSetClientPriority(
 SOCKET hClient,
 INT nPriority
);

The InetSetClientPriority function sets the current priority for the specified client session.

Parameters
hClient

Handle to the client session.

nPriority

An integer value which specifies the new priority for the client session. It may be one of the
following values:

Constant Description

INET_PRIORITY_NORMAL The default priority which balances resource and
processor utilization. It is recommended that most
applications use this priority.

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
client session. It is typically used with lightweight
services running in the background that are designed
for few client connections. The client thread will be
assigned a lower scheduling priority and will be
frequently forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for
the client session and meters the processor utilization
for the client session. The client thread will be
assigned a lower scheduling priority and will
occasionally be forced to yield execution to other
threads.

INET_PRIORITY_HIGH This priority increases the overall resource utilization
for the client session and the thread will be given
higher scheduling priority. It is not recommended that
this priority be used on a system with a single
processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization. The client thread will
be given higher scheduling priority and will be more
responsive to network events. It is not recommended
that this priority be used on a system with a single
processor.

Return Value
If the function succeeds, the return value is the previous priority for the specified client session. If
the function fails, the return value is INET_ERROR. To get extended error information, call

InetGetLastError.

Remarks
The InetSetClientPriority function can be used to change the current priority assigned to the
specified client session. The client priority is inherited from the priority specified when the server is
started using the InetServerStart function.

The socket handle for the client must be one that was created as part of the SocketWrench server
interface, and cannot be a socket that was created using the InetConnect or InetAccept
functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetGetServerPriority, InetServerStart, InetSetServerPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetHostFile Function

INT WINAPI InetSetHostFile(
 LPCTSTR lpszFileName
);

The InetSetHostFile function specifies the name of an alternate file to use when resolving
hostnames and IP addresses. The host file is used as a database that maps an IP address to one or
more hostnames, and is used by the InetGetHostAddress and InetGetHostNames function. The
file is a plain text file, with each line in the file specifying a record, and each field separated by
spaces or tabs. The format of the file must be as follows:

ipaddress hostname [hostalias ...]

For example, one typical entry maps the name "localhost" to the local loopback IP address. This
would be entered as:

127.0.0.1 localhost

The hash character (#) may be used to specify a comment in the file, and all characters after it are
ignored up to the end of the line. Blank lines are ignored, as are any lines which do not follow the
required format.

Parameters
lpszFileName

Pointer to a string that specifies the name of the file. If the parameter is NULL, then the current
host file is cleared from the cache and only the default host file will be used to resolve
hostnames and addresses.

Return Value
If the function succeeds, the return value is the number of entries in the host file. A return value of
INET_ERROR indicates failure. To get extended error information, call InetGetLastError.

Remarks
This function loads the file into memory allocated for the current thread. If the contents of the file
have changed after the function has been called, those changes will not be reflected when
resolving hostnames or addresses. To reload the host file from disk, call this function again with
the same file name. To remove the alternate host file from memory, specify a NULL pointer as the
parameter.

If a host file has been specified, it is processed before the default host file when resolving a
hostname into an IP address, or an IP address into a hostname. If the host name or address is not
found, or no host file has been specified, a nameserver lookup is performed.

To determine if an alternate host file has been specified, use the InetGetHostFile function. A
return value of zero indicates that no alternate host file has been cached for the current thread.

A system may have a default host file, which is used to resolve hostnames before performing a
nameserver lookup. To determine the name of this file, use the InetGetDefaultHostFile function.
It is not necessary to specify this default host file, since it is always used to resolve host names and
addresses.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)

Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetDefaultHostFile, InetGetHostAddress, InetGetHostFile, InetGetHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetLastError Function

VOID WINAPI InetSetLastError(
 DWORD dwErrorCode
);

The InetSetLastError function sets the last-error code for the caller. This function is typically used
to clear the last error by passing a value of zero as the parameter.

Parameters
dwErrorCode

Specifies the last-error code for the caller.

Return Value
None.

Remarks
Error codes are unsigned 32-bit values which are private to each calling thread. Most functions will
set the last error code value when they fail; a few functions set it when they succeed. Function
failure is typically indicated by a return value such as FALSE, NULL, INVALID_SOCKET or
INET_ERROR. Those functions which call InetSetLastError when they succeed are noted on the
function reference page.

Applications can retrieve the value saved by this function by using the InetGetLastError function.
The use of InetGetLastError is optional; an application can call it to find out the specific reason
for a function failure.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetErrorString, InetGetLastError

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetOption Function

INT WINAPI InetSetOption(
 SOCKET hSocket,
 DWORD dwOption,
 BOOL bEnabled
);

The InetSetOption function is used to enable or disable a specific socket option.

Parameters
hSocket

The socket handle.

dwOption

An unsigned integer used to specify one of the socket options. These options cannot be
combined. The following values are recognized:

Constant Description

INET_OPTION_BROADCAST This option specifies that broadcasting should be
enabled for datagrams. This option is invalid for
stream sockets.

INET_OPTION_KEEPALIVE This option specifies that packets are to be sent to the
remote system when no data is being exchanged to
keep the connection active. This is only valid for
stream sockets.

INET_OPTION_REUSEADDRESS This option specifies the local address can be reused.
This option is commonly used by server applications.

INET_OPTION_NODELAY This option disables the Nagle algorithm, which
buffers unacknowledged data and insures that a full-
size packet can be sent to the remote host.

bEnabled

A boolean flag. If the flag is set to a non-zero value, the option is enabled. Otherwise the socket
option is disabled.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
It is not recommend that you disable the Nagle algorithm by specifying the
INET_OPTION_NODELAY flag unless it is absolutely required. Doing so can have a significant,
negative impact on the performance of the application and network.

If if the INET_OPTION_KEEPALIVE option is enabled, keep-alive packets will start being generated
five seconds after the socket has become idle with no data being sent or received. Enabling this
option can be used by applications to detect when a physical network connection has been lost.
However, it is recommended that most applications query the remote host directly to determine if
the connection is still active. This is typically accomplished by sending specific commands to the

server to query its status, or checking the elapsed time since the last response from the server.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetAsyncConnectEx, InetConnectEx, InetGetOption

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetServerData Function

BOOL WINAPI InetSetServerData(
 SOCKET hServer,
 VOID lpvData
);

The InetSetServerData function sets the application defined data associated with the specified
server.

Parameters
hSocket

The socket handle.

lppvData

Pointer to the application defined data associated with the specified server.

Return Value
If the function succeeds, the return value is non-zero. A return value of zero indicates that
application defined data for the server could not be modified. To get extended error information,
call InetGetLastError.

Remarks
The InetSetServerData function is used to associate application defined data with a specific
server. A pointer to the data can be retrieved using the InetGetServerData function.

You should never specify a pointer to a local variable or data structure that will go out of scope
when the calling function exits. If you do this, the pointer will no longer be valid after the function
exits and attempting to dereference that pointer at some later time can cause an exception to be
thrown and terminate the program. You should always allocate a block of memory for the data
using a function such as HeapAlloc or LocalAlloc. If you specify the address of a static or global
data structure, you must use thread synchronization functions when dereferencing and modifying
that structure.

This function can only be used with server socket handles created using the InetServerStart
function. It cannot be used with socket handles created using the InetListen or InetListenEx
functions.

Example
UINT *pnValue1 = (UINT *)LocalAlloc(LPTR, sizeof(UINT));
UINT *pnValue2 = NULL;

*pnValue1 = 1234;

if (InetSetServerData(hServer, pnValue1) == FALSE)
{
 // Unable to associate the data with this server
 return;
}

if (InetGetServerData(hServer, &pnValue2) == FALSE)
{
 // Unable to retrieve the data associated with this server
 return;
}

// *pnValue2 == 1234
printf("The value of user defined data is %u\n", *pnValue2);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientData, InetGetServerData, InetSetClientData

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetServerPriority Function

INT WINAPI InetSetServerPriority(
 SOCKET hServer,
 INT nPriority
);

The InetSetServerPriority function sets the current priority for the specified server.

Parameters
hServer

Handle to the server socket.

nPriority

An integer value which specifies the new priority for the server. It may be one of the following
values:

Constant Description

INET_PRIORITY_BACKGROUND This priority significantly reduces the memory,
processor and network resource utilization for the
server. It is typically used with lightweight services
running in the background that are designed for few
client connections. The server thread will be assigned
a lower scheduling priority and will be frequently
forced to yield execution to other threads.

INET_PRIORITY_LOW This priority lowers the overall resource utilization for
the server and meters the processor utilization for the
server thread. The server thread will be assigned a
lower scheduling priority and will occasionally be
forced to yield execution to other threads.

INET_PRIORITY_NORMAL The default priority which balances resource and
processor utilization. This is the priority that is initially
assigned to the server when it is started, and it is
recommended that most applications use this priority.

INET_PRIORITY_HIGH This priority increases the overall resource utilization
for the server and the thread will be given higher
scheduling priority. It is not recommended that this
priority be used on a system with a single processor.

INET_PRIORITY_CRITICAL This priority can significantly increase processor,
memory and network utilization. The server thread
will be given higher scheduling priority and will be
more responsive to client connection requests. It is
not recommended that this priority be used on a
system with a single processor.

Return Value
If the function succeeds, the return value is the previous priority assigned to the server. If the
function fails, the return value is INET_PRIORITY_INVALID. To get extended error information, call
InetGetLastError.

Remarks
The InetSetServerPriority function can be used to change the current priority assigned to the
specified server. Client connections that are accepted after this function is called will inherit the
new priority as their default priority. Previously existing client connections will not be affected by
this function. To modify the priority for an active client session, use the InetSetClientPriority
function.

Higher priority values increase the thread priority and processor utilization for each client session.
You should only change the server priority if you understand the impact it will have on the system
and have thoroughly tested your application. Configuring the server to run with a higher priority
can have a negative effect on the performance of other programs running on the system.

The socket handle for the server must be one that was created using the InetServerStart function,
and cannot be a socket that was created using the InetListen or InetListenEx functions.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetClientPriority, InetGetServerPriority, InetServerStart, InetSetClientPriority

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetServerStackSize Function

BOOL WINAPI InetSetServerStackSize(
 SOCKET hServer,
 DWORD dwStackSize
);

Change the initial size of the stack allocated for threads created by the server.

Parameters
hServer

Handle to the server socket.

dwStackSize

The amount of memory that will be committed to the stack for each thread created by the
server. If this value is zero, a default stack size will be used.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetSetServerStackSize function changes the initial amount of memory that is committed to
the stack for each thread created by the server. By default, the stack size for each thread is set to
256K for 32-bit processes and 512K for 64-bit processes. Increasing or decreasing the stack size
will only affect new threads that are created by the server, it will not affect those threads that have
already been created to manage active client sessions. It is recommended that most applications
use the default stack size.

You should not change the stack size unless you understand the impact that it will have on your
system and have thoroughly tested your application. Increasing the initial commit size of the stack
will remove pages from the total system commit limit, and every page of memory that is reserved
for stack cannot be used for any other purpose.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetServerStackSize, InetServerStart

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetSetTimeout Function

INT WINAPI InetSetTimeout(
 SOCKET hSocket,
 UINT nTimeout
);

The InetSetTimeout function sets the interval that is used when waiting for a blocking operation
to complete.

Parameters
hSocket

Handle to the socket.

nTimeout

Duration of timeout interval, in seconds. If a value over 1000 is specified, it is assumed that
milliseconds are intended by the user, and the value actually used will be adjusted accordingly.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetTimeout, InetConnect, InetAccept, InetIsReadable, InetIsWritable

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetShutdown Function

INT WINAPI InetShutdown(
 SOCKET hSocket,
 DWORD dwOption
);

The InetShutdown function is used to disable reception or transmission of data, or both.

Parameters
hSocket

The socket handle.

dwOption

An unsigned integer used to specify one of the shutdown options. These options cannot be
combined. The following values are recognized:

Value Constant Description

0 INET_SHUTDOWN_READ Disable reception of data.

1 INET_SHUTDOWN_WRITE Disable transmission of data.

2 INET_SHUTDOWN_BOTH Disable both reception and transmission of data.

Return Value
If the function succeeds, the return value is zero. If the function fails, the return value is
INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
This function is rarely needed. It is provided as an interface to the Windows Sockets shutdown
function.

In some asynchronous applications, it may be desirable for a client to inform the server that no
further communication is wanted, while allowing the client to read any residual data that may
reside in internal buffers on the client side. InetShutdown accomplishes this because the socket
handle is still valid after it has been called, although some or all communication with the remote
host has ceased.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisconnect

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetStoreStream Function

BOOL WINAPI InetStoreStream(
 SOCKET hSocket,
 LPCTSTR lpszFileName,
 DWORD dwLength,
 LPDWORD lpdwCopied
 DWORD dwOffset,
 DWORD dwOptions
);

The InetStoreStream function reads the socket data stream and stores the contents in the
specified file.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpszFileName

Pointer to a string which specifies the name of the file to create or overwrite.

dwLength

An unsigned integer which specifies the maximum number of bytes to read from the socket and
write to the file. If this value is zero, then the function will continue to read data from the socket
until the remote host disconnects or an error occurs.

lpdwCopied

A pointer to an unsigned integer value which will contain the number of bytes written to the file
when the function returns.

dwOffset

An unsigned integer which specifies the byte offset into the file where the function will start
storing data read from the socket. Note that all data after this offset will be truncated. A value of
zero specifies that the file should be completely overwritten if it already exists.

dwOptions

An unsigned integer value which specifies one or more options. Programs can use a bitwise
operator to combine any of the following values:

Constant Description

INET_STREAM_CONVERT The data stream is considered to be textual and
will be modified so that end-of-line character
sequences are converted to follow standard
Windows conventions. This will ensure that all lines
of text are terminated with a carriage-return and
linefeed sequence. Because this option modifies
the data stream, it should never be used with
binary data. Using this option may result in the
amount of data written to the file to be larger than
the source data. For example, if the source data
only terminates a line of text with a single linefeed,
this option will have the effect of inserting a

carriage-return character before each linefeed.

INET_STREAM_UNICODE The data stream should be converted to Unicode.
This option should only be used with text data, and
will result in the stream data being written as 16-bit
wide characters rather than 8-bit bytes. The
amount of data returned will be twice the amount
read from the source data stream. If the dwOffset
parameter has a value of zero, the Unicode byte
order mark (BOM) will be written to the beginning
of the file.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The InetStoreStream function enables an application to read an arbitrarily large stream
of data and store it in a file. This function is essentially a simplified version of the
InetReadStream function, designed specifically to be used with files rather than memory
buffers or handles.

This function will force the thread to block until the operation completes. If this function is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, read the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
InetStoreStream is blocked waiting for data from the remote host, an error will occur. It
is recommended that this function only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

Because InetStoreStream can potentially cause the application to block for long periods
of time as the data stream is being read, the function will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
InetRegisterEvent function, and can obtain information about the current operation by
calling the InetGetStreamInfo function.

Example
DWORD dwCopied;
BOOL bResult;

bResult = InetStoreStream(hSocket,
 lpszFileName, 0,
 &dwCopied,
 0,
 INET_STREAM_CONVERT);

if (bResult && dwCopied > 0)
{
 // The data has been written to the file
}

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)

Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetGetStreamInfo, InetRead, InetReadLine, InetReadStream, InetWrite, InetWriteLine,
InetWriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetUninitialize Function

VOID WINAPI InetUninitialize();

The InetUninitialize function terminates the use of the library.

Parameters
None.

Return Value
None.

Remarks
An application is required to perform a successful InetInitialize call before it can call any of the
other library functions. When it has completed the use of library, the application must call
InetUninitialize to allow the library to free any resources allocated on behalf of the process. Any
pending blocking or asynchronous calls in this process are canceled without posting any
notification messages, and all sockets that were opened by the process are closed.

There must be a call to InetUninitialize for every successful call to InetInitialize made by a
process. In a multithreaded environment, operations for all threads are terminated.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetDisconnect, InetInitialize

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetValidateCertificate Function

BOOL WINAPI InetValidateCertificate(
 LPCTSTR lpszCertStore,
 LPCTSTR lpszCertPassword,
 LPCTSTR lpszCertName
);

The InetValidateCertificate function determines if the specified security certificate is installed on
the local system.

Parameters
lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the personal certificate store will
be used as the default. This parameter may also specify the name of a certificate file in PKCS
#12 (PFX) format.

Store Name Description

CA Certification authority certificates. These are certificates that are issued by
entities which are entrusted to issue certificates to other individuals or
organizations. Companies such as VeriSign and Thawte act as
certification authorities.

MY Personal certificates and their associated private keys for the current user.
This store typically holds the client certificates used to establish a user's
credentials. This corresponds to the "Personal" store that is displayed by
the certificate manager utility and is the default store used by the library.

ROOT Certificates that have been self-signed by a certificate authority. Root
certificates for a number of different certification authorities such as
VeriSign and Thawte are installed as part of the operating system and
periodically updated by Microsoft.

lpszCertPassword

A null terminated string which specifies the password associated with a certificate file. This
parameter is only used if the lpszCertStore parameter specifies a certificate file, otherwise it is
ignored. If the certificate file is not protected with a password, this parameter should be a NULL
pointer or empty string.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to validate. The
function will first search the certificate store for a certificate with a matching "friendly name"; this
is a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
function will then attempt to find a certificate that has a matching common name (also called
the certificate subject). This comparison is less stringent, and the first partial match will be
returned. If this second search fails, the function will return an error indicating that the certificate
could not be found.

Return Value

If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
If you are checking the validity of a certificate installed in the local certificate store, you can
explicitly specify whether the certificate store for the current user or the local machine (all users)
should be used. This is done by prefixing the certificate store name with "HKCU:" for the current
user, or "HKLM:" for the local machine. For example, a certificate store name of "HKLM:MY" would
specify the personal certificate store for the local machine, rather than the current user. If neither
prefix is specified, then it will default to the certificate store for the current user.

It is possible to validate a certificate file rather than one stored in the local certificate store. The
lpszCertStore member should specify the name of a file in Private Information Exchange (PFX)
format, also known as PKCS #12.These certificate files typically have an extension of .pfx or .p12. If
a password was specified when the certificate file was created, it must be provided in with the
lpszCertPassword parameter or this function will be unable to access the certificate.

This function can only validate certificate files in PFX format and cannot be used to validate a
certificate file in another format, such as PEM (base64 encoded) or DER (binary).

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetCreateSecurityCredentials, InetDeleteSecurityCredentials

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetValidateHostName Function

BOOL WINAPI InetValidateHostName(
 LPCTSTR lpszHostName,
 LPTSTR lpszAddress,
 INT nMaxLength
);

The InetValidateHostName function determines if the specified host name is valid and returns its
IP address.

Parameters
lpszHostName

A pointer to a null terminated string which specifies the host name. The function will fail If this
parameter is NULL or an empty string.

lpszAddress

A pointer to a string buffer which will contain the IP address of the host. If specified, this string
must be large enough to store the complete IP address, including the terminating null
character. If this parameter is NULL or the nMaxLength parameter is zero, it will be ignored and
the IP address will not be returned.

nMaxLength

An integer value that specifies the maximum number of characters which can be copied into the
lpszAddress string buffer. The buffer must be large enough to store the complete address.
Because this function can return either an IPv4 or IPv6 address, it is recommended the minimum
length for the buffer to be 46 characters. If this parameter is zero, the lpszAddress parameter
will be ignored.

Return Value
If the function succeeds, the host name is valid and the return value will be non-zero. If the
function fails, the host name could not be resolved to an IP address and the return value will be
zero. To get extended error information, call InetGetLastError.

Remarks
The InetValidateHostName function provides a convenient way to determine if a host name is
valid by attempting to resolve the name into an IP address. It is similar to calling the
InetNormalizeHostName function to obtain the canonical form of the host name, calling
InetGetAddress to obtain the IP address and then calling InetFormatAddress to return the
string representation of the host's IP address.

If the Unicode version of this function is used, any non-ASCII characters in the host name will be
automatically encoded into a compatible format and then resolved to an IP address. If you are
unsure if an internationalized domain name will be specified as the host name, it is recommended
you use the Unicode version.

The lpszHostName parameter can only specify a host name or IP address and cannot be a URL. If
you want your application to support providing a URL in addition to a host name, use the
InetGetUrlHostName function to extract the host name from the URL. You can then provide the
host name to this function to obtain its IP address.

If the lpszHostName parameter specifies a valid IPv4 or IPv6 address string instead of a host
name, this function will return a copy of that IP address in the buffer provided by the caller. This

allows the function to be used in cases where a user may input either a host name or IP address.
To determine if the IP address has a corresponding host name, use the InetGetHostName
function.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetFormatAddress, InetGetAddress, InetGetHostAddress, InetGetHostName, InetGetUrlHostName,
InetNormalizeHostName

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetWrite Function

INT WINAPI InetWrite(
 SOCKET hSocket,
 LPBYTE lpBuffer,
 INT cbBuffer
);

The InetWrite function sends the specified number of bytes to the remote host.

Parameters
hSocket

The socket handle.

lpBuffer

The pointer to the buffer which contains the data that is to be sent to the remote host.

cbBuffer

The number of bytes to send from the specified buffer.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the application to send the
remaining data at some later point. For non-blocking connections, the program must wait for the
INET_EVENT_WRITE asynchronous notification message before it resumes sending data.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFlush, InetRead, InetReadEx, InetWriteEx

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetWriteEx Function

INT WINAPI InetWriteEx(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 INT cbBuffer,
 DWORD dwReserved,
 LPINTERNET_ADDRESS lpRemoteAddress,
 UINT nRemotePort
);

The InetWriteEx function sends the specified number of bytes to the remote host.

Parameters
hSocket

The socket handle.

lpvBuffer

The pointer to the buffer which contains the data that is to be sent to the remote host.

cbBuffer

The number of bytes to send from the specified buffer.

dwReserved

Reserved parameter. This value must always be zero.

lpRemoteAddress

Pointer to an INTERNET_ADDRESS structure that specifies the address of the remote host that is
to receive the data being written. For TCP stream sockets, this parameter must always be NULL
or specify the same address that was used to establish the connection. For UDP datagram
sockets, this may specify any valid IP address.

nRemotePort

The port number of the remote host that is to receive the data being written. For TCP stream
sockets, this value must always be zero, or specify the same port number that was used to
establish the connection. For UDP datagram sockets, this may specify any valid port number.

Return Value
If the function succeeds, the return value is the number of bytes actually written. If the function
fails, the return value is INET_ERROR. To get extended error information, call InetGetLastError.

Remarks
The return value may be less than the number of bytes specified by the cbBuffer parameter. In this
case, the data has been partially written and it is the responsibility of the application to send the
remaining data at some later point. For non-blocking connections, the program must wait for the
INET_EVENT_WRITE asynchronous notification message before it resumes sending data.

This function extends the InetWrite function to additional information about the destination IP
address and port number for the data being written. For a client TCP connection, the IP address
and remote port must be the same values that were used to establish the connection. When
writing on a UDP socket, this is the IP address and remote port of the peer that will receive the
datagram. This information can be used in conjunction with the InetReadEx function to send a
datagram back to that host.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetFlush, InetRead, InetReadEx, InetWrite, INTERNET_ADDRESS

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetWriteLine Function

BOOL WINAPI InetWriteLine(
 SOCKET hSocket,
 LPCTSTR lpszBuffer,
 LPINT lpnLength
);

The InetWriteLine function sends a line of text to the remote host, terminated by a carriage-
return and linefeed.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpszBuffer

The pointer to a string buffer which contains the data that will be sent to the remote host. All
characters up to, but not including, the terminating null character will be written to the socket.
The data will always be terminated with a carriage-return and linefeed control character
sequence. If this parameter points to an empty string or NULL pointer, then a only a carriage-
return and linefeed are written to the socket.

lpnLength

A pointer to an integer value which will contain the number of characters written to the socket,
including the carriage-return and linefeed sequence. If this information is not required, a NULL
pointer may be specified.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value is zero.
To get extended error information, call InetGetLastError.

Remarks
The InetWriteLine function writes a line of text to the remote host and terminates the line with a
carriage-return and linefeed control character sequence. Unlike the InetWrite function which
writes arbitrary bytes of data to the socket, this function is specifically designed to write a single
line of text data from a string.

If the lpszBuffer string is terminated with a linefeed (LF) or carriage return (CR) character, it will be
automatically converted to a standard CRLF end-of-line sequence. Because the string will be sent
with a terminating CRLF sequence, the value returned in the lpnLength parameter will typically be
larger than the original string length (reflecting the additional CR and LF characters), unless the
string was already terminated with CRLF.

There are some limitations when using InetWriteLine. The function should only be used to send
text, never binary data. In particular, the function will discard nulls and append linefeed and
carriage return control characters to the data stream. The Unicode version of this function will
accept a Unicode string, however this function does not support writing raw Unicode data to the
socket. Unicode strings will be automatically converted to UTF-8 encoding using the
WideCharToMultiByte function and then written to the socket as a stream of bytes.

This function will force the thread to block until the complete line of text has been written, the
write operation times out or the remote host aborts the connection. If this function is called with

asynchronous events enabled, it will automatically switch the socket into a blocking mode, send
the data and then restore the socket to asynchronous operation. If another socket operation is
attempted while InetWriteLine is blocked sending data to the remote host, an error will occur. It
is recommended that this function only be used with blocking (synchronous) socket connections; if
the application needs to establish multiple simultaneous connections, it should create worker
threads to manage each connection.

The InetWrite and InetWriteLine function calls can be safely intermixed.

Unlike the InetWrite function, it is possible for data to have been written to the socket if the
return value is zero. For example, if a timeout occurs while the function is waiting to send more
data to the remote host, it will return zero; however, some data may have already been written
prior to the error condition. If this is the case, the lpnLength argument will specify the number of
characters actually written up to that point.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib
Unicode: Implemented as Unicode and ANSI versions.

See Also
InetIsWritable, InetRead, InetReadLine, InetWrite

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 InetWriteStream Function

BOOL WINAPI InetWriteStream(
 SOCKET hSocket,
 LPVOID lpvBuffer,
 LPDWORD lpdwLength,
 DWORD dwOptions
);

The InetWriteStream function writes data from the stream buffer to the specified socket.

Parameters
hSocket

The socket handle. The socket must reference a stream socket, not a datagram or raw socket. If
the socket type is not valid, the function will return an error.

lpvBuffer

Pointer to the buffer that contains or references the data to be written to the socket. The actual
argument depends on the value of the dwOptions parameter which specifies how the data
stream will be accessed.

lpdwLength

A pointer to an unsigned integer value which specifies the size of the buffer and contains the
number of bytes written when the function returns. This argument should should always point
to an initialized value. If the lpvBuffer argument specifies a memory buffer or global memory
handle, then this argument cannot point to an initialized value of zero.

dwOptions

An unsigned integer value which specifies the stream buffer type to be used when writing the
data stream to the socket. One of the following stream types may be specified:

Constant Description

INET_STREAM_DEFAULT The default stream buffer type is determined by
the value passed as the lpvBuffer parameter. If the
argument specifies a a global memory handle,
then the function will write the data referenced by
that handle; otherwise, the function will consider
the parameter a pointer to a block of memory
which contains data to be written. In most cases, it
is recommended that an application explicitly
specify the stream buffer type rather than using the
default value.

INET_STREAM_MEMORY The lpvBuffer argument specifies a pointer to a
block of memory which contains the data to be
written to the socket. If this stream buffer type is
used, the lpdwLength argument must point to an
unsigned integer which has been initialized with
the size of the buffer.

INET_STREAM_HGLOBAL The lpvBuffer argument specifies a global memory
handle that references the data to be written to the
socket. The handle must have been created by a

call to the GlobalAlloc or GlobalReAlloc function. If
this stream buffer type is used, the lpdwLength
argument must point to an unsigned integer which
has been initialized with the size of the buffer.

INET_STREAM_HANDLE The lpvBuffer argument specifies a Windows
handle to an open file, console or pipe. This should
be the same handle value returned by the
CreateFile function in the Windows API. The data
read using the ReadFile function with this handle
will be written to the socket.

INET_STREAM_SOCKET The lpvBuffer argument specifies a socket handle.
The data read from the socket specified by this
handle will be written to the socket specified by the
hSocket parameter. The socket handle passed to
this function must have been created by this
library; if it is a socket created by an third-party
library or directly by the Windows Sockets API, you
should either attach the socket using the
InetAttachSocket function or use the
INET_STREAM_HANDLE stream buffer type instead.

Return Value
If the function succeeds, the return value is non-zero. If the function fails, the return value
is zero. To get extended error information, call InetGetLastError.

Remarks
The InetWriteStream function enables an application to write an arbitrarily large stream
of data from memory or a file to the specified socket. Unlike the InetWrite function,
which may not write all of the data in a single function call, InetWriteStream will only
return when all of the data has been written or an error occurs.

This function will force the thread to block until the operation completes. If this function is
called with asynchronous events enabled, it will automatically switch the socket into a
blocking mode, write the data stream and then restore the socket to asynchronous
operation when it has finished. If another socket operation is attempted while
InetWriteStream is blocked sending data to the remote host, an error will occur. It is
recommended that this function only be used with blocking (synchronous) socket
connections; if the application needs to establish multiple simultaneous connections, it
should create worker threads to manage each connection.

It is possible for some data to have been written even if the function returns a value of
zero. Applications should also check the value of the lpdwLength argument to determine
if any data was sent. For example, if a timeout occurs while the function is waiting to write
more data, it will return zero; however, some data may have already been written to the
socket prior to the error condition.

Because InetWriteStream can potentially cause the application to block for long periods
of time as the data stream is being written, the function will periodically generate
INET_EVENT_PROGRESS events. An application can register an event handler using the
InetRegisterEvent function, and can obtain information about the current operation by
calling the InetGetStreamInfo function.

Example
HANDLE hFile;
DWORD dwLength;

hFile = CreateFile(lpszFileName,
 GENERIC_READ,
 FILE_SHARE_READ,
 NULL,
 OPEN_EXISTING,
 FILE_FLAG_SEQUENTIAL_SCAN,
 NULL);

if (hFile == INVALID_HANDLE_VALUE)
 return;

dwLength = GetFileSize(hFile, NULL);

if (dwLength > 0)
{
 BOOL bResult = InetWriteStream(
 hSocket,
 hFile,
 &dwLength,
 INET_STREAM_HANDLE);
}

CloseHandle(hFile);

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Import Library: cswskv11.lib

See Also
InetGetStreamInfo, InetRead, InetReadLine, InetReadStream, InetStoreStream, InetWrite,
InetWriteLine

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

SocketWrench Windows Sockets Library

A general purpose TCP/IP networking library for developing client and server applications.

Reference

Functions
Data Structures
Error Codes

Library Information

File Name CSWSKV11.DLL

Version 11.0.2180.1635

LibID EC6DE93D-FBB8-4928-B2D5-C09758C644EE

Import Library CSWSKV11.LIB

Dependencies None

Standards RFC 768, RFC 791, RFC 793

Overview
At the core of all of the SocketTools networking libraries is the Windows Sockets API. This provides
a low level interface for sending and receiving data over the Internet or a local intranet using the
Transmission Control Protocol (TCP) and/or User Datagram Protocol (UDP). The SocketWrench
library provides a simpler interface to the Windows Sockets API, without sacrificing features or
functionality. Using SocketWrench, you can easily create client and server applications while
avoiding many of the mundane tasks and common problems that developers face when building
Internet applications.

This library supports secure connections using the TLS 1.2 protocol and can also be used to create
secure, customized server applications. Both implicit and explicit SSL connections are supported,
enabling the library to work with a wide variety of client and server applications without requiring
that you use third-party libraries or Microsoft's CryptoAPI.

Requirements
The SocketTools Library Edition libraries are compatible with any programming language which
supports calling functions exported from a standard dynamic link library (DLL). If you are using
Visual C++ 6.0 it is required that you have Service Pack 6 (SP6) installed. You should install all
updates for your development tools and have the current Windows SDK installed. The minimum
recommended version of Visual Studio is Visual Studio 2010.

This library is supported on Windows 7, Windows Server 2008 R2 and later versions of the desktop
and server platforms. If you are using Windows 7, you must have Service Pack 1 (SP1) installed as
a minimum requirement. It is recommended that you install the current service pack and all critical
updates available for your version of the operating system.

This library provides an implementation of a multithreaded server which should only be used with
languages that support the creation of multithreaded applications. It is important that you do not
link against static libraries which were not built with support for threading.

This product includes both 32-bit and 64-bit libraries. Native 64-bit CPU support requires the 64-

bit version of Windows 7 or later versions of the Windows operating system.

Distribution
When you distribute your application that uses this library, it is recommended that you install the
file in the same folder as your application executable. If you install the library into a shared location
on the system, it is important that you distribute the correct version for the target platform and it
should be registered as a shared DLL. This is a standard Windows dynamic link library, not an
ActiveX component, and does not require COM registration.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Data Structures

INETSTREAMINFO
INITDATA
INTERNET_ADDRESS
SECURITYCREDENTIALS
SECURITYINFO

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INETSTREAMINFO Structure

This structure contains information about the data stream being currently read or written.

typedef struct _INETSTREAMINFO
{
 DWORD dwStreamThread;
 DWORD dwStreamSize;
 DWORD dwStreamCopied;
 DWORD dwStreamMode;
 DWORD dwStreamError;
 DWORD dwBytesPerSecond;
 DWORD dwTimeElapsed;
 DWORD dwTimeEstimated;
} INETSTREAMINFO, *LPINETSTREAMINFO;

Members
dwStreamThread

Specifies the numeric ID for the thread that created the socket.

dwStreamSize

The maximum number of bytes that will be read or written. This is the same value as the buffer
length specified by the caller, and may be zero which indicates that no maximum size was
specified. Note that if this value is zero, the application will be unable to calculate a completion
percentage or estimate the amount of time for the operation to complete.

dwStreamCopied

The total number of bytes that have been copied to or from the stream buffer.

dwStreamMode

A numeric value which specifies the stream operation that is current being performed. It may be
one of the following values:

Constant Description

INET_STREAM_READ Data is being read from the socket and stored in the specified
stream buffer.

INET_STREAM_WRITE Data is being written from the specified stream buffer to the
socket.

dwStreamError

The last error that occurred when reading or writing the data stream. If no error has occurred,
this value will be zero.

dwBytesPerSecond

The average number of bytes that have been copied per second.

dwTimeElapsed

The number of seconds that have elapsed since the file transfer started.

dwTimeEstimated

The estimated number of seconds until the operation is completed. This is based on the
average number of bytes transferred per second and requires that a maximum stream buffer
size be specified by the caller.

Requirements

Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h

See Also
InetReadStream, InetStoreStream, InetWriteStream

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INITDATA Structure

This structure contains information about the SocketTools library when the initialization function
returns.

typedef struct _INITDATA
{
 DWORD dwSize;
 DWORD dwVersionMajor;
 DWORD dwVersionMinor;
 DWORD dwVersionBuild;
 DWORD dwOptions;
 DWORD_PTR dwReserved1;
 DWORD_PTR dwReserved2;
 TCHAR szDescription[128];
} INITDATA, *LPINITDATA;

Members
dwSize

Size of this structure. This structure member must be set to the size of the structure prior to
calling the initialization function. Failure to do so will cause the function to fail.

dwVersionMajor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the major version number for the library.

dwVersionMinor

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the minor version number for the library.

dwVersionBuild

This member must be initialized to a value of zero prior to calling the initialization function.
When the function returns, it will contain the build number for the library.

dwOptions

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved1

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

dwReserved2

This member must be initialized to a value of zero prior to calling the initialization function. This
member is reserved for future use.

szDescription

A null terminated string which describes the library.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 INTERNET_ADDRESS Structure

This structure represents a numeric IPv4 or IPv6 address in network byte order.

typedef struct _INTERNET_ADDRESS
{
 INT ipFamily;
 BYTE ipNumber[16];
} INTERNET_ADDRESS, *LPINTERNET_ADDRESS;

Members
ipFamily

An integer which identifies the type of IP address. It will be one of the following values:

Constant Description

INET_ADDRESS_UNKNOWN The address has not been specified or the bytes in the
ipNumber array does not represent a valid address.
Functions which populate this structure will use this value
to indicate that the address cannot be determined.

INET_ADDRESS_IPV4 Specifies that the address is in IPv4 format. The first four
bytes of the ipNumber array are significant and contains
the IP address. The remaining bytes are not significant
and an application should not depend on them having
any particular value, including zero.

INET_ADDRESS_IPV6 Specifies that the address is in IPv6 format. All bytes in
the ipNumber array are significant. Note that it is
possible for an IPv6 address to actually represent an IPv4
address. This is indicated by the first 10 bytes of the
address being zero.

ipNumber

A byte array which contains the numeric form of the IP address. This array is large enough to
store both IPv4 (32 bit) and IPv6 (128 bit) addresses. The values are stored in network byte
order.

Remarks
The INTERNET_ADDRESS structure is used by some functions to represent an Internet address in
a binary format that is compatible with both IPv4 and IPv6 addresses. Applications that use this
structure should consider it to be opaque, and should not modify the contents of the structure
directly.

For compatibility with legacy applications that expect an IP address to be 32 bits and stored in an
unsigned integer, you can copy the first four bytes of the ipNumber array using the
CopyMemory function or equivalent. Note that if this is done, your application should always
check the ipFamily member first to make sure that it is actually an IPv4 address.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cswsock11.h

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYCREDENTIALS Structure

The SECURITYCREDENTIALS structure specifies the information needed by the library to specify
additional security credentials, such as a client certificate or private key, when establishing a secure
connection.

typedef struct _SECURITYCREDENTIALS
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwOptions;
 DWORD dwReserved;
 LPCTSTR lpszHostName;
 LPCTSTR lpszUserName;
 LPCTSTR lpszPassword;
 LPCTSTR lpszCertStore;
 LPCTSTR lpszCertName;
 LPCTSTR lpszKeyFile;
} SECURITYCREDENTIALS, *LPSECURITYCREDENTIALS;

Members
dwSize

Size of this structure. If the structure is being allocated dynamically, this member must be set to
the size of the structure and all other unused structure members must be initialized to a value of
zero or NULL.

dwProtocol

A bitmask of supported security protocols. The value of this structure member is constructed by
using a bitwise operator with any of the following values:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The
correct protocol is automatically selected, based on

what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwOptions

A value which specifies one or options. This member is constructed by using a bitwise operator
with any of the following values:

Constant Description

CREDENTIAL_STORE_CURRENT_USER The library will attempt to open a store for
the current user using the certificate store
name provided in this structure. If no options
are specified, then this is the default
behavior.

CREDENTIAL_STORE_LOCAL_MACHINE The library will attempt to open a local
machine store using the certificate store

name provided in this structure. If this option
is specified, the library will always search for a
local machine store before searching for the
store by that name for the current user.

CREDENTIAL_STORE_FILENAME The certificate store name is a file that
contains the certificate and private key that
will be used.

dwReserved

This structure member is reserved for future use and should always be initialized to zero.

lpszHostName

A pointer to a null terminated string which specifies the hostname that will be used when
validating the server certificate. If this member is NULL, then the server certificate will be
validated against the hostname used to establish the connection.

lpszUserName

A pointer to a null terminated string which identifies the owner of client certificate. Currently this
member is not used by the library and should always be initialized as a NULL pointer.

lpszPassword

A pointer to a null terminated string which specifies the password needed to access the
certificate. Currently this member is only used if the CREDENTIAL_STORE_FILENAME option has
been specified. If there is no password associated with the certificate, then this member should
be initialized as a NULL pointer.

lpszCertStore

A pointer to a null terminated string which specifies the name of the certificate store to open. A
certificate store is a collection of certificates and their private keys, typically organized by how
they are used. If this value is NULL or points to an empty string, the default certificate store "MY"
will be used.

Store
Name

Description

CA
Certification authority certificates. These are certificates that are issued by entities
which are entrusted to issue certificates to other individuals or organizations.
Companies such as VeriSign and Thawte act as certification authorities.

MY

Personal certificates and their associated private keys for the current user. This
store typically holds the client certificates used to establish a user's credentials.
This corresponds to the "Personal" store that is displayed by the certificate
manager utility and is the default store used by the library.

ROOT
Certificates that have been self-signed by a certificate authority. Root certificates
for a number of different certification authorities such as VeriSign and Thawte are
installed as part of the operating system and periodically updated by Microsoft.

lpszCertName

A pointer to a null terminated string which specifies the name of the certificate to use. The
library will first search the certificate store for a certificate with a matching "friendly name"; this is
a name for the certificate that is assigned by the user. Note that the name must match
completely, but the comparison is not case sensitive. If no matching certificate is found, the
library will then attempt to find a certificate that has a matching common name (also called the
certificate subject). This comparison is less stringent, and the first partial match will be returned.

If this second search fails, the library will return an error indicating that the certificate could not
be found. If the SECURITY_PROTOCOL_SSH protocol has been specified, this member should
be NULL.

lpszKeyFile

A pointer to a null terminated string which specifies the name of the file which contains the
private key required to establish the connection. This member is only used for SSH connections
and should always be NULL when establishing a secure connection using SSL or TLS.

Remarks
A client application only needs to create this structure if the server requires that the client provide
a certificate as part of the process of negotiating the secure session. If a certificate is required,
note that it must have a private key associated with it. Attempting to use a certificate that does not
have a private key will result in an error during the connection process indicating that the client
credentials could not be established.

If you are using a local certificate store, with the certificate and private key stored in the registry,
you can explicitly specify whether the certificate store for the current user or the local machine (all
users) should be used. This is done by prefixing the certificate store name with "HKCU:" for the
current user, or "HKLM:" for the local machine. For example, a certificate store name of
"HKLM:MY" would specify the personal certificate store for the local machine, rather than the
current user. If neither prefix is specified, then it will default to the certificate store for the current
user. You can manage these certificates using the CertMgr.msc Microsoft Management Console
(MMC) snap-in.

It is possible to load the certificate from a file rather than from current user's certificate store. The
dwOptions member should be set to CREDENTIAL_STORE_FILENAME and the lpszCertStore
member should specify the name of the file that contains the certificate and its private key. The file
must be in Private Information Exchange (PFX) format, also known as PKCS #12. These certificate
files typically have an extension of .pfx or .p12. Note that if a password was specified when the
certificate file was created, it must be provided in the lpszPassword member or the library will be
unable to access the certificate.

Note that the lpszUserName and lpszPassword members are values which are used to access the
certificate store or private key file. They are not the credentials which are used when establishing
the connection with the remote host or authenticating the client session.

The TLS 1.1 and TLS 1.2 protocols are only supported on Windows 7, Windows Server 2008 R2
and later versions of the platform. If these options are specified and the application is running on
Windows XP or Windows Vista, the protocol version will be downgraded to TLS 1.0 for backwards
compatibility with those platforms.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header: Include cswsock11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SECURITYINFO Structure

This structure contains information about a secure connection that has been established.

typedef struct _SECURITYINFO
{
 DWORD dwSize;
 DWORD dwProtocol;
 DWORD dwCipher;
 DWORD dwCipherStrength;
 DWORD dwHash;
 DWORD dwHashStrength;
 DWORD dwKeyExchange;
 DWORD dwCertStatus;
 SYSTEMTIME stCertIssued;
 SYSTEMTIME stCertExpires;
 LPCTSTR lpszCertIssuer;
 LPCTSTR lpszCertSubject;
 LPCTSTR lpszFingerprint;
} SECURITYINFO, *LPSECURITYINFO;

Members
dwSize

Specifies the size of the data structure. This member must always be initialized to
sizeof(SECURITYINFO) prior to passing the address of this structure to the function. Note that
if this member is not initialized, an error will be returned indicating that an invalid parameter has
been passed to the function.

dwProtocol

A numeric value which specifies the protocol that was selected to establish the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_PROTOCOL_DEFAULT The default security protocol will be used when
establishing a connection. This option will always
request the latest version of the preferred security
protocol and is the recommended value. Currently
the default security protocol is TLS 1.2.

SECURITY_PROTOCOL_SSL Either SSL 2.0 or SSL 3.0 should be used when
establishing a secure connection. The correct
protocol is automatically selected, based on what
version of the protocol is supported by the server. If
this is the only protocol specified, TLS will be
excluded from the list of supported protocols. Both
SSL 2.0 and 3.0 have been deprecated and will
never be used unless explicitly specified. It is not
recommended that you enable either of these
protocols for secure connections because it will
cause most servers to reject your connection
request, even if a version of TLS is also specified.

SECURITY_PROTOCOL_TLS Either the TLS 1.0, 1.1 or 1.2 protocol should be
used when establishing a secure connection. The

correct protocol is automatically selected, based on
what version of the protocol is supported by the
server. If this is the only protocol specified, SSL will
be excluded from the list of supported protocols.
This may be necessary for some servers that reject
any attempt to use the older SSL protocol and
require that only TLS be used.

SECURITY_PROTOCOL_TLS10 The TLS 1.0 protocol should be used when
establishing a secure connection. This version is
supported on all Windows platforms, however some
servers may reject connections using version 1.0 in
favor of using version 1.2. This version should only
be used for backwards compatibility with older
servers that have not been updated to use the
current version of TLS.

SECURITY_PROTOCOL_TLS11 The TLS 1.1 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. Some servers may reject
connections using version 1.1 in favor of using
version 1.2. This version should only be used for
backwards compatibility with older servers that have
not been updated to use the current version of TLS.

SECURITY_PROTOCOL_TLS12 The TLS 1.2 protocol should be used when
establishing a secure connection. This version is
supported on Windows 7 and later desktop
platforms, and Windows Server 2008 R2 and later
server platforms. This is the recommended version
of TLS to use with secure connections.

SECURITY_PROTOCOL_TLS13 The TLS 1.3 protocol should be used when
establishing a secure connection. This is the newest
version of the protocol and is only supported on
Windows 10, Windows Server 2019 and later
versions of Windows. If this protocol version is not
supported, TLS 1.2 will be used instead.

dwCipher

A numeric value which specifies the cipher that was selected when establishing the secure
connection. One of the following values will be returned:

Constant Description

SECURITY_CIPHER_RC2 The RC2 block cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC4 The RC4 stream cipher was selected. This is a variable
key length cipher which supports keys between 40 and
128 bits, in 8-bit increments.

SECURITY_CIPHER_RC5 The RC5 block cipher was selected. This is a variable
key length cipher which supports keys up to 2040 bits,
in 8-bit increments.

SECURITY_CIPHER_DES The DES (Data Encryption Standard) block cipher was
selected. This is a fixed key length cipher, using 56-bit
keys.

SECURITY_CIPHER_DES3 The Triple DES block cipher was selected. This cipher
encrypts the data three times using different keys,
effectively providing a 168-bit length key.

SECURITY_CIPHER_DESX A variant of the DES block cipher which XORs an extra
64-bits of the key before and after the plaintext has
been encrypted, increasing the key size to 184 bits.

SECURITY_CIPHER_AES The Advanced Encryption Standard cipher (also known
as the Rijndael cipher) is a fixed block size cipher which
use a key size of 128, 192 or 256 bits. This cipher is
supported on Windows XP SP3 and later versions of
the operating system.

SECURITY_CIPHER_SKIPJACK The Skipjack block cipher was selected. This is a fixed
key length cipher, using 80-bit keys.

SECURITY_CIPHER_BLOWFISH The Blowfish block cipher was selected. This is a
variable key length cipher up to 448 bits, using a 64-bit
block size.

dwCipherStrength

A numeric value which specifies the strength (the length of the cipher key in bits) of the cipher
that was selected. Typically this value will be 128 or 256. 40-bit and 56-bit key lengths are
considered weak encryption, and subject to brute force attacks. 128-bit and 256-bit key lengths
are considered to be secure, and are the recommended key length for secure communications.

dwHash

A numeric value which specifies the hash algorithm which was selected. One of the following
values will be returned:

Constant Description

SECURITY_HASH_MD5 The MD5 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA1 The SHA-1 algorithm was selected. Its use has been
deprecated and is no longer considered to be
cryptographically secure.

SECURITY_HASH_SHA256 The SHA-256 algorithm was selected.

SECURITY_HASH_SHA384 The SHA-384 algorithm was selected.

SECURITY_HASH_SHA512 The SHA-512 algorithm was selected.

dwHashStrength

A numeric value which specifies the strength (the length in bits) of the message digest that was

selected.

dwKeyExchange

A numeric value which specifies the key exchange algorithm which was selected. One of the
following values will be returned:

Constant Description

SECURITY_KEYEX_RSA The RSA public key algorithm was selected.

SECURITY_KEYEX_KEA The Key Exchange Algorithm (KEA) was selected. This is an
improved version of the Diffie-Hellman public key algorithm.

SECURITY_KEYEX_DH The Diffie-Hellman key exchange algorithm was selected.

SECURITY_KEYEX_ECDH The Elliptic Curve Diffie-Hellman key exchange algorithm was
selected. This is a variant of the Diffie-Hellman algorithm
which uses elliptic curve cryptography. This key exchange
algorithm is only supported on Windows XP SP3 and later
versions of the operating system.

dwCertStatus

A numeric value which specifies the status of the certificate returned by the secure server. This
member only has meaning for connections using the SSL or TLS protocols. One of the following
values will be returned:

Constant Description

SECURITY_CERTIFICATE_VALID The certificate is valid.

SECURITY_CERTIFICATE_NOMATCH The certificate is valid, but the domain name
does not match the common name in the
certificate.

SECURITY_CERTIFICATE_EXPIRED The certificate is valid, but has expired.

SECURITY_CERTIFICATE_REVOKED The certificate has been revoked and is no
longer valid.

SECURITY_CERTIFICATE_UNTRUSTED The certificate or certificate authority is not
trusted on the local system.

SECURITY_CERTIFICATE_INVALID The certificate is invalid. This typically indicates
that the internal structure of the certificate has
been damaged.

stCertIssued

A structure which contains the date and time that the certificate was issued by the certificate
authority. If the issue date cannot be determined for the certificate, the SYSTEMTIME structure
members will have zero values. This member only has meaning for connections using the SSL or
TLS protocols.

stCertExpires

A structure which contains the date and time that the certificate expires. If the expiration date
cannot be determined for the certificate, the SYSTEMTIME structure members will have zero
values. This member only has meaning for connections using the SSL or TLS protocols.

lpszCertIssuer

A pointer to a string which contains information about the organization that issued the
certificate. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate issuer could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszCertSubject

A pointer to a string which contains information about the organization that the certificate was
issued to. This string consists of one or more comma-separated tokens. Each token consists of
an identifier, followed by an equal sign and a value. If the certificate subject could not be
determined, this member may be NULL. This member only has meaning for connections using
the SSL or TLS protocols.

lpszFingerprint

A pointer to a string which contains a sequence of hexadecimal values that uniquely identify the
server. This member is only used when a connection has been established using the Secure
Shell (SSH) protocol.

Requirements
Minimum Desktop Platform: Windows 7 (Service Pack 1)
Minimum Server Platform: Windows Server 2008 R2 (Service Pack 1)
Header File: cstools11.h
Unicode: Implemented as Unicode and ANSI versions.

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

 SocketWrench Library Error Codes

Value Constant Description

0x80042711 ST_ERROR_NOT_HANDLE_OWNER Handle not owned by the current thread

0x80042712 ST_ERROR_FILE_NOT_FOUND The specified file or directory does not exist

0x80042713 ST_ERROR_FILE_NOT_CREATED The specified file could not be created

0x80042714 ST_ERROR_OPERATION_CANCELED The blocking operation has been canceled

0x80042715 ST_ERROR_INVALID_FILE_TYPE The specified file is a block or character
device, not a regular file

0x80042716 ST_ERROR_INVALID_DEVICE The specified device or address does not
exist

0x80042717 ST_ERROR_TOO_MANY_PARAMETERS The maximum number of function
parameters has been exceeded

0x80042718 ST_ERROR_INVALID_FILE_NAME The specified file name contains invalid
characters or is too long

0x80042719 ST_ERROR_INVALID_FILE_HANDLE Invalid file handle passed to function

0x8004271A ST_ERROR_FILE_READ_FAILED Unable to read data from the specified file

0x8004271B ST_ERROR_FILE_WRITE_FAILED Unable to write data to the specified file

0x8004271C ST_ERROR_OUT_OF_MEMORY Out of memory

0x8004271D ST_ERROR_ACCESS_DENIED Access denied

0x8004271E ST_ERROR_INVALID_PARAMETER Invalid argument passed to function

0x8004271F ST_ERROR_CLIPBOARD_UNAVAILABLE The system clipboard is currently unavailable

0x80042720 ST_ERROR_CLIPBOARD_EMPTY The system clipboard is empty or does not
contain any text data

0x80042721 ST_ERROR_FILE_EMPTY The specified file does not contain any data

0x80042722 ST_ERROR_FILE_EXISTS The specified file already exists

0x80042723 ST_ERROR_END_OF_FILE End of file

0x80042724 ST_ERROR_DEVICE_NOT_FOUND The specified device could not be found

0x80042725 ST_ERROR_DIRECTORY_NOT_FOUND The specified directory could not be found

0x80042726 ST_ERROR_INVALID_BUFFER Invalid memory address passed to function

0x80042728 ST_ERROR_NO_HANDLES No more handles available to this process

0x80042733 ST_ERROR_OPERATION_WOULD_BLOCK The specified operation would block the
current thread

0x80042734 ST_ERROR_OPERATION_IN_PROGRESS A blocking operation is currently in progress

0x80042735 ST_ERROR_ALREADY_IN_PROGRESS The specified operation is already in progress

0x80042736 ST_ERROR_INVALID_HANDLE Invalid handle passed to function

0x80042737 ST_ERROR_INVALID_ADDRESS Invalid network address specified

0x80042738 ST_ERROR_INVALID_SIZE Datagram is too large to fit in specified buffer

0x80042739 ST_ERROR_INVALID_PROTOCOL Invalid network protocol specified

0x8004273A ST_ERROR_PROTOCOL_NOT_AVAILABLE The specified network protocol is not
available

0x8004273B ST_ERROR_PROTOCOL_NOT_SUPPORTED The specified protocol is not supported

0x8004273C ST_ERROR_SOCKET_NOT_SUPPORTED The specified socket type is not supported

0x8004273D ST_ERROR_INVALID_OPTION The specified option is invalid

0x8004273E ST_ERROR_PROTOCOL_FAMILY Specified protocol family is not supported

0x8004273F ST_ERROR_PROTOCOL_ADDRESS The specified address is invalid for this
protocol family

0x80042740 ST_ERROR_ADDRESS_IN_USE The specified address is in use by another
process

0x80042741 ST_ERROR_ADDRESS_UNAVAILABLE The specified address cannot be assigned

0x80042742 ST_ERROR_NETWORK_UNAVAILABLE The networking subsystem is unavailable

0x80042743 ST_ERROR_NETWORK_UNREACHABLE The specified network is unreachable

0x80042744 ST_ERROR_NETWORK_RESET Network dropped connection on remote
reset

0x80042745 ST_ERROR_CONNECTION_ABORTED Connection was aborted due to timeout or
other failure

0x80042746 ST_ERROR_CONNECTION_RESET Connection was reset by remote network

0x80042747 ST_ERROR_OUT_OF_BUFFERS No buffer space is available

0x80042748 ST_ERROR_ALREADY_CONNECTED Connection already established with remote
host

0x80042749 ST_ERROR_NOT_CONNECTED No connection established with remote host

0x8004274A ST_ERROR_CONNECTION_SHUTDOWN Unable to send or receive data after
connection shutdown

0x8004274C ST_ERROR_OPERATION_TIMEOUT The specified operation has timed out

0x8004274D ST_ERROR_CONNECTION_REFUSED The connection has been refused by the
remote host

0x80042750 ST_ERROR_HOST_UNAVAILABLE The specified host is unavailable

0x80042751 ST_ERROR_HOST_UNREACHABLE Remote host is unreachable

0x80042753 ST_ERROR_TOO_MANY_PROCESSES Too many processes are using the
networking subsystem

0x8004276B ST_ERROR_NETWORK_NOT_READY Network subsystem is not ready for
communication

0x8004276C ST_ERROR_INVALID_VERSION This version of the operating system is not
supported

0x8004276D ST_ERROR_NETWORK_NOT_INITIALIZED The networking subsystem has not been
initialized

0x80042775 ST_ERROR_REMOTE_SHUTDOWN The remote host has initiated a graceful
shutdown sequence

0x80042AF9 ST_ERROR_INVALID_HOSTNAME The specified hostname is invalid or could
not be resolved

0x80042AFA ST_ERROR_HOSTNAME_NOT_FOUND The specified hostname could not be found

0x80042AFB ST_ERROR_HOSTNAME_REFUSED Unable to resolve hostname, request refused

0x80042AFC ST_ERROR_HOSTNAME_NOT_RESOLVED Unable to resolve hostname, no address for
specified host

0x80042EE1 ST_ERROR_INVALID_LICENSE The license for this product is invalid

0x80042EE2 ST_ERROR_PRODUCT_NOT_LICENSED This product is not licensed to perform this
operation

0x80042EE3 ST_ERROR_NOT_IMPLEMENTED This function has not been implemented on
this platform

0x80042EE4 ST_ERROR_UNKNOWN_LOCALHOST Unable to determine local host name

0x80042EE5 ST_ERROR_INVALID_HOSTADDRESS Invalid host address specified

0x80042EE6 ST_ERROR_INVALID_SERVICE_PORT Invalid service port number specified

0x80042EE7 ST_ERROR_INVALID_SERVICE_NAME Invalid or unknown service name specified

0x80042EE8 ST_ERROR_INVALID_EVENTID Invalid event identifier specified

0x80042EE9 ST_ERROR_OPERATION_NOT_BLOCKING No blocking operation in progress on this
socket

0x80042F45 ST_ERROR_SECURITY_NOT_INITIALIZED Unable to initialize security interface for this
process

0x80042F46 ST_ERROR_SECURITY_CONTEXT Unable to establish security context for this
session

0x80042F47 ST_ERROR_SECURITY_CREDENTIALS Unable to open client certificate store or
establish client credentials

0x80042F48 ST_ERROR_SECURITY_CERTIFICATE Unable to validate the certificate chain for
this session

0x80042F49 ST_ERROR_SECURITY_DECRYPTION Unable to decrypt data stream

0x80042F4A ST_ERROR_SECURITY_ENCRYPTION Unable to encrypt data stream

0x80043031 ST_ERROR_MAXIMUM_CONNECTIONS The maximum number of client connections
exceeded

0x80043032 ST_ERROR_THREAD_CREATION_FAILED Unable to create a new thread for the current
process

0x80043033 ST_ERROR_INVALID_THREAD_HANDLE The specified thread handle is no longer valid

0x80043034 ST_ERROR_THREAD_TERMINATED The specified thread has been terminated

0x80043035 ST_ERROR_THREAD_DEADLOCK The operation would result in the current

thread becoming deadlocked

0x80043036 ST_ERROR_INVALID_CLIENT_MONIKER The specified moniker is not associated with
any client session

0x80043037 ST_ERROR_CLIENT_MONIKER_EXISTS The specified moniker has been assigned to
another client session

0x80043038 ST_ERROR_SERVER_INACTIVE The specified server is not listening for client
connections

0x80043039 ST_ERROR_SERVER_SUSPENDED The specified server is suspended and not
accepting client connections

 Copyright © 2024 Catalyst Development Corporation. All rights reserved.

